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Abstract. An artificial satellite design requires severe design objectives
such as performance, reliability, weight, robustness, cost, and so on. To
solve the conflicted requirements at the same time, multiobjective opti-
mization is getting more popular in the design. Using the optimization,
it becomes ordinary to get many solutions, such as Pareto solutions,
quasi-Pareto solutions, and feasible solutions. The alternative solutions,
however, are very difficult to be adopted to practical engineering deci-
sion directly. Therefore, to make the decision, proper information about
the solutions in a function, parameter and real design space should be
provided. In this paper, a new approach for the interpretation of Pareto
solutions is proposed based on multidimensional visualization and clus-
tering. The proposed method is applied to a thermal robustness and mass
optimization problem of heat pipe shape design for an artificial satellite.
The information gleaned from the propose approach can support the
engineering decision for the design of artificial satellite heat pipe.

1 Introduction

A multiobjective optimization yields ideally innumerable alternative solutions
known as Pareto solutions. There is no any superior one in the solutions because
of their definition. However it is a very difficult task to judge Decision-Making
(DM) from Pareto solutions. Two kinds of methods are well known to overcome
the difficulty. First, preference methods give fixed preferences to objectives before
multiobjective optimization, and then find one solution for DM. Second, trade-
off methods are used to make DM from Pareto solutions after optimization.
However, attempts to support DM with the preference or trade-off may result in
poor design characters [1, 2]. That is because the DM using one solution may be
inadequate when we include all factors that influence the choice of a particular
design, such as durability and manufacturability. Therefore, if the whole set of



Pareto solutions are provided to engineers with proper information, they can use
this information to choose the best overall design.

Visualization has been one of the most useful tools to guide information
of correlations and characters between parameters, functions, and actual de-
sign shapes [3]. However, Pareto solutions are normally in a multidimensional
space, and deter from extracting the information. To overcome this difficulty,
the authors propose a synchronous 3D visualization. In the visualization, a mul-
tidimensional parameter and function space is divided into several 2D or 3D
subspaces, and visualized in parallel. Each datum corresponds to a line segment
between the subspaces and its shape in the real design space at the same time.
Therefore, engineers can understand the correlation and effect of each datum in
optimized solutions.

Furthermore, it is introduced that a clustering approach which considers a set
of Pareto solutions as a group of several distinct clusters. This approach is based
on the concept that the solutions consist of obvious characters in their function
and parameter space. To measure the similarity and dissimilarity of solutions
more essentially, the Euclidean distance and a point symmetry distance[4, 5] are
hybrided.

As a practical engineering application, the proposed approach for interpre-
tation of multiobjective solutions is applied to a thermal robustness and mass
optimization problem of heat pipe shape for an artificial satellite [6]. Two func-
tions and five parameters are considered in the design optimization. Using the
proposed approach, we search for the information that can support engineering
decision for the design of artificial satellite heat pipe.

2 DMultiobjective Optimization of Artificial Satellite Heat
Pipe

For a cooling system of artificial satellite, heat pipes based isothermal radia-
tor panels are generally employed. Fin efficiency is dramatically improved using
orthogonal interconnected (matrix layout) heat pipes as shown in Fig. 1. To max-
imize the fin efficiency of isothermal panels, the minimization of the temperature
gradient between the lateral and header heat pipes becomes a very important
design object [7]. On the other hand, saving the total mass (weight) of a ther-
mal control subsystem is highly important to reduce load (pay load cost) on
a booster-rocket. The satellite panels contain many embedded aluminum heat
pipes, which generally occupy over 50% of the total mass of the fundamental
radiator panels. Thus the thermal design of artificial satellite requires both the
fin efficiency and mass saving of the heat pipes at the same time. Additionally,
the operating temperature of the heat pipes is very widely ranging from —20.0°C
to 60.0°C in orbit. The thermal performance of the heat pipes must be stable in
the temperature change. Therefore, the temperature dependency must be also
taken into account for the heat pipe design. In this study, a combination of Re-
sponse Surface Methodology (RSM) and Monte Carlo simulation is applied at
first to formulate functions of the mass and thermal performance of the pipe
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Fig. 1. Layout of heat pipes for satellite radiator.

structure [8,10]. Here shape parameters of the heat pipes embedded within a
satellite panel are design parameters, while the both of the mass and thermal
robustness of the heat pipes are objective functions.

Table 1. Design parameter bounds.

Parameter Lower Bound Upper Bound

Ly 10.0mm 25.4mm
L, 1.5mm 2.5mm
tr 1.0mm 1.7mm

The design parameters determined by the mechanical designers are as follows:
(i) length of fin (Ly), (ii) cutting length of adhesive attached area (L.) and
(ili) thickness of fin (t;). These are illustrated in Fig. 2. Allowable ranges of
the design parameters are given in Table 1. (iv) Adhesive thickness (t;) and
(v) operation temperature (T,,) are uncontrollable by the mechanical designers
but affect the thermal performance of the heat pipes. The lateral and header
heat pipes are bonded together by flange fin area with conductive epoxy. The
adhesive thickness ¢; has production tolerance, which influences the thermal
performance of the heat pipes. To take account of this effect, it is assumed that
the adhesive thickness has statistical normal distribution ranging from 0.12mm
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Fig. 2. Design parameters in 3D FE analysis model of heat pipes.

to 0.22mm. The operating temperature (Tpp) for the heat pipes is required to
range from —20.0°C to 60.0°C. The temperature dependency of heat transfer
coefficient between evaporator and condenser at the inner wall of each heat pipe
cannot be negligible from the view point of the stability of thermal performance.
Consequently, these uncertain (uncontrollable) design parameters, ¢, and Ty, are
regarded as robust parameters. Their ranges are assumed as in Table 2. The three
level experimental design [8-11] for the 5 design parameters which results in 27
analysis points was applied to selecting combinations of the analysis parameters
to minimize the total number of finite element analyses.

Table 2. Uncertain design parameters.

Parameter ty Top
Lower Bound 0.12mm —20.0°C
Upper Bound 0.22mm 60.0°C

Probability Normal Distribution Normal Distribution
Distribution  p=0.17, 0=0.016 p=20.0, 0=14.3




2.1 Generation of Fitted Estimation Equations

27 Finite element analyses were performed to calculate the thermal performance
of the parametric combinations which were given from the Taguchi orthogonal
array - L27 [8,9]. Those results were used to construct estimation equations for
characteristic values G and M. Chebyshev’s equation was considered to correlate
the regression coefficients in multiple linear regression models. The calculated
value G is the thermal conductance across the thermal joint of the heat pipes,
defined as:

Q

G=——F——
Tcon - Teva

(1)

where T¢,,, is the condensing liquid temperature in the lateral heat pipe, Ty, is
the evaporating vapor temperature in the header heat pipe, and () is the assumed
quantity of the transported heat of 2.5W per a thermal joint. The determined
response surface equation of G is as follows:

G = f(Ly, Le, tg, ty, Top) = 0.3745378 — 0.9352909¢,
+1.01612¢,2 + 2.324128¢ 2L, — 7.209993¢ 3 L.>
+1.838379¢ 3L — 5.379707e5L;* + 2.447391e™2t;
+2.304583e 3t ;2 — 6.483411e~*T,, — 9.232971e~"T,,>
—2.259702e 2ty L, — 4.735652¢ 3, L2 + 0.1102442t,° L,
—9.702533¢ 3,2 L. + 5.382211e 3t, L — 9.540484e%t, L ;>
+5.15048¢ 3,2 Ly — 1.232524e 4,2 L;? + 0.2972589¢t
—0.1052935t5t ;2 — 0.5422262t,%t ; — 0.1829687t;%t ;2

The response surface equation for the total mass M also expressed in the fol-
lowing equation:

M = f(Lg, Le,ty,ty) = (1313.877 — 75.5 % L, + 11.0L,>
+1.402597L; — 1.278314e~ 5L ;> + 62.38776t; (3)
—6.122449¢ ;> — 380.8t;, + 1120t2) * 21;

3 Multidimensional Pareto Solutions and Their
Synchronous Visualization

To search the Pareto solutions of Egs. 2 and 3, the Intermediate Tendency (IT)
optimizer was used. Details of the optimizer described in Ref. [12,13]. To put it
briefly, the optimizer is a kind of genetic search algorithms, and consists of typical
genetic operators such as fitness evaluation, selection, and mutation. To improve
search efficiency, it adopts the IT recombination that is more robust in search
ability than conventional intermediate recombination. In conventional recombi-
nation, such as the global intermediate recombination, any offspring individuals
cannot deviate from d-dimensional search space covered by their parental indi-
viduals. In other word, if an optimum point is located out of the search space, any
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Fig. 3. Pareto solutions and quasi-Pareto solutions in function space.

offspring cannot reach the optimum point by the recombination. The IT recombi-
nation, however, yields offsprings depending on a discrepancy between parental
individuals and randomly selected ones. The discrepancy is considered as the
tendency in an evolution process, and the offsprings are yielded by adding the
tendency to their parental individuals. Therefore the individuals of subsequent
iteration are not bound to their parental search space. Superior performance of
the IT recombination is shown in Ref. [12,13].

For the multiobjective optimization, the optimizer is randomly changing pref-
erences between the two objective functions and searches Pareto solutions in the
function space. Figure 3 shows the Pareto solutions and also quasi-Pareto solu-
tions, which were gathered during the optimization process. As shown in Fig. 3,
there are many quasi-Pareto and Pareto solutions. Next it is explained how to
search engineering information out of them.

3.1 Synchronous Visualization of Multidimensional Function and
Parameter Spaces

Getting adequate information for determining a final solution is not an easy task
especially if there are many Pareto solutions in a multidimensional space. Al-
though parallel-coordinate methods [14,15] handle multidimensional solutions,
they have limitation in the number of solution sets and their amount of dimen-
sions. To overcome the difficulty, a synchronous 3D visualization is proposed.
Here, each of multidimensional parameter and function spaces is subdivided
into several 2D or 3D subspaces, and visualized simultaneously. Each solution is
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visualized in all the subspaces, and those corresponding points in the subspaces
are connected by line segments. The real world space is also visualized at the
same time. Through the interactive operation of the present visualization system,
engineers can explore and understand the correlation among multidimensional
function and parameter spaces and the real world space.

In the present heat pipe optimization, the 5-dimensional design parameter
space is split to 2D and 3D subspaces, i.e., the 2D space of t; and T, and the 3D
space of Ly, L., and tz, respectively. The 2D objective function space of M and
G is remained as it is. The two parameter subspaces and the one function space
are visualized simultaneously. Figure 4 shows the concept of the proposed visual-
ization. The solutions in the original 7D space are separated into two parameter
spaces and one function subspace. Moreover, a corresponding actual shape of
the heat pipe is visualized with the subspaces. Corresponding points shown in
different subspaces are connected by line segments. Therefore, it is easy to grasp
the solution’s correlation between the subspaces. The present visualization sys-
tem was developed using the C language and the graphic-programming libraries
named ADVENTURE AutoGL [16]. A programmable graphical user interface is
also provided.

In Fig. 4, there are 3,552 quasi-Pareto solutions. It is clearly showed what
kinds of parameter positions should make the optimum. For example, thin ¢,
and low T5, keep up the optimum. However, long Ly with small L. and t; does
not correspond to the optimum. From this visualization, engineers can easily get
ideas on parametric sensitivity of the present heat pipe shape design.

In addition, it can be interpreted the Pareto solutions. It is assessed the effects
of t5 and T,, on the objective function space, i.e., of the mass and conductance
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in Fig. 5. In the figure, the line segments visualize the correlation among the
subspaces. As shown in Fig. 5, the operating temperature is at its minimum,
and only the variation of the adhesive thickness results in the changes of the
objective functions G and M. The three shape parameters Ly, L. and t; are
almost tied up at the same point in their parameter subspace. Thus, without
changing the shape parameter Ly, L. and t7, the design of heat pipes adopting
thinner adhesive at lower operating temperature is expected to minimize the
mass and to maximize the heat conductance. However, it is very difficult to
change the operating temperature because of the design limitation of an orbit
and thermal control system. Moreover, controls over the thickness of adhesive
involve great uncertainty in manufacturing. To improve heat pipe performance,
therefore, it is required to focus on the correlation of the shape parameters
and the objective functions. For this purpose, the equations of G and M are
regenerated to consider uncertainty of ¢; and T,,. That is, the equations consist
of only the three shape parameters, while ¢, and T, are taken into account as
probability distributions as in Table 2.

3.2 Estimation Equations Considering Uncertain Parameters

The adhesive thickness ¢, is assumed to be composed of random values with
the normal distribution of p;, = 170.0um and oy, = 16.7um. The operating
temperature T, is also assumed to be composed of random values with ur,, =
20.0K and or,, = 14.3K. A direct sampling Monte Carlo simulation with the
Box-Muller method is used to take into account random 2D parameters of the
adhesive thickness ¢, and the operating temperature T,. The number of samples
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Fig. 6. Pareto (left) and quasi-Pareto (right) solutions of Gr and Mz

for the Monte Carlo simulation is 1,000,000. An average thermal conductance,
GRr, under consideration of the thermal robustness is defined as follows:

~ 60 0.22
GR = / G(tb,Top) . fp(tb, Top)dtdeop (4)
—20 J0.12
1 1000 1000 R
=y > > Grltsm Topn) (5)
m=1 n=1

where f,(z) is a probability density function, and N is the total number of
samples for Monte Carlo Simulation (N = m xn = 1,000, 000).

The fitted polynominal equations for G and M, which consider the probabil-
ity density of the uncontrollable parameters t, and 7,,, are regenerated using a
quadratic model as:

Gr = 2.261369¢ 2L, — 8.299937e~3L,> + 2.905449¢ 3L
—7.364545e 5L ;% 4 5.925684e 2t — 1.028177e 2t ;> (6)
+0.2312513

My = (1283.375 + 1.402597L ; — 1.278314 15 ;2

7
—75.5Lc + 11.0L,2 + 62.38776t ; — 6.122449¢ %) x 21 Q

4 Clustering of Pareto Solutions

Figure 6 shows the Pareto and the quasi-Pareto solutions of é r and J\il R. As
shown in the figure, the Pareto solutions and the quasi-Pareto ones have almost



the same function values. However, the quasi-Pareto solutions have much more
variance in the parameter space than the Pareto ones. In the engineering sense,
such quasi-Pareto solutions with parametric variance also seem beneficial be-
cause of their increasing design freedom such as manufacturability. Therefore,
both Pareto and quasi-Pareto solutions should be examined in more detail before
making the final decision of the heat pipe design.

To do so, one of clustering algorithms is applied to the solutions. Overviews
of clustering algorithms can be found in Ref. [13,17,19]. If the solutions are
appropriately classified into several clusters, it is expected that engineers can
interpret mathematical as well as engineering characteristics of the solutions in
a more abstract manner.

The clustering function without fuzziness is

K n
CFI(X, U, V) = ZZuzk -dis(wi,vk) (8)
k=1 i=1
where X = {x;,...,z,} C R? is a set of n solutions in a d-dimensional real-

valued space, n is the number of solutions to be clustered, K is the number of
clusters, u;, € {0,1} is the membership of x; belonging to the kth cluster, and
vy, is the center of the kth cluster. dis(x;,v);) means a distance between x; and
Vg-

4.1 Point Symmetry Distance Measure

Many clustering algorithms are adapting the Minkowski [17] metric to measure
dissimilarity, i.e., distance dis(x;, vg), in the clustering function. The Minkowski

metric for measuring the dissimilarity between a solution @; = (z;1,--- , )"
and a center (search vector) vy = (Vg1,--- ,Vkq)? is defined as:
d
ik (T3, 1) = [Y_ i — o] 9)
j=1

where r > 1. The three common Minkowski metrics are illustrated in Fig. 7.
The Euclidean distance (r = 2) is one of the most common Minkowski distance
metrics. Conventional clustering algorithms with the Euclidean distance tend to
detect hyperspherical-shaped clusters.

Since the distribution shapes of Pareto and quasi-Pareto solutions are much
closer to combinations of hyperellipsoidal or hyperline shapes than hyperspheri-
cal shapes, the FEuclidean distance measure may not be a good choice for search-
ing the characteristics of the solutions. Instead, a point symmetry distance mea-
sure [18] is adopted. The distance measure is a more flexible to find clusters
of hyperellipsoidal or hyperline shapes. Given n solutions, the point symmetry
distance between a solution x; and a cluster center vy is defined as:

dsym (Ti, V%) = Min p=1 (@i — i) + (2, —v1)]|
sym (2] - =1, ,n

2k o+ @y —wo) 0
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where the denominator term is used to normalize the point symmetry distance.
Due to such normalization, the point symmetry distance becomes insensitive to
the Euclidean distances ||(z; — vi)|| and ||(zp — vi)||.

Figure 8 shows different clustering results of sample patterns obtained by the
two different distance measures. The clustering result obtained by the Euclidean
distance shows quantitatively well separated two clusters. The result obtained
by the point symmetry distance shows that each clustered pattern possesses the
characteristic of its shape, i.e., a circle in this case. However a group of patterns
is often composed of patterns have scarce symmetric similarity among them.
Therefore, the Euclidean distance measure and the point symmetry distance
measure are hybridized for the clustering function Eq. 8. The hybrid measure is
as follows:

if dsym(wiyvk) > 97 dmink(miyvk)y r=2 (11)
else, dsym (i, V)

dis(x;,vy) = {



Fig. 9. Three clusters obtained by using the Euclidean distance (left) and point sym-
metry distance (right).

where 6 is a tradeoff parameter between the two distance measures. Iterative
clustering algorithms such as the K-means algorithm [17,19] depend their results
on initial centers employed. In the proposed clustering function, the clustering
results severely vary with 6. To overcome those problems simultaneously, the
hybrid distance measure is adapted to the evolutionary clustering algorithm
[12]. In the minimization of the clustering function, the tradeoff parameter is
predefined as a constant. Only the centers are considered as variables of the
clustering function, and they are searched by evolutionary processes including
selection, recombination, and mutation.

Figure 9 shows an example for verification of the proposed clustering al-
gorithm. The patterns shown in the figure are generated by imitating Pareto
solutions. The result by using the Euclidean distance shows three clusters sep-
arated each other in geometry only. However, the proposed measure makes the
break surfaces between clusters when the flow of solutions’ variation is changed.
The result by using the point symmetry distance shows what kinds of paramet-
ric characteristics are transformed in a parameter space. It is confirmed by the
comparison between both results in Fig. 9 that the proposed distance is better
suited for gathering engineering information. Therefore, the proposed clustering
is employed with the hybrid distance in the following section.

4.2 Cluster Interpretation of Multiobjective Pareto and
Quasi-Pareto Solutions

The proposed clustering method was applied to 4,061 Pareto and quasi-Pareto
solutions of Eq. 6 and 7. The solutions were clearly classified into two clusters
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that have distinct parametric characteristics. One cluster #1 includes 1,993 so-
lutions dominated mainly by the fin thickness and slightly by the cut length.
The solutions in the cluster are not sensitive to the fin length. Cluster #2 has
2,068 solutions varying with the fin length and the cut length. In this case, the
thickness of fins is fixed to its maximum value, 1.7mm. Figure 10 shows the
projection of the two clusters in the parameter space onto the object function
space. The figure clearly shows that the solutions in cluster #1 are in the range
of increasing both thermal conductance and mass in a reasonable rate. On the
other hand, the solutions in cluster #2 are in the range of increasing the mass
exponentially. For example, the 63.6% possible increase of the mass raises the
84.8% of the possible thermal conductance in cluster #1. However, in cluster
#2, the 46.9% of the mass increase makes only the 25.6% of the conductance.
Thus the solutions in cluster #1 must be candidates for the best overall design
on the view point of minimizing the mass and maximizing the conductance.

Figure 11 shows the clustering result in both of the function and parameter
spaces. Since thick fins reduce heat resistance, the solutions in cluster #1 having
thick fins increase the thermal conductance. In case of cluster #2 which has the
solutions with long fins, however, the fin parts away from the pipe junction
have very small heat flux. Therefore the ends of the long fins just enlarge the
mass without increasing the conductance. Through such interpretation based on
the proposed visualization and clustering, thermal designers can obtain useful
information for their decision of final design. Especially, the solutions on the
border between the two clusters are the most possible for DM when we focus on
the maximization of the thermal conductance.
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4.3 Conclusions

In this paper, it was described a new procedure to interpret Pareto and quasi-
Pareto solutions of multiobjective optimization. A synchronous 3D visualization
was used to explore the structure and characteristics of multidimensional solu-
tions. The visualization presents the correlations between a parameter, function,
and actual design space in their subdivided spaces. Moreover, to make clusters
of solutions in engineering meanings, we presented a clustering algorithm which
has a hybrid distance measure of the Euclidean and point symmetry distance.
The clustering algorithm shows similarity and dissimilarity among the solutions
and beneficial information for designers.

As a practical engineering application, the proposed approach was applied to
a multiobjective optimization of an artificial satellite. The design optimization
has two functions, two uncontrollable parameters, and three shape parameters of
heat pipes of the satellite. The synchronous visualization helps one to understand
the design effect of each solution from the Pareto and quasi-Pareto solutions.
The clustering of the optimization solutions guides the shape parameters those
corresponds to worse or better design clearly. Through such interpretation based
on the proposed visualization and clustering, the thermal designers can obtain
useful information for their decision of final design.
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