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Abstract. Based on the concept of Immunodominance and Antibody Clonal 
Selection Theory, we propose a new artificial immune system algorithm, 
Immune Dominance Clonal Multiobjective Algorithm (IDCMA). The 
influences of main parameters are analyzed empirically. The simulation 
comparisons among IDCMA, the Random-Weight Genetic Algorithm and the 
Strength Pareto Evolutionary Algorithm show that when low-dimensional 
multiobjective problems are concerned, IDCMA has the best performance in 
metrics such as Spacing and Coverage of Two Sets. 

1 Introduction 

In 1984, Schaffer put forward a vector evaluated genetic algorithm (VEGA) by 
modifying the fitness assignment and the individual selection strategy[1]. His work is 
regarded as the beginning of solving multiobjective optimization problems by genetic 
algorithm. Until the middle 1990s, the number of literatures on multiobjective 
evolutionary algorithms (MOEAs) increased greatly. Among them, Fonseca et al’s 
Multiobjective Genetic Algorithm, Horn et al’s Niched Pareto Genetic Algorithms 
and Srinivas et al’s Nondominated Sorting in Genetic Algorithm attracted more 
attention[2]. These evolutionary algorithms show better performance in solving 
multiobjective problems than traditional algorithms. However, they didn’t adopt 
elitism preserving strategy definitely, which was recognized and supported by 
experiments in the following years. In recent years, a lot of newly improved 
algorithms were proposed, such as Deb et al’s A Fast Elitist Non-dominated Sorting 
Genetic Algorithm, Corne et al’s Pareto Envelope based Selection Algorithm and 
Zitzler’s the strength Pareto evolutionary algorithm (SPEA and SPEA2). In particular, 
Zitzler et al’s SPEA and SPEA2 have shown many good performances[3,4]. At the 
same time, Coello Coello et al presented their own multiobjective evolutionary 
algorithms and proposed an multiobjective algorithm named by the Multiobjective 
Immune System Algorithm (MISA)[5] using the clonal selection principle. They set 
out that MISA was very promising based on a few simulations.  



 

 

Artificial immune system (AIS) makes use of the mechanism of vertebrate immune 
system, and constructs new intelligent algorithms with immunology terms and 
fundamental. Artificial immune system provides the evolutionary learning mechanism 
like noise enduring, non-teacher learning, self-organization, and memory, thus it has 
the potential for providing novel method for solving problems, and its research 
production refers to many fields like control, data processing, optimization learning 
and trouble diagnosing, and it has been a research hot spot after the neural network, 
fuzzy logic and evolutionary computation.[6] 

After defining several basic concepts of artificial immune system in Section 2, a 
novel multiobjective optimization algorithm, Immune Dominance Clonal 
Multiobjective Algorithm (IDCMA), is put forward in Section 3. The influences of 
main parameters are analyzed empirically, then five representative low-dimensional 
multiobjective problems and three famous multiobjective algorithms, the Random-
Weight Approach proposed by Ishibuchi[7], and the Strength Pareto Evolutionary 
Algorithm proposed by Zitzler[3], and Multiobjective Immune System Algorithm 
proposed by Coello Coello [5] are selected for simulation tests in Section 4. 

2 Basic Definitions 

Although an antigen has many epitopes (antigenic determinants), only one works to 
induce a special immune response for the host cells. The phenomenon is called 
immunodominance, the epitope is called a dominant epitope, immunodominance is 
produced by the action of antibody and antigen[8]. The clonal selection theory (F. M. 
Burnet, 1959) is used in the immune system to describe the basic features of an 
immune response. Its main idea lies in that the antigens can selectively react to the 
antibodies, which are the native production and spread on the cell surface in the form 
of peptides. The reaction leads to cell proliferating clonally and the colony has the 
same antibodies. Some clonal cells divide into antibodies that produce cells, and 
others become immune memory cells to boost the second immune response. The 
clonal selection is a dynamic process of the immune system self-adapting antigen 
stimulation. From the viewpoint of the Artificial Intelligence, some biologic 
characters such as learning, memory and antibody diversity can be used in artificial 
immune system. 

In order to describe the algorithm for multiobjective optimization problems well, 
we just define the glossary as follows. 
Definition 1 Antigen  

In AIS, antigen usually means the problem and its constraints. Especially, for 
multiobjective optimization problems, we have 
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where, 1 2( , ,... )nx x x=x , 2p ≥ , the antigen is defined as a function of objective 

function ( )F x , namely, ( ) ( ( ))G g F=x x . Similar to the function of antigen in 



 

 

immunology, it is the initial factor for the artificial immune system algorithm. 
Usually, we let ( ) ( )G F=x x  when not mentioned especially. 
Definition 2 Antibody 

Antibodies represent candidates of the problem. The limited-length character string 

laaa L21=a  is the antibody coding of variable x, denoted by )(xa e= , and x is 

called the decoding of antibody a, expressed as )(1 ax −= e . In practice, binary coding 
and decimal coding are often used. For example, an antibody of binary coding whose 
length is 8 can be written as ‘0-1-1-1-0-1-0-0’. Set I is called antibody space, 
namely Ia ∈ . The antibody population 1 2{ , , , } n

n= ∈A a a a IL  is an n-dimensional 

group of antibody a, namely, 

{ }1 2: ( , , , ), , 1n
n k k n= = ∈ ≤ ≤I A A a a a a IL  (2) 

where the positive integer n is the antibody population size. 
Definition 3 Antibody-Antigen Affinity 

Antibody-Antigen Affinity is the reflection of the total combination power locates 
between antigen and antibodies. In AIS, it generally indicates values of objective 
functions or fitness measurement of the problem.  
Definition 4 Antibody-Antibody Affinity 

Antibody-Antibody Affinity is the reflection of the total combine power locates 
between two antibodies. In this paper, we compute the antibody-antibody affinity as 
reference [5]. Namely, if the coding of an antibody ai is ‘1 1 0 0 0 0 1 0’, and the 
coding of another antibody d ia  is ‘1 1 0 1 0 1 1 0’, then the number of genes matched 
between the two antibodies is 6, the matched gene strings whose length are greater 
than 2 are ‘110’ and ‘10’, and the corresponding lengths are 3 and 2, so the antibody-
antibody affinity between ai and d ia  is 2 26 3 2 19+ + = . Of course, other distance 

measures are possible. 
Definition 5 Immune Dominance 

For problem (P), the antibody ai is an immune dominance antibody in antibody 
population },,,{ 21 naaaA L= , iff there is no antibody ( 1,2, )= ∧ ≠Lja j n j i  in 

population A satisfied the formula (3) 
1 1 1 1( {1, 2, } ( ( )) ( ( ))) ( {1,2, } ( ( )) ( ( )))k j k i l j l ik p f e f e l p f e f e− − − −∀ ∈ ≥ ∧ ∃ ∈ >a a a aL L  (3) 

So the immune dominance antibodies are the Pareto-optimal individuals in the 
current population. 
Definition 6 Clonal Operation 

In the immunology, clone is the process of antibody proliferation. In AIS, the 
clonal operation to the antibody population is defined as: 

C C C C T
c c 1 c 2 c( ) ( ( )) [ ( ( )) ( ( )), , ( ( ))]nk T k T k T k T k= =Y A a a aL  (4) 

where C
c ( ( )) ( ) 1,2ci ci ciT k k i n= × =a I a L , Ici is a qci-dimensional identity row vector. 

The process is called the qci clone of antibody ai , namely c( ) ( , )ci iq k n= Θh , where 



 

 

iΘ  stands for the affinity function of antibody ai and other antibody, and cn  is the 
clonal scale. 
Definition 7 Immune Differential Degree 

In this paper, the Immune Differential Degree denotes the relative distribution of 
an immune dominance antibody. Namely, assuming that there are N immune 
dominance antibodies (Pareto-optimal solutions) in current population, klf  is the 
value of the K-th objective function of the l-th antibody. The Immune Differential 
Degree of the l-th antibody la  can be calculated as follow,  
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where ( )φ •  is an incremental function without the value of zero.  

3 Algorithm Description 

Inspired from the immuodominace of the biology immune system and the clonal 
selection mechanism, we designed a novel artificial immune system algorithm based 
on clonal selection with immune dominance and clone anergy for multiobjective 
optimization problems which can be implemented as follow: 

Step 1: Give the termination generation Gmax, the size of Immune Dominance 
Antibody population dn , the size of Generic Antibody population bn , the size of 

Dominance Clonal Antibody population tn , and clonal scale cn . Set the mutation 
probability pm, recombination probability pc and coding length c. Randomly generate 
the original antibody population { }1 2(0) (0), (0), (0) b

b

n
n= ∈A a a a IL , k:=0;       

Step 2: Compute the antibody-antigen affinities of all the antibodies in A(k); 
Step 3: According to the affinities, select all the immune dominance antibodies to 

constitute the population DT(k), if the number of antibodies in DT(k) is no larger than 

dn , let  Immune Dominance Antibody population D(k)=DT(k), go to Step6; otherwise 
go to Step4; 

Step 4: Compute the Immune Differential Degrees of all the antibodies in 
population DT(k);  

Step 5: Sort all the antibodies in DT(k) by descending of their Immune Differential 
Degrees, and select the first dn  antibodies to constitute the current Immune 
Dominance Antibody population D(k); 

Step 6: If k=Gmax, export D(k) as the output of the algorithm, Stop. Otherwise, 
replace the immune dominance antibodies in A(k) by new antibodies generated 
randomly. Then marked the antibody population as B(k);  

Step 7: Select an immune dominance antibody d ia  randomly from D(k). Compute 

the antibody-antibody affinities between the antibodies in B(k) and the antibody d ia . 

Step 8: Sort all the antibodies in B(k) by descending of their antibody-antibody 
affinities, select the first tn  antibodies to constitute the Dominance Clonal Antibody 



 

 

population TC(k), and other antibodies to constitute the Immune Anergy Antibody 
population NR(k).  

Step 9: Compute the clonal proportion ( )ciq k  of each antibody cia  in TC(k) 
according to antibody-antibody affinity and the clonal scale. 

Step 10: Implement the Antibody Clonal Operation C
cT  at TC(k) and get the 

antibody population CO(k) after clonal operation. 
Step 11: Implement the recombination operation at CO(k) with the probability pc 

and get the antibody population ( )k′CO , C
r( ) ( ( ))k T k′ =CO CO ; Namely, for the 

antibody ( )i ky  in CO(k), implement the following operation:  

C
r' ( ) ( ( ), ( )) , ( ) ( ), ( ) ( )i i di i dik T k k k k k k= ∈ ∈y y a y CO a D  (6) 

and { } c( ) ( ) 1,2,ik k i n′ ′= =CO y L . 

For binary coding, the recombination operation in this paper is as follow:  
C

r ~ 0 1~ | ~ 0' ( ) ( ( ), ( )) ( ) ( ) , ( ) ( ), ( ) ( )i i di i a b di a b c i dik T k k k k k k k k→ →= = + ∈ ∈y y a y a y CO a D  (7) 

where c is the coding length, a, b are random integers between 1 and c. ~ 0a b →  
means the bits from a to b set zeros, 1 ~ | ~ 0a b c →  means the bits from 1 to a and 
the bits from b to c set zeros, + means ‘or’ operation by bits.  

Step 12: Implement the mutation operation at ( )k′CO  with the probability mp  

generating the antibody population COT(k), C
m( ) ( ( ))k T k′=COT CO : 

For binary coding, the clonal antibody population is mutated as follow: 

( ) ( 1) ( )mrandom pk k≤ ′= −COT CO  (8) 

( 1) ( )mrandom p k≤ ′− CO  means each element of ( )k′CO multiplies -1 with probability of 

mp .  
Step 13: Combine the populations COT(k), D(k) and NR(k) to form the antibody 

population A(k+1),  k:=k+1, go to Step 2. 
From the description above we can see that the new algorithm divides all the 

antibodies into three sorts, and stores them in three populations. Different 
evolutionary strategies are adopted at different populations, but they are not isolated. 
The combination of the three populations helps to increase the global search ability. 
The operation of immune dominance antibody population based on the Immune 
Differential Degree retains the diversity of the population. The operation of 
dominance clonal antibody population based on the antibody-antibody affinity can 
select the effective local in antibody space and assure the validity of the search in next 
generation. The existence of the immune anergy antibody population assures the 
diversity of populations and simulates the immune response process more 
meticulously. In additional, the worst time complexity of one generation for immune 
dominance clonal multiobjective optimization algorithm is 2

d b( )n nΟ + , where dn  is 

the size of Immune Dominance Antibody population, and bn is the size of Generic 
Antibody population.  



 

 

4 Simulation Analyses 

In this section, we adopt two popular metrics, Coverage of Two Sets and Spcing, 
which are defined as follows: 

Coverage of Two Sets[9]: Let ,′ ′′ ⊆A A X  be two sets of decision vectors. The 
finction ς  maps the ordered pair ( )′ ′′A ,A  to the interval [0, 1]: 

{ }; :
( , )ς

′′ ′′ ′ ′ ′ ′′∈ ∃ ∈
′ ′′

′′
a A a A a a

A A
A

>
$  

(9) 

Where >means Pareto dominate or equal. The value ( , ) 1ς ′ ′′ =A A  means that all 

decision vectors in ′′A  are weakly dominated by ′A . ( , ) 0ς ′ ′′ =A A  implies the 

opposite. Note that always both directions have to be considered because ( , )ς ′ ′′A A  is 

not necessarily equal to 1 ( , )ς ′′ ′− A A . 
A metric called Spacing was proposed by Schott[10] as a way of measuring the 

range variance of neighboring vectors in the Pareto front known. This metric is 
defined as: 

Spacing[10]: Let ′ ⊆A X  be a set of decision vectors. The function S 
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Where 
1
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p
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k
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=
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∑ x x x x A AL � d  is the mean of all id , 

and p is the number of objective functions. 

4.1 Analysis of the influences of main parameters 

In IDCMA, the main parameters are Gmax, dn , bn , tn , cn , pm, pc and the coding 

length c. The influences of the parameters Gmax, dn , bn , tn and c to the performance 
are obvious, if not take the complexity into account, the larger their values, the better 
the results. The influences of cn , pm and pc to the algorithm performance is more 
complex. The following is the empirical analysis results.  

IDCMA can get different ag ture( , )ς ℑP P  values with different parameter settings, 

where ture
ℑP  is a set of solutions equidistantly spaced at the Pareto-optimal fronts and 

Pag is a set of decision vectors. We take the following test function for example: 

( ) ( )( )
( ) ( )

1 2

2 2
1 22 2
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x y
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We code x and y with binary string of 10 bits long. The main parameters are as 
follows: Gmax=150, dn =100, b 100n = , t 50n = . We analyze the parameters cn , pm 
and pc one after one by sampling a parameter with the same interval while fixing the 
other parameters. Choose 5000 solutions equidistantly spaced at the ideal Pareto-
optimal front to compose ture

ℑP . The data are the statistical results obtained from 10 
times of random running. 
i Influence of Clonal Scale 

Let pm=1/c and pc=1. The clonal scale cn  is sampled by the same interval of 50 
between 100 and 500 and runs 10 times to get the maximum, the minimum, the 
average values and the deviation of ag ture( , )ς ℑP P  which are shown in Figure 1(a). It 

can be seen from the results that the influence of clonal scale to the algorithm is 
notable and the average value of ag ture( , )ς ℑP P  increases by approximate linearity with 

the increasing of nc. Practically, under the given experiment condition, the value of ς  

will increase approximately by 0.0122 when nc increases by 50, but the computational 
complexity will increase 2

t((50 ) 50 )n cο − + ×  accordingly. Similar results are 
obtained by a great deal of experiments to other test problems. 
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Fig. 1. The influence of the main parameters to the performance of the algorithm 

ii  Influence of mutation probability   
Let c 300n = ,  pc=1. Sample the mutation probability by the interval of 0.05 from 

0 to 1 and run 10 times to get the maximum, the minimum, the average values and the 



 

 

deviation of ag ture( , )ς ℑP P  which are shown in Figure 1(b). It can be seen that the 

change of ς  is not obviously when the immune probability gets values from 0.1 to 
0.8, but ς  will decrease obviously when the mutation probability doesn’t get the 

values from 0.1 to 0.8, which is obviously different from the influence of the mutation 
operation in genetic algorithm. 
iii Influence of recombination probability 

Let c 300n = ,  pm=0.3. Sample the recombination probability by the interval of 0.1 
from 0 to 1 and run 10 times to get the maximum, the minimum, the average values 
and the deviation of ag ture( , )ς ℑP P  which are shown in Figure 1(c). It can be seen that 

the influence of recombination probability to ς  is not obviously. Actually, pc 

influences mainly the convergent speed. In order to explain the influence of pc 

quantitatively, we adopt the following estimate manner: 
Let the terminal generation be 10 and compare the influences of pc to the amount of 

the nondominated solutions obtained from IDCMA. In order to eliminate the 
influence of other parameters, we set the parameters as follows: 

Gmax=10, the immune dominance antibody population size is not confined, 

b 100n = , t 50n = , c 300n = , and pm=0.3. The changes of the amount of 
nondominated solutions obtained are shown in Figure 1(d). It can be seen that the 
influence of  pc to the amount of nondominated solutions is obviously. 

4.2 Test and results analysis 

In order to validate the algorithm, we compare the algorithm with another three 
algorithms. They are Ishibuchi’s Random-Weight genetic algorithm (RWGA)[7], 
Zitzler’s Strength Pareto Evolutionary Algorithm (SPEA)[3] and Coello Coello’s 
Multiobjective Immune System Algorithm (MISA)[5]. We design the software 
emulator of IDCMA using Matlab 6.1, and simulate RWGA and SPEA as exactly as 
we can under the same conditions. It is necessary to note that the performance of a 
MOEA in tackling multiobjective constrained optimization problems maybe largely 
depend on the constraint-handling technique used, so we don’t consider side-
constrained problems in this Paper. The parameters setting are as follows.  

In IDCMA, the halt generation Gmax=150, immune dominance antibody population 
size d 100n = , antibody population size b 100n = , dominance clonal antibody 

population size t 50n = , clonal scale c 300n = , coding length c= 8 n×  where n is the 
number of variables, mutation probability pm=2/c, recombination probability pc=1. 

In RWGA, the terminal generation is 150, population size is 300, the number of 
elite solutions is 10, crossover probability is 0.9, mutation probability is 0.6, and 
coding length is 8 n×  where n is the number of variables. 

In SPEA, the terminal generation is 150, population size is 200, the number of elite 
solutions is 100, crossover probability is 0.9, mutation probability is 0.6, and coding 
length is 8 n×  where n is the number of variables. 

For finding the reference solution set of each test problem, IDCMA needs to 
evaluate function values 45,100 times, RWGA needs 45,600 times, and SPEA needs 



 

 

45,500 times. But the computation time of RWGA is the shortest, and that of SPEA is 
the longest. When MISA be concerned, we only take the comparison of the results 
shown in reference [5]. All the following results are the statistical data obtained from 
30 times of random running. 
Test 1 

We consider a multiobjective problem having a Pareto-optimal front that is 
discontinuous and concave [11]. 
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Fig. 2. The Pareto-optimal solution distributions corresponding to test 1. (a) The solution 
distribution solved by IDCMA; (b) The solution distribution solved by RWGA; (c) The 
solution distribution solved by SPEA; (d) The solution distribution solved by MISA. 

The Pareto-optimal front is divided into two parts because of the discontinuity in f1. 
Figure 2 shows the Pareto-optimal solution distributions solved by IDCMA, RWGA, 
SPEA and MISA, in which the real lines denote the Pareto-optimal fronts. The 
statistical results for data of the two metrics are shown in table 1 and table 2. 



 

 

For this problem, IDCMA can obtain 100 Pareto-optimal solutions per time, while 
SPEA can get 132 Pareto-optimal solutions and RWGA can get 50 Pareto-optimal 
solutions per time on average. It can be seen from figure 2 that all of the four 
algorithms can be good convergent to the Pareto fronts, but for the distributions, 
IDCMA is better than the other three algorithms. Table 1 shows that the quality of the 
optimal solution set gained by IDCMA is better than those gained by RWGA and 
SPEA. From table 2 we can see that as far as the metric Spacing is concerned, 
IDCMA is little worse than SPEA, but it is far better than MISA and RWGA. 
Test 2 

The second problem is a more complicated multiobjective problem having a 
Pareto-optimal front that is discontinuous and concave[11]. 
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(13) 

The Pareto-optimal front is divided into four parts because of the periodicity in f2. 
Figure 3 shows the Pareto-optimal solution distributions solved by IDCMA, RWGA, 
SPEA and MISA. 
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Fig. 3. The Pareto-optimal solution distributions corresponding to test 2. 

For this problem, IDCMA can obtain 100 Pareto-optimal solutions per time, while 
SPEA can get 20 Pareto-optimal solutions and RWGA can get 14 Pareto-optimal 



 

 

solutions per time on average. It can be seen from table 1 that I S( , )ς X X  and 
I R( , )ς X X  are obviously greater than S I( , )ς X X  and R I( , )ς X X , which shows that the 

Pareto-optimal solutions gained by IDCMA dominate those gained by the other two 
algorithms. When compared with MISA, IDCMA is more predominant in the metric 
Spacing. It can be seen from Figure 3 that the distribution of the solutions gained by 
IDCMA is better than those gained by RWGA, SPEA and MISA. 
Test 3 

Next, we consider another multiobjective problem[11]. 
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This problem is a typical reflection of many to one. Figure 4(a) shows the global 
Pareto-optimal front in the 1 2f f−  space. Figures 4(b) (c) and (d) show the Pareto-
optimal solution distributions solved by IDCMA, RWGA and SPEA separately. 
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Fig. 4. The Pareto-optimal solution distributions corresponding to test 3. (a) The global Pareto-
optimal front; (b) The solution distribution solved by IDCMA; (c) The solution distribution 
solved by RWGA; (d) The solution distribution solved by SPEA. 

For this problem, IDCMA can obtain 100 Pareto-optimal solutions per time, while 
SPEA can get 26 Pareto-optimal solutions and RWGA can get 10 Pareto-optimal 



 

 

solutions per time on average. Because this is a reflection of many to one, one dot in 
the objective space correspond to many dots in the domain, so the number of the dots 
for 100 optimal solutions gained by algorithm IDCMA displayed in the objective 
space is much less than 100. Figure 4 (a) shows that its Pareto-optimal front is very 
complicated, especially for the solution of 1 0f = , SPEA and RWGA are difficult to 
find it, while IDCMA always find it in 30 times running. Figure 4 shows that the 
Pareto-optimal solution distribution solved by IDCMA is much better than those 
solved by SPEA and RWGA. The values of Spacing also show that quantitatively. 
The values in table 1 show that IDCMA produced solutions that clearly dominated or 
equals those generated by SPEA and RWGA. 
Test 4 

Let us consider a three-objective optimization problem having two variables[11]: 
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Fig. 5. The Pareto-optimal solution distributions corresponding to test 4. 

 



 

 

Figure 5(a) shows the global Pareto-optimal front in function space. Figures 5(b) (c) 
and (d) show the Pareto-optimal solution distributions solved by IDCMA, RWGA and 
SPEA separately. 

For this three-objective problem, IDCMA can also obtain 100 Pareto-optimal 
solutions per time, while SPEA can only get 40 Pareto-optimal solutions and RWGA 
can get 27 Pareto-optimal solutions per time on average. For this problem, IDCMA 
still has the obvious dominance. Figure 5(b) is most close to Figure 5(a), which 
reflects directly that the distribution of the solutions gained by IDCMA is the most 
ideal. It can be seen from table 1 that I S( , )ς X X  and I R( , )ς X X  are much greater than 

S I( , )ς X X  and R I( , )ς X X , which reflects objectively that the optimal solutions gained 
by IDCMA dominate those gained by the other two algorithms. It can be seen from 
metric Spacing that the solutions gained by IDCMA is the most uniform. 
Test 5 

At last, we consider a two-objective problem having three variables [11]: 
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Figure 6(a) shows the global Pareto-optimal front in function space. Figures 6(b) (c) 
and (d) show the Pareto-optimal solution distributions solved by IDCMA, RWGA and 
SPEA separately. 

For this problem, IDCMA can obtain 100 Pareto-optimal solutions per time, while 
SPEA can get 24 Pareto-optimal solutions and RWGA can get 12 Pareto-optimal 
solutions per time on average. It can be seen from table 1 that I S( , )ς X X  and 

I R( , )ς X X  are much greater than S I( , )ς X X  and R I( , )ς X X . The values of metric 
Spacing show that the solutions gained by IDCMA are the most uniform. In addition, 
especially for the isolated optimal point 1 0f =  in the objective space, SPEA and 
RWGA can not find it in 30 times runs, but IDCMA can find this point very well, 
which can show adequately that IDCMA have a stronger ability for the global search. 

The statistical results for data of the two metrics of these nondominated solutions 
are shown in table 1 and table 2. In which IX  denotes the solutions solved by 
IDCMA, SX  denotes the solutions solved by SPEA, and RX  denotes the solutions 
solved by RWGA. ‘/’ means no correlative data. 

Table 1. Average results of the metric Coverage of Two Sets  

No. I S( , )ς X X  
S I( , )ς X X  

I R( , )ς X X  
R I( , )ς X X  

S R( , )ς X X  
R S( , )ς X X  

Test 1 0.727525 0.466000 0.722667 0.298667 0.516000 0.342929 
Test 2 0.833333 0.014333 0.792857 0.014667 0.238095 0.206667 
Test 3 0.994872 0.548667 0.996667 0.277333 0.626667 0.319231 
Test 4 0.428333 0.037000 0.388889 0.038000 0.161728 0.163333 
Test 5 0.788889 0.016000 0.905556 0.004333 0.441667 0.101389 
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Fig. 6. The Pareto-optimal solution distributions corresponding to test 5. (a) The global Pareto-
optimal front; (b) The solution distribution solved by IDCMA; (c) The solution distribution 
solved by RWGA; (d) The solution distribution solved by SPEA. 

Table 2. Average results of the metrics Spacing 

Algorithm IDCMA MISA SPEA RWGA 
Test 1 0.057842 0.107427 0.051856 0.127075 
Test 2 0.047654 0.114692 0.077124 0.438289 
Test 3 0.033705 / 0.045433 0.059720 
Test 4 0.032992 / 0.076490 0.127397 

Spacing 
S 

Test 5 0.134716 / 0.479929 0.738698 
We adopted two popular numerical metrics, Convergence of Two Sets and 

Spacing, selected five typical multiobjective problems, and compared with the other 
three advanced multiobjective algorithms. The simulation results show that Immune 
Dominance Clone Multiobjective algorithm proposed in this paper can solve the low-
dimensional multiobjective problems very well. Especially for the discontinuous 
Pareto-optimal fronts or the isolated optimal solutions, IDCMA can also construct and 
find them while the other algorithms seem incapable sometimes. In addition, Figure 2 
to Figure 6 testifies the rationality of the conclusion above intuitively.  



 

 

5 Conclusion and Prospective 

In this paper, the basic concepts of artificial immune system are presented and a 
novel algorithm, Immune Dominance Clonal Multiobjective Algorithm, inspired by 
the concept of immunodominance and the clonal selection theory, is proposed. When 
compared with RWGA, SPEA and MISA, IDCMA is more effective for low-
dimensional multiobjective optimization problems in the two popular metrics, 
Spacing and Coverage of Two Sets. 

Although IDCMA can solve some low-dimensional multiobjective problems 
preferably, it adopts binary coding, so it can not solve high-dimensional problems 
with low computational complexity. To design a suitable antibody coding mode and 
computing method of antibody-antibody affinity is our next work. 
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