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ABSTRACT

A method for incorporating fuzzy preferences into evolu-
tionary multiobjective optimization is proposed. After in-
troducing three commonly used models for describing fuzzy
preferences, a method to convert fuzzy preferences into real-
valued weight intervals is suggested. It is argued that to con-
vert fuzzy preferences into interval-based weights is more
consistent with the motivation of using fuzzy preferences
than to convert them into single-valued crisp weights. The
weight intervals are combined with the evolutionary dynamic
weighted aggregation to obtain the preferred Pareto-optimal
solutions. Simulation examples are given to show how the
desired Pareto-optimal solutions can be obtained.

1. INTRODUCTION

An important issue in multiple objective optimization is the
handling of human preferences. Finding all Pareto-optimal
solutions is not the final goal: a decision has to be made
from the available alternatives. Usually, a decision is made
based on the decision-maker’s preferences. Such prefer-
ences can usually be represented with the help of fuzzy
logic. In general, preferences can be incorporated either be-
fore, during or after the optimization process takes place.

In [2], a method for converting linguistic fuzzy prefer-
ence relations into crisp weights for optimization has been
introduced. One weakness in converting fuzzy preferences
into single-valued weights is that a lot of information is lost
in the process. In this paper, we develop a method that con-
verts fuzzy preference relations into interval-based weights.
The interval-based weights are combined with the dynamic
weighted aggregation proposed in [4, 5] to obtain the de-
sired Pareto-optimal solutions. In this way, we are able
to obtain a number of preferred Pareto solutions instead of
only one.

2. FUZZY PREFERENCE MODELS AND GROUP
DECISION-MAKING

2.1. Three Fuzzy Preference Models

Since human judgments including preferences are often im-
precise, fuzzy logic can play an important role in decision
making and multi-criterion optimization. Given � alterna-
tives �������
	
�����
������� , preferences can be provided in the fol-
lowing three ways [1]:

� A preference ordering of the alternatives (ordered from
best to worst):

����� �������
	
�����
��������������������� �!�#"$� (1)

For example, the ordering
�%�&�
' ��� ��()�!*+� means

that alternative �
	 is the most important and �-, is the
least important.

� Utility values. In this case, a scaled real number is
assigned to each alternative to indicate its relative im-
portance:

. ����/ �10!2 � � � ' �3�
���
�!�4��� (2)

Utility values can be given in a difference scale or a
ratio scale. If the ratio scale is used, we have

/ �5�� 6+���7" . If a difference scale is used, then
/ � ’s are nor-

malized so that 8:9<; .>= 8?2$� .A@ � .
� Fuzzy preference relations. In this case, the prefer-

ences are expressed by a binary relation matrix B of
size �DCE� , whose elements FG��HE��� 6+���7" are the prefer-
ences ;�� over ;IH that satisfy the following conditions:

FG��HKJLF+H!� � � (3)

FM�N� � 6+�PO (4)



Note that both utility functions and fuzzy preference re-
lations are numeric. Naturally, there are also utility func-
tions and fuzzy preferences in linguistic forms:

� Fuzzy utility functions. Each alternative has a linguis-
tic utility such as Very important, Important, Don’t
care, Not important and so on.

� Linguistic fuzzy preference relations. For example,
instead of assigning a numeric fuzzy preference F#��H �
6+� � , one can also express ones judgment as “objective;G� is more important than ;MH ”.

Among the three preference models, fuzzy preference
relations are the most widely used models. Of course, prefer-
nce ordering and utility functions can be converted into fuzzy
preferences. Consider a utility function

/�� ;�� based on a
difference scale, then utility values can be transformed into
fuzzy preference relations as follows:

FM��H � �' � �KJ / � = / H���� (5)

Similarly, a preference ordering can also be transformed
into a fuzzy preference relation. Supposing an ordering� � � �������
	
�3�
���
�����#� is arranged from best to worst, an ex-
ample function to transform the ordering into a fuzzy pref-
erence relation is

FM��H � �'
�
�KJ �3H = ���

� = ��� � (6)

2.2. Fuzzy Group Decision Making

In practice, there are usually several experts who make their
judgments and provide preference decisions. Suppose there
are 8 experts and their preferences of alternative ;#� over ;IH
are F
	��H , where 2!��� � � � ' �3�
���
�!� and 
 � � � ' �����
�
�!8 . There-
fore, there are 8 preference matrices B 	 ��
 � � � ' �3�
��� 8 of
size �DCE� . In decision making, an alternative can be chosen
either based on a direct or indirect approach [6, 3].

The direct approach derives a collective preference B��
based on B 	 and then uses B�� to get a solution. There are
two different types of methods depending on whether nu-
meric or linguistic fuzzy preference relations are used. If
the fuzzy preferences are numeric, a collective preference
can be obtained by

F ���H � �
8 �� 	�� � F 	��H � (7)

It is transitive if all the individual preferences are transitive.
Indirect pproaches [3] to group decision making under

linguistic fuzzy preference relations are generally based on
two different preference degrees : a linguistic non-dominance
degree defined in [7] and a dominance degree using the con-
cept of fuzzy majority [6]. In [3], an indirect approach is

proposed using the Linguistic Ordered Weighted Aggrega-
tion (LOWA) operator [8].

3. EVOLUTIONARY DYNAMIC WEIGHTED
AGGREGATION

In spite of its weaknesses, the conventional weighted aggre-
gation approach to multiobjective optimization is very at-
tractive due to its simplicity and efficiency. Furthermore, it
has been found in [4, 5] that the weaknesses of the conven-
tional aggregation approach can be overcome by system-
atically changing the weights during optimization without
the loss of its simplicity and efficiency. The following two
methods have been proposed:

� Random weighted aggregation (RWA). It is natural to
take advantage of the population for obtaining multi-
ple Pareto-optimal solutions in one single run in evo-
lutionary optimization. Imagine that the 2 -th individ-
ual in the population has its own weight combination
( � � � ��� � , � �	 ��� � ) in generation

�
, then the evolutionary

algorithm will be able to find different Pareto-optimal
solutions. To realize this, it is found that the weight
combinations need to be distributed uniformly and
randomly among the individuals and a re-distribution
is necessary in each generation [4]:� � � ��� � �

rdm
� B����-B � (8)� �	 ��� � � �
� 6 = � � � ��� ��� (9)

where 2 � � � ' �3�
�
����B denotes the 2 -th individual in the
population, B is the population size, and

�
is the index

for generation number. The function ��� 8 � B�� gener-
ates a uniformly distributed random number between6 and B . In this way, we can get a uniformly dis-
tributed random weight combination ( � � � , � �	 ) among
the individuals, where 6 @ � � � ��� �	 @ � and � � � J� �	 � � . Notice that the weight combinations are re-
generated in every generation.

� Dynamic weighted aggregation (DWA). In DWA, all
individuals have the same weight combination, which
is changed gradually generation by generation. Once
the individuals reach any point on the Pareto front,
the slow change of the weights will force the individ-
uals to keep moving along the Pareto front gradually
if the Pareto front is convex. If the Pareto front is
concave, the individuals will still traverse along the
Pareto front, however, in a different fashion [4]. The
change of the weights can be realized as follows:� � ��� � � �

sin
�$'! �� �!"�� � � (10)� 	 ��� � � � � 6 = � � ��� ��� (11)

where
�

is the number of generation. Here the sine
function is used simply because it is a plain periodical
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Figure 1: The procedure for application of fuzzy prefer-
ences in MOO.

function between 6 and � . In this case, the weights� � ��� � and � 	 ��� � will change from 6 to � periodically
from generation to generation. The change frequency
can be adjusted by " . The frequency should not be
too high so that the algorithm is able to converge to
a solution on the Pareto front. On the other hand, it
seems reasonable to let the weight change from 6 to� at least twice during the whole optimization.

The weights are changed between � 6)���7" in RWA and
DWA to achieve all the Pareto-optimal solutions. In prac-
tice, it is not unusual that only part of the solutions are de-
sired, which is specified by user preferences. In this case,
the weights can be changed between � � � �
� ��� � ��� " , where6 @ � � �
��� � � ��� @ � .

4. FUZZY PREFERENCES INCORPORATION IN
MOO

A general procedure for applying fuzzy preferences to mul-
tiobjective optimization is illustrated in Fig. 1. It is seen
that before they can be incorporated into multiuobjective
optimization, the fuzzy preferences must be converted into
real-valued weights or weight intervals. In the following, a
method for converting fuzzy preferences into weight inter-
vals is suggested.

4.1. Converting Fuzzy Preferences into Crisp Weights

Consider an MOO problem with six objectives
� �)�����
	
�3�
���
�����
�

[2] . Suppose among these six objectives, �)� and �
	 , ���
and ��, are equally important. Thus we have four classes of
objectives: �-� � � �������
	-���	�7	 � � ��� ����, ���
�	� � � ���-� and��, ��� ���
� . Besides, we have the following preference rela-
tions:

��� is much more important than ��	 ;��� is more important than ��� ;

��, is more important than �-� ;�	� is much more important than ��	
From these preferences, it is easy to get the following

preference matrix:

B �

��
�
��� ����� ��� �������� ��� ����� �������� ����� ��� ������ ����� ��� ���

����
� (12)

From the above fuzzy preference matrix, we can get the
following real-valued preference relation matrix � :

� �

��
�
�! " #$ � $ $#  � #"  " �

� ��
� (13)

Based on this relation matrix, the weight for each objec-
tive can be obtained by:

� � ����� � % � ���1�&���')(� � � % � ���1�&� � , (14)

where

% � ���1�&��� � (�
H � �+* H�,� � FM��H . (15)

For the above example, we have

� � � � 	 � ' = $� J ' $ � (16)

�-� � � , � ( $� J ' $ � (17)

�.� � � = $ J ' #� J ' $ � (18)

�-� � ( = $ = ' #� J ' $ � (19)

Since $ and # can vary between 6 and 6+�PO , one needs to
specify a value for $ and # heuristically (recall that # � $ )
to convert the fuzzy preferences into a single-valued weight
combination, which can then be applied to the conventional
weighted aggregation to achieve one solution.

4.2. Converting Fuzzy Preferences into Weight Inter-
vals

In order to convert fuzzy preferences into one weight com-
bination, it is necessary to specify a value for $ and # . On
the one hand, there are no explicit rules on how to specify
these parameters, on the other hand, a lot of information
will be lost in this process. One more natural way to deal
with these problems is to convert the fuzzy preferences into
a weight combination with each weight being described by
an interval instead of a single value.



To show how the value of the parameters affects that
of the weights, an experiment is carried out for the above
example. Fig. 2 and Fig. 3 show the change of the weights
with the change of the parameters.
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Figure 2: Change of the weights with the change of the pa-
rameters. (a) �E����� 	 ; (b) �.�
��� , .
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Figure 3: Change of the weights with the change of the pa-
rameters. (a) � � ; (b) �-� .

It can be seen from the figures that the weights vary a lot
when the parameters ( $ and # ) change in the allowed range.
Thus, each weight obtained from the fuzzy preferences is an
interval on � 6)���7" . Very interestingly, a weight combination
in interval values can be nicely incorporated into multiob-
jective optimization with the help of the RWA and DWA
introduced in Section 3. Suppose the maximal and minimal
value of a weight is � � � � and � � �
� when the parameters
change, then we can modify equation (8) as follows:� � � ��� � � � � �
�� J � � � ���� = � � �
�� � � rdm

� B����-B � (20)

Similarly, equation (10) can be modified as follows to
find out the preferred Pareto solutions:�E� ��� � � � � �
�� J � � � ���� = � � �
�� � � � sin

�$'! �� �!"�� � � (21)

In this way, the evolutionary algorithm can achieve a
set of Pareto solutions reflected by the fuzzy preferences.
However, since DWA cannot control the movement of the
individuals if the Pareto front is concave, fuzzy preferences
incorporation into MOO using DWA is applicable to convex
Pareto fronts only, whereas RWA works for both convex and
concave fronts.

To illustrate how this method works, some examples on
two-objective optimization are presented in the following.
In the simulations, we consider two different fuzzy prefer-
ences:
1. Objective 1 is more important than objective 2;
2. Objective 1 is less important than objective 2.

For the first preference, we can get the following prefer-
ence matrix:

B � � 6+�PO "# 6+� O�� � (22)

where 6)�PO � " � � and 6 � # � 6+� O . Therefore, the
weights for the two objectives are:� � � ��� � � 6)�PO J 6)�PO � rdm

� B����-B � (23)� �	 ��� � � �
� 6 = � � � ��� ��� (24)

The weights for the second preference can be obtained
similarly.

Simulation results are carried out on the first three test
functions in [5], where " � and " 	 have a convex Pareto
front, whereas " � has a concave Pareto front. The simu-
lation results on "K� and "�	 are given in Figures 4 and 5
using the RWA method, and in Figures 6 and 7 using the
DWA method.
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Figure 4: RWA results on " � . (a) ��� is more important than�-	 ; (b) ��� is less important than � 	
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Figure 5: RWA results on " 	 . (a) ��� is more important than�-	 ; (b) ��� is less important than � 	
It can be seen that the performance of RWA and DWA

are similar on the two test functions with a convex Pareto
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Figure 6: DWA results on " � . (a) ��� is more important than�-	 ; (b) ��� is less important than �
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Figure 7: DWA results on " 	 . (a) ��� is more important than�-	 ; (b) ��� is less important than �
	
front. However, the performance on the test function "�� ,
which has a concave Pareto front, is very different. The
performance of the DWA is quite bad, see Fig. 8(b), whereas
the performance of RWA is acceptable, refer to Fig. 8(a).

5. CONCLUSIONS

A method to obtain the Pareto solutions that are specified by
human preferences is suggested. The main idea is to con-
vert the fuzzy preferences into interval-based weights. With
the help of the dynamic weighted aggregation method, it is
shown to be successful to find the preferred solutions on two
test functions with a convex Pareto front. Compared to the
method in [2], our method is able to find a number of solu-
tions instead of only one, given a set of fuzzy preferences
over different objectives. We believe this is consistent with
the motivation of fuzzy logic.
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