
Connectedness, Regularity and the Success of Local Search in Evolutionary
Multi-objective Optimization

Yaochu Jin
Honda Research Institute Europe

Carl-Legien Strasse 30,
63073 Offenbach/M, Germany

yaochu.jin@honda-ri.de

Bernhard Sendhoff
Honda Research Institute Europe

Carl-Legien Strasse 30,
63073 Offenbach/M, Germany
bernhard.sendhoff@honda-ri.de

Abstract- Local search techniques have proved to be
very efficient in evolutionary multi-objective optimiza-
tion(MOO). However, the reasons behind the success of
local search in MOO have not yet been well discussed.
This paper attempts to investigate empirically the main
factors that may have contributed significantly to the
success of local search in MOO. It is found that for many
widely used test problems, the Pareto optimal solutions
are connected both in objective space and parameter
space. Besides, the Pareto-optimal solutions often dis-
tribute so regularly in parameter space that they can be
defined by piecewise linear functions. By constructing
an approximate model using the solutions produced by
an optimizer, the quality of the non-dominated solution
set can be further improved.

The evolutionary dynamic weighted aggregation
(EDWA) method has been adopted as a local search tech-
nique in finding Pareto-optimal solutions. Its effective-
ness for MOO is demonstrated on a number of two or
three objective optimization problems.

1 Introduction

Local search techniques for evolutionary multi-objective
optimization have received increasing attention in the re-
cent years. Generally, multi-objective local search can be
divided into three categories. First, multi-objective search is
carried out by heuristic local search methods, such as sim-
ulated annealing [4, 25], Tabu search [9], particle swarm
optimization [21] or other techniques [10]. Second, local
search is combined with global search either during the op-
timization [11, 17, 12, 18] or at the end of optimization
[16, 26]. Third, one or a part of the Pareto-optimal solu-
tions are found first and then the further search is continued
starting from these solutions [22, 20, 23].

The dynamic weighted aggregation (DWA) method [13,
14] has shown to be effective for multi-objective optimiza-
tion using evolution strategies [15] and particle swarm op-
timization [21]. Evolution strategies (ES) are not strictly
local, however, as the evolution proceeds, the step-sizes be-
come smaller and smaller and the search becomes more

local. Therefore, DWA in combination with an evolution
strategy can also be regarded as a local search method for
MOO.

The reasons for the success of local search techniques
have not been fully discussed. One of the first research in in-
vestigating the basis of the success of local search in multi-
objective combinatorial optimization (MOCO) is reported
in [2]. It is pointed out that the success of local search
in MOCO can be attributed to the phenomenon known as
global convexity. By global convexity, it is understood that
in MOCO, the Pareto optimal solutions are concentrated in a
small fraction of parameter space and those are in the neigh-
borhood in objective space are also in the neighborhood in
parameter space. This is also termed as connectedness in
MOCO [8]. The connectedness is of particular interest be-
cause if this is true, a local search technique can find Pareto
optimal solutions without exploring the dominated regions
when one Pareto optimal solution has been found. However,
as it is pointed out in [8], connectedness does not hold for
all MOCO problems.

Inspired from the above discussions, it has been specu-
lated that the success of the DWA method can also partly
be attributed to the connectedness of the Pareto optimal so-
lutions for many continuous optimization problems [14].
Another important factor that makes the DWA successful
is that evolution strategies are able to conduct local search
at the late stage of the optimization when the population
has reached the Pareto front. On the contrary, canonical
genetic algorithms are not able to conduct local search in
multi-objective optimization even when they are converged
to the Pareto front. To enable genetic algorithms to carry
out local search, crossover should be limited to parents in
neighborhood only.

This paper aims to show empirically that connectedness
holds also for many continuous optimization problems. Be-
sides, it demonstrates that the distribution of the Pareto op-
timal solutions in parameter space exhibits high simplicity
and regularity. In some cases, the Pareto optimal solutions
can be fully defined by a number of piecewise linear func-
tions. Once a model is constructed from the solutions gen-
erated by an optimizer, we are able to refine the quality of



solutions significantly.
In the following Section, the local search method used

in the empirical studies in this paper, i.e., the DWA us-
ing an evolution strategy, will be briefly reviewed. Illus-
trative simulation results are provided in Section 3 with ob-
servations of typical behavior of individuals on convex and
concave Pareto fronts. In Section 4, the connectedness of
Pareto optimal solutions is discussed by showing empirical
results from some test functions. The regularity in distribu-
tion of Pareto optimal solutions is addressed in Section 5,
where piecewise linear models are constructed to approxi-
mate Pareto optimal solutions in parameter space. Section 6
concludes the paper with discussions of some open issues.

2 Dynamic Weighted Aggregation

The central idea behind the dynamic weighted aggregation
method is to use variable weights during the evolutionary
optimization to obtain multiple non-dominated solutions in
one run. A simple approach to realizing this is to change
weights gradually from generation to generation during op-
timization, which is termed as dynamic weighted aggrega-
tion (DWA) in [14]. Although there are no specific require-
ments on how the weights should be changed, the following
two factors should be taken into account:

� Each weight should be changed from
�

to � or from �
to

�
once to ensure that the whole Pareto front can be

searched.

� The speed of the weight change should be sufficiently
slow so that the evolutionary algorithm is able to con-
verge to the Pareto front. One practice is to fix the
weight first and let the population converge to one
point of the Pareto front. However, if evolution strate-
gies are used, the step-sizes should be prevented from
converging to zero so that the population can move
fast enough to follow the change of the weights.

A simple mode for weight change for two-objective op-
timization problems is as follows :

�����	��
� � sin ������������
��
�����	��
� ��� ��� �����	��
 � (1)

where � is the generation index, �"!#� takes the absolute value,� is the weight change frequency, usually between $ � and� �%� . For example, if �&�'� �%� , the weights will change
twice between

�
and � within � �%� generations.

The dynamic weighted aggregation method can be
extended to three-objective problems in a straightforward
way. An example of the weight change is as follows:

Let ���(� �
, �)�*� �

, and �+�,���.-/�)�

for ���(� �
to ���%�

�����0��
1�2� sin �3�������#����
#� ;
for � � � �

to �����
� � �0��
4�2� ��� �*� � � �0��
�
#� sin ������� � ����
�� ;��5��0��
4� �%� �*� � � �0��
 � � � �	��
 ;

end;
end.

A special case of the DWA method is to switch the
weights between

�
and � , which has been termed the bang-

bang weighted aggregation (BWA) in [14]. Empirical stud-
ies have shown that the BWA method exhibits very good
performance if the Pareto front is concave.

In DWA, the population is not able to keep all found non-
dominated solutions. Therefore, it is necessary to store the
non-dominated solutions found so far. However, the archive
has no influence on the search behavior.

3 Simulations and Observations

3.1 Evolution Strategy

A standard ES [24] with comma selection is adopted in the
simulations. The parent and offspring population sizes are
set to �6$ and � ��� , respectively. The initial step-sizes are set
to

� �7� and 8 �%� generations are run for each test function.
The weights are changed periodically according to equation
(1), where � is set to � �%� . No recombination operation has
been implemented. During optimization, the step-sizes are
checked in each generation and are re-initialized if they are
smaller than a prescribed value. This is very important be-
cause if the step-sizes converge to

�
or a very small value,

the population will lose its ability to move.

3.2 Test Functions

To show the effectiveness of the method, two bi-objective
and two three-objective test functions have been used in
this paper. � � is the Schaffer function with a connected
convex Pareto front. � � is the Fonseca (2) function with a
connected and concave Pareto front. �.5 is a three-objective
Viennet function of which the Pareto solutions form a con-
vex surface and �:9 is the three-objective Viennet (3) func-
tion, whose Pareto front consists of disconnected pieces of
curves. Refer to [3] for the detailed descriptions of the test
functions.

3.3 Simulation Results and Observations

The found non-dominated solutions for the four test func-
tions are provided in Figures 1, 2, 3 and 4, respectively.

The following two important observations can be made
from the optimization processes using the EDWA method.
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Figure 1: Achieved non-dominated solutions for �4� .
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Figure 2: Achieved non-dominated solutions for � � .
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Figure 3: Achieved non-dominated solutions from � 5 .
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Figure 4: Achieved non-dominated solutions from � 9 .

� If the Pareto front is convex, the population will first
converge to a certain point on the Pareto front. To
which point the population converges depends on the
problem difficulty (convergence speed) and on the
speed of weight change. Once the population has
reached the Pareto front, it will keep moving on it
as the weights change. The speed of movement can
be controlled by the frequency of the weights change.
Fig.5 shows a typical trace of the parent population
during optimization of the test function �4� in the first
� �%� generations represented by the mean of the pop-
ulation. Using different strategy parameters, only mi-
nor changes will occur in the starting phase of the
trace.
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Figure 5: Movements of the population with time (genera-
tion) on a convex Pareto front. The arrows denote the direc-
tion of the movement and the numbers the generation.

� If the Pareto front is concave, the population will con-
verge to one of the two ends of the concave Pareto
front. Thereafter, the population will remain on this
Pareto optimal point until the weights are changed to
a threshold value, which is determined by the charac-
teristics of the Pareto front. Then, the population will
move along or close to the Pareto front very quickly to
the other end of the Pareto front. To illustrate this, the
first � ��� moves of the parent population during opti-
mization of test function � � are presented in Fig. 6.
From the figure, it can be seen that the population
converges to the Pareto point (

� � , � � ) � (
� � ��� ,

�
) in a

few generation. As the weights change, the popula-
tion remains on the same point until generation � � .
Then, the population moves along the Pareto front
quickly to the other end of the Pareto front, where
(
� � , � � ) � (

�
,
� � ��� ). Again, the population remains on

this point until generation � � .

The effectiveness of the DWA method, as well as other
local search techniques, may probably be attributed to the
connectedness and regularity of Pareto optimal solutions in
many MOO problems, which will be discussed in more de-
tails in the following sections.
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Figure 6: Movements of the population with time (gener-
ation) on a concave Pareto front. The arrows denote the
direction of the movement and the numbers the generation.

4 Connectedness and Search Efficiency

Consider the multi-objective optimization problem:

min ����� � � ����� 
 � � �7� � ��� �	� 
�
 � (2)

where

�����

is non-empty, compact, and convex, the
functions

����� 
��� ��� � � � � �7� ��� are continuous, where� and � are the dimension of parameter space and num-
ber of objectives, respectively. Then the Pareto-optimal so-
lutions are connected if all objective functions are convex
[19]. Fig. 7 shows a connected and non-connected Pareto
fronts.
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Figure 7: Connectedness of Pareto optimal solutions. (a)
The Pareto front consists of two disconnected sections, ���
and  �! . (b) The Pareto front consists of one connected
section �"� .

The convexity condition for the connectedness can be
relaxed. For example, it has been shown that the connect-
edness holds if the objective functions are semi-convex [5].
Refer to [5, 7] and the references therein for detailed discus-
sions on connectedness.

If connectedness holds, a local search algorithm will be
able to get all Pareto optimal solutions very efficiently start-
ing from a single Pareto optimal point. However, the above
definition of connectedness is very strict. Fortunately, a lo-
cal search algorithm can benefit much even if the strict con-
nectedness does not hold. For example, a local search al-

gorithm is able to find all solutions efficiently that are con-
nected, although the whole Pareto front is disconnected. In
case a Pareto front is composed of a finite number of dis-
connected sections, we say that the Pareto optimal solutions
are loosely connected.

It is also found in evolutionary DWA based search, the
population is able to move along the boundary of the feasi-
ble region, such as section �# in Fig. 7(a), which connects
different sections of the Pareto front. This is very interest-
ing because it means that the optimizer is able to find a path-
way that bridges the gap between the disconnected pieces of
the Pareto front. To show this phenomenon, the DWA algo-
rithm is applied to the third test function used in [28], whose
Pareto optimal front consists of five disconnected sections.
It can be seen from Fig. 8 that the population is moving
along the boundaries that connect the Pareto optimal sec-
tions, although solutions on these boundaries are not Pareto
optimal themselves.
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Figure 8: The population is moving between the discon-
nected Pareto sections.

5 Regularity and Approximation of the Pareto
Optimal Solutions

5.1 Conjectures on Regularity

One of the important aspects of global convexity is that
Pareto-optimal solutions are concentrated in a very small
region of parameter space. In addition, Pareto optimal so-
lutions are loosely connected for a large number of MOO
problems, which can be taken advantage of by local search
methods.

In this section, we will look into regularity of the distri-
bution of Pareto optimal solutions in parameter space. Be-
fore going into details, we start with the following conjec-
tures concerning the properties of the distribution of Pareto-
optimal solutions. These conjectures can be empirically ver-
ified on many popular multi-objective test problems.

� If the Pareto front is a curve in objective space, the
Pareto optimal solutions can also be defined by a
curve in parameter space. If the Pareto front is a sur-



face in objective space, the Pareto optimal solutions
are also a surface.

� The order of the function that defines the Pareto op-
timal set in parameter space is equal to or lower than
that of the function describing the Pareto front in ob-
jective space. Thus, if the Pareto front consists of
lower order curves, the solutions in parameter space
can most probably be described by piecewise linear
functions.

Note that it can be shown that a Pareto optimal surface
is at most an � � � dimensional surface, where � is the
number of objectives. Therefore, if � is less than or equal
to

�
, the Pareto front is at most a two-dimensional surface.

If the conjectures about the regularity hold for an un-
known optimization task, it will be very helpful in improv-
ing the quality of the solutions obtained from an optimizer.
Besides, it will be theoretically possible to recover more
Pareto optimal solutions from a limited number of Pareto
solutions achieved by an optimizer. Since the conjectures
suggest that the complexity of the function that defines the
Pareto optimal solutions in the parameter space (we will call
it definition function hereafter) is simpler than that defines
the Pareto front in objective space, it will be more effective
to approximate the definition function than to approximate
the Pareto front as done in [27].

In the following, approximate models for the definition
function will be constructed for the test problems on the ba-
sis of the previous conjectures. It will be shown that in all
the cases, the accuracy of the solutions will be improved
significantly. Furthermore, missing solutions could be re-
covered through such analysis.

5.2 Test Function � �

Using the solutions obtained in Section 3, it is straightfor-
ward to get the following linear model, which is illustrated
in Fig. 9 (a). The Pareto front directly generated from the
approximate model as well as the solutions achieved by the
optimizer is plotted in Fig. 9 (b). Obviously, the accuracy of
the solutions has been improved through the linear approx-
imation. � � � � � � � ��� - � � ��� � ��� � (3)

5.3 Test Function �:�

Similarly, the following linear model has been obtained for� � based on the points achieved by the DWA:
� � � �(� � ��� ��� - � � � ��� $ � � � �(� ��� ��� ��� � � �	� � � (4)

The solutions achieved by the optimizer, its approximate
model and the Pareto front generated from the model are
shown in Fig. 10.
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Figure 9: Test function �.� : (a) Distribution of the solutions
in parameter space and the estimated definition function; (b)
Pareto front generated from the estimated definition func-
tion (solid line) and the achieved solutions (dots).
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Figure 10: Test function � � : (a) The achieved solutions in
parameter space and its estimated model; (b) Pareto front
generated from the estimated definition function (solid line)
and the achieved solutions (dots).

5.4 Test Function �:5

The regularity of the distribution of the solutions in parame-
ter space can easily be observed. It is found that the bound-
ary of Pareto optimal solution region can be defined by the
following three lines:

� � � � � � ��� � � �
� � � � � � (5)
� � � � � �.- �%� � � �
� � � � � � (6)
���(� � � � � � � � � �%� (7)

Using these linear curves, it is straightforward to get the
boundary of the Pareto surface, as shown in Fig. 11, where
the approximated solutions are also provided.

In this way, it is easy to get rid of the solutions that are
not Pareto-optimal. Meanwhile, it is interesting to find out
that the boundary of the Pareto optimal solutions in param-
eter space corresponds nicely to that in objective space.

5.5 Test Function � 9

From the distribution of the obtained solutions in param-
eter space, refer to Fig. 12, the definition function of this
test problem consists of more than one linear sections plus a
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Figure 11: Boundary of the true Pareto surface. (a)
� � - � � .
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separate point, while the Pareto front appears to be a contin-
uous curve. From the obtained solutions, it is observed that
the Pareto optimal solutions is composed of four sections.
The following approximate model can be used to describe
the solutions:

S1: � ��� � � ��� � � � � � ����� � �(� � ��$ � � � � � � (8)

S2: � � � ��� �%8 - ��� 8 � � �6� � ��� � � ��� � �(� � ��$ � (9)

S3: � � � ��� �%8 - ��� 8 � � �6� � � � � � � � ��� � $ � (10)

S4: � � � ��� � � - �%��� � � � � � � �
� � � � � � � � � � (11)

In the obtained solutions, section 4 consists of only a few
solutions. However, it is noticed in model construction that
the range of this section can be extended and the solutions
are still Pareto optimal. This results in finding an additional
section of Pareto fronts that has often been missing in the
existing literature, refer to Fig. 20. The obtained solutions
together with their approximation are shown in Fig. 12.
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Figure 12: Distribution of the solutions and the approxima-
tion in parameter space.

The Pareto front generated by line section 1 is shown in
Fig. 13 and the two sections of the Pareto front generated by
line sections 2 and 3 are illustrated in Figures 14, 15 and 16
respectively.

When we take a closer look at the solutions reconstructed
from the approximate definition functions, we notice that
the Pareto front has richer features than what has been ob-
tained in existing work [6, 3]. The Pareto solutions gen-
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Figure 13: Pareto front generated by line section 1.
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Figure 14: Pareto front generated by section 2 and 3:
� � - � � .

erated by line section 2 are so close to those generated by
line section 3 that it is difficult to distinguish them without
zooming in. The solutions generated by line section 4 are
illustrated in Figures 17, 18 and 19.

Finally, the complete Pareto front generated from the
approximate definition function in parameter space is pre-
sented in Fig. 20. Compared to the results shown in
Fig. 4(b), it can be seen that the Pareto-optimal solutions
generated by line section 4 have been completely missing in
the Pareto front obtained using the optimization algorithm.

6 Discussions and Conclusions

The main target of the paper is to suggest that connectedness
and regularity can be the most important reasons behind the
success of local search algorithms in MOO. It is shown that
local search algorithms, such as the DWA method, can ef-
fectively take advantage of the connectedness and conse-
quently its search efficiency is high. It is also shown that
the distribution of the Pareto optimal set exhibits surpris-
ing regularity and simplicity in parameter space, which is
very interesting and could be very helpful. By taking ad-
vantage of such regularities, it is possible to build simple
models from the obtained Pareto-optimal solutions. Such
an approximate model can be of great significance in the
following aspects.
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� It allows to improve the accuracy and distribution of
Pareto optimal solutions obtained by an optimizer.

� It could alleviate difficulties in multi-objective opti-
mization. If the whole Pareto front can be generated
from a few Pareto optimal solutions, requirements
such as distribution and spread on the optimizer can
be alleviated.

It should be pointed out that strict connectedness holds
only for some particular class of MOO problems. Whether
connectedness in a loose sense holds for all MOO problems
is still unclear. Besides, the regularity and simplicity ob-
served in the test functions needs to be verified for a wider
range of MOO problems. It is thus important to check if
most real-world applications also show connectedness and
regularity. If this is not the case, it would be a critical issue
in constructing test functions to avoid this kind of regularity.

Another issue that deserves further research is to inves-
tigate whether self-adaptation mechanism of the ES works
properly for multi-objective optimization. When ES is com-
bined with DWA, it can be seen as to track a dynamic min-
imum moving during the optimization, in which case the
self-adaptation behavior is not well understood yet [1]. Ide-
ally, in tracking a convex Pareto front, the step-sizes should
enable the population to follow the movement of the mini-
mum. If the Pareto front is concave, the step-sizes should
be prevented from converging to

�
. Meanwhile, they should
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Figure 17: Pareto front generated by section 4:
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not be too large so that the population can keep moving
along the Pareto front.
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