
Multiobjective Optimization Techniques:
A Study Of The Energy Minimization Method And Its Application To The

Synthesis Of Ota Amplifiers

 Milton Jonathan Marco Aurélio Cavalcanti Pacheco
 ICA ICA
 Applied Computational Intelligence Laboratory Applied Computational Intelligence Laboratory
 Electric Engineering Department Electric Engineering Department
 Catholic University of Rio de Janeiro Catholic University of Rio de Janeiro
 Rua Marques de S. Vicente, 225, Gavea, Rua Marques de S. Vicente, 225, Gavea,
 Rio de Janeiro, RJ, Brazil, 22453-900 Rio de Janeiro, RJ, Brazil, 22453-900
 +55-21-529-9433 +55-21-529-9445
 milton@ele.puc-rio.br marco@ele.puc-rio.br

 Ricardo Salem Zebulum Marley B.R. Vellasco
 Jet Propulsion Laboratory ICA
 4800 Oak Grove Drive Applied Computational Intelligence Laboratory
 Pasadena, California 91109 Electric Engineering Department
 (818) 354-4321 Catholic University of Rio de Janeiro
 ricardo@brain.jpl.nasa.gov Rua Marques de S. Vicente, 225, Gavea,
 Rio de Janeiro, RJ, Brazil, 22453-900
 +55-21-529-9445
 marley@ele.puc-rio.br

Abstract

This paper reviews the multiobjective fitness evaluation
method called Energy Minimization [6,7,8] and presents an
analysis of the method’s behavior when used in a genetic
algorithm applied to the synthesis of single-ended Miller
operational amplifiers. A modified model is proposed in
order to overcome some of the weaknesses pointed out and
improve the model’s performance. Finally, experimental
results are presented and analyzed, leading to an overall
evaluation of the benefits provided by the proposed
modifications.

1 Introduction

In real-world problems, particularly in evolutionary
electronics, it is often necessary to simultaneously optimize
multiple performance measures, or multiple objectives.
Unfortunately, some inconveniences frequently arise when

known optimization techniques, both conventional and
non-conventional, are applied to multiobjective problems.
Indeed, these techniques are in general designed originally
for single-objective problems, that is, problems in which
the levels of optimality of the solutions can be given by the
ordering of one single performance measure (e.g., a scalar
value). The conventional gradient descent technique and
also the widely used simulated annealing and genetic
algorithm techniques are all examples of these, the latter
one being the subject of this paper.

The actual problem is that, when multiple performance
measures are necessary to rate a solution’s optimality, there
is no straightforward procedure to appropriately compare
two distinct solutions. Thus, it becomes necessary to define
a way in which the different evaluations can be combined
so as to provide a correct decision about which solution is
better, and how much better it is. Indeed, without a suitable
workaround to this obstacle, none of the aforementioned
techniques can work efficiently in multiobjective
optimization problems.

0-7695-0762-X/00 $10.00 � 2000 IEEE

This article includes three additional sections. Section 2
reviews some multiobjective optimization techniques with
emphasis on the energy minimization method, focus of this
work. In section 3, we discuss the energy minimization
method’s behavior and propose modifications. Section 4
presents experimental results and finally in section 5 final
considerations are discussed.

2 Review of Multiobjective Optimization
Techniques

2.1 Linear Scalar Aggregation

The linear scalar-aggregative approach [3,4] corresponds
to the most simple and direct method for combining the
multiple performance measures. It consists simply of a
weighted sum of the individual measures for each objective,
with the final fitness evaluation F for a given solution being
thus given by:

∑
=

=
n

i
ii fwF

1

 (1)

where fi corresponds to the fitness evaluation relative to
objective i, and wi corresponds to the respective weight, for
a total of n objectives.

This method has the important advantage of being very
easy to implement, aside from being extremely efficient
computationally speaking. However, it also has a number
of problems, one of the most serious of them being the
great difficulty in choosing appropriate weights wi for a
given problem.

Indeed, for certain problems it can be considered that the
different objectives all have the same importance and, in
such cases, it becomes natural to choose equal values for
the weights. However, in most situations the optimization
of a particular objective may be more important than
another one, or it can even be more complicated to define
which objective has greater priority. Thus, in practice, the
application of this method to a given problem almost
always ends up in a costly and tiresome fine-tuning
process, in which the algorithm is repeatedly tested with
different sets of weights until satisfactory results are
obtained.

2.2 Dominance and the Pareto-Optimal Set

The problem of comparing two different solutions may be
partially solved by the concept of dominance. This concept
states that a given solution v dominates another solution u
only if for no objective the evaluation of v is worse than
that of u. Moreover, for at least one objective the solution v
must present a better evaluation than that of u [4]. Thus,
formally, this dominance of v over u can be defined by:

{ }
{ } ii

ii

uvni

uvni

>∈∃
∩≥∈∀

,,...,1

,,...,1
 (2)

where a hypothetical maximization problem of n objectives
is considered, with vi and ui corresponding respectively to
the evaluations of solutions v and u for objective i.

Obviously, we have that in particular a solution v
dominates another solution u when it presents superior
evaluations for all objectives. Aside from that, if a given
solution is not dominated by any other, then that solution is
said to belong to the Pareto-optimal set. Therefore, this set
actually corresponds to all those solutions that, in the
absence of any other information about the problem, cannot
be surely stated as being inferior to anything: any other
solution will always have an inferior evaluation for at least
one objective.

Indeed, there are several optimization methods for
multiobjective problems that seek the Pareto-optimal set, or
Pareto Frontier. After all, it can be readily seen that the
optimal solution to the problem will surely belong to this
set, whatever solution that is. On the other hand, these
techniques are in general quite costly computationally
speaking, aside from the fact that they only partially solve
the problem at hand: after all, of all solutions in the optimal
set, which is the most desirable one?

2.3 Compromise Solutions and Distance-to-Target
Techniques

In practice, for many real-world problems a good solution
must necessarily satisfy all the objectives at hand to a
minimum extent. In these situations, it is not considered
acceptable for a given solution to present a spectacular
performance for one objective at the same time it is a
complete blunder for another. As an example of this, we
can mention the typical problem of optimizing a product so
as to minimize its cost and maximize its quality. In such a
scenario, it is simply unacceptable to find a solution of
extremely low cost but whose quality is mediocre. In other
words, it is necessary to find a balanced solution, with the
best possible compromise between low cost and high
quality.

One way to achieve such a goal is to perform the
evaluation of a given solution f by calculating the distance
between the vector composed of the individual measures fi
and the target-vector user made of ideal evaluations for
each objective [4]. Formally, such an evaluation method
can be described by:

1||

1

1

≥




 −= ∑

=

pfuserF
pN

i

p
ii (3)

0-7695-0762-X/00 $10.00 � 2000 IEEE

Thus, for p=1 we have the so-called Manhattan or
metropolitan distance, which actually consists of a simple
linear aggregation of the objectives combined with a target
solution [4]. With p=2, however, we obtain the more
commonly used Euclidean distance. The non-linearity
introduced by such an evaluation method prevents an
improvement for a performance fi from counteracting an
equivalent worsening of another measure fj. Effectively, the
quadratic form causes the solution to be more penalized for
a value fj far from the target value userj than it is benefited
for having another value fi close to its target useri. Thus, we
can see that now there is a “pressure to compromise” so
that it becomes harder for an unbalanced solution to be
considered superior to a more compromising one.

In reality, the greater the value used for p, the greater will
be the pressure exerted. In other words, larger values for p
will increase the penalty given to those solutions with
mediocre performance for an objective. Thus, priority will
be given to those solutions that do not blunder in any
aspect, even if they do not excel in any objective in
particular. Aside from that, for the extreme case when
p→∞, we obtain the technique known as minimax or
MinMax [4], in which the evaluation of a given solution
corresponds to the maximum distance of any of the n
objectives relative to its target, that is:

() nifuserF ii ≤≤−= 1||max (4)

This way, for a problem with two objectives the optimal
solution will correspond to the exact intersection of the
evaluation curves for each objective.

2.4 The Energy Minimization Method

The energy minimization method [6,7,8,9] attempts to
solve the main inconvenience of most scalar aggregation
techniques, which is the choice of the weights associated
with each objective. Additionally, this method also
incorporates the user’s specifications, which is not trivially
done with techniques that seek the Pareto-optimal set. The
method, described below, is designed for use within a
genetic algorithm. Its fundamental property is to adaptively
update the weights throughout the evolutionary process so
that greater priorities are constantly shifted to the objectives
less satisfied by the population of solutions in general.

First, the linear scalar aggregation equation (1) is
rewritten as follows:

∑
=

=
n

i
ii FnormwF

1

 (5)

Here, a normalized fitness vector is used, Fnorm. The
normalization is usually implemented by the following
equation:

i

i
i f

f
Fnorm = (6)

where the denominator represents the fitness average for
the population of solutions relative to objective i.

Based on the weight updating equation used in back-
propagation artificial neural networks [2], the following
formula was proposed for redefining the weight values:

tititi ekwkw ,2,11,).1.(.. αα −+=+ (7)

This equation uses an additional index t, which specifies a
particular generation of the evolutionary algorithm. Thus,
wi,t+1 is the weight value associated with objective i for the
following generation and it is based on the current weight
wi,t and an error measure ei,t. Here, k1 and k2 are
normalization constants, computed by a procedure which
will be described shortly. The central idea of this weight-
updating scheme is to assign larger weights to the
objectives with larger errors. The error measure includes
the user’s specification and is calculated in the following
manner:

i

tii
ti user

fuser
e ,

,

−
= (8)

Thus, the difference between the average performance
and the desired value specified by the user for objective i is
taken into consideration for the error computation at a
given time t. As such, the second term of equation (7)
guarantees that the fitness function defined by equation (5)
is dominated by those objectives with evaluations farthest
from the desired values.

The effect generated by the first portion of equation (7) is
analogous to the usage of momentum in the learning
procedure of artificial neural networks, since it introduces
memory to the system in a similar way. As happens in the
context of neural networks, the purpose of inserting this
term is to increase the system’s stability. In this case, the
inclusion of the previous weight value avoids drastic
changes in the equation’s outcome, which could make the
genetic algorithm oscillate excessively. The constant α
present in equation (7) is used to balance the two terms of
this equation appropriately and can be assigned any value
between 0 and 1.

The algorithm is initialized by choosing the starting
values for the weights. The sum of these weights is defined
by an integer value Sw0 defined by the user:

∑
=

=
n

i
iw wS

1
0,0 (9)

0-7695-0762-X/00 $10.00 � 2000 IEEE

The value of Sw0 is completely arbitrary and does not
influence the outcome of the system.

Finally, we can determine the values for the k1 and k2

normalization constants. The purpose of these constants is
to enable the definition of a measure of the system’s
convergence state based on the sum of the weights Sw,t for a
given time t. Establishing an analogy with hopfield neural
networks, the following scalar quantity is defined:

∑
=

=
n

i
iwE

1

2
 (10)

where E corresponds to the energy of the system. In fact,
without considering the first term of equation (7), each
weight wi,t is proportional to the corresponding error ei,t. If
that term is also to be taken into consideration, then it is
necessary that the sum of the weights be proportional to the
sum of the errors of the system at any given time t, that is:

∑
=

==
n

i
tetitw SkekS

1
,3,3, (11)

where:

0

0
3

e

w

S

S
k = (12)

where Se0 corresponds to the sum of the errors observed for
the first generation and k3 is proportionality constant that
takes into consideration the effect of the value chosen for
Sw0. For the sum of the weights to keep obeying the
aforementioned relation, the following values must be
assigned to the normalization constants:

te

tw

tw

tw

S

S
k

S

S
k

,

,
2

1,

,
1 =∴=

−

 (13)

It should be noted that the computation of Sw,t takes place
before the calculation of the weight values themselves.
Thus, the energy obtained by equation (10) is guaranteed to
yield a coherent measure of the state of the evolutionary
process. Therefore, the minimization of the system’s energy
actually corresponds to the satisfaction of multiple
objectives. [6,7,8,9]

3 Analysis of the Energy Minimization Method
and Proposed Modifications

3.1 Analysis of the Method’s Behavior

The energy minimization method’s main virtue is
undoubtedly its capacity to adapt itself to the reality it
faces. This way, a good diversity is always maintained in
the population throughout the evolutionary process. Indeed,

favoring less satisfied objectives at all times prevents any
particular generation from being entirely composed of
solutions that neglect a certain set of objectives so as to
excel in others. Thus, a better exploration of the search
space is performed, making the algorithm as a whole more
robust and efficient in comparison to the traditional scalar
aggregation method. Additionally, the inconvenient process
of choosing the set of weight values for each objective is
also avoided as was mentioned before.

On the other hand, whenever compromise solutions are
desired this method doesn’t necessarily converge to a
satisfactory result. In fact, the constant shifting of the
priorities of the objectives often produces a speciation of
the population, with groups of solutions specializing in the
satisfaction of different sets of objectives. Thus, every time
the weights are updated a different group of solutions (a
different species) begins to dominate the remainder of the
population. As such, it ends up that the best solution
yielded by the algorithm frequently oscillates between
different solutions that excel in different sets of objectives,
hardly ever converging to a final stable result. Obviously, if
there is an optimal solution that dominates all the others
then the algorithm will in principle converge towards it.

3.2 Proposed Modifications

The main purpose of the modifications proposed here is
to prevent the algorithm from oscillating, converging
instead to a definitive solution. Aside from that, it is desired
that the final result yielded by the algorithm be a balanced
compromise solution, with no particular objective being
excessively neglected.

To do so, the final fitness evaluation function described in
equation (5) will be modified. This equation originally
calculates the final result simply by computing the
weighted sum of the normalized evaluations Fnorm.
Instead, the new fitness measure will consider the distance
between the solution’s vector of evaluations and the target
vector of user-defined values for each objective (see section
2.3).

Thus, formally we rewrite equation (5) and combine it
with equation (3), obtaining:

1.

1

1

≥




= ∑

=

pewF
pN

i

p
ii (14)

where ei corresponds to the error of the solution’s
evaluation relative to its target value for objective i, and p
defines how the vector distance is measured, as seen in
section 2.3.

As such, by employing p=2 we define a solution’s final
fitness as the quadratic weighted sum of the errors of its
individual evaluations for each objective. Moreover, as

0-7695-0762-X/00 $10.00 � 2000 IEEE

previously discussed, by increasing the value of p we also
increase the “pressure to compromise” induced by the
algorithm (see section 2.3). Consequently, the speciation
tendency observed for the original method can be averted,
preventing the evolutionary process from excessively
oscillating between different species. It should also be
noted that, with this modified equation, the evolutionary
process will be driven more strongly towards a compromise
solution, as well as being prevented from oscillating wildly
(see section 2.3).

At this point, it should be noted that this fitness
evaluation is only coherent when the errors ei are
normalized so that they can be appropriately compared to
each other. Indeed, it must also be observed that a correct
normalization should consider each of the evaluations fi for
a given objective i relative to its search space. Thus, for
instance, the best possible evaluation for a particular
objective i could yield ei= 0, with the worst possible value
corresponding to ei = 1.

Unfortunately, in many cases this search space is not
known a priori. Thus, it is usually necessary to estimate it
during the evolutionary process itself and, in order to do
this, values like the best and worst evaluations found so far
(besti and worsti) could be utilized. Also, the average
evaluation avgi of the entire population could also be
employed to extract the notion of a “reasonable” evaluation
for the current stage of the evolution. Optionally, the target
values useri could also be used in order to achieve a more
controlled estimate of the search space, although these
values can somewhat distort the evolutionary process due
to their arbitrary nature.

Therefore, with all these observations in mind, the
following equation is proposed for error normalization:

ii

ii
i avgbest

fbest
e

−
−

= (15)

where besti corresponds to the best evaluation found so far
for objective i, while avgi corresponds to the average
evaluation obtained for the entire population relative to this
objective.

4 Experimental Results

In order to measure the impact of the proposed
modifications, the algorithm was tested in a complex
problem of electrical circuit evolution on which the energy
minimization method has already been previously applied.
[8]

4.1 Electrical Circuit Evolution Problem

Although constituting only a small part of the total area of
modern chips, analog circuitry is usually the limiting factor
of their overall performance [5]. The current trend towards
the achievement of low-power, low-area and high-speed
analog cells such as operational amplifiers may increase the
complexity of VLSI analog design, if hard specifications
have to be met.

The Miller OTA (Operational Transconductance
Amplifier) is a two-stage amplifier whose compensation
capacitance introduces the Miller effect, and presents low
output impedance for most of its frequency range [1,5]. The
pmos-npn topology is employed here because of its better
performance compared to the other ones, and is shown in
Fig. 1.

Iee1 Iee2

Iee1 = Iee2=1.52uA

D1 D2

Q2A Q2B

M1A=(37,8) M1B=(37,8)

Q5

Q3

Rb = 920k

M4D = (8,46)M4A = (7, 54)M4C M4B

M4C = (7,9) M4B = (37,13)

+- Cc=1.2p

RL CL

RL=100k
CL=10p

Fig. 1 – Miller OTA in BiCMOS technology: pmos-npn
topology

 We apply a genetic algorithm together with the multi-
objective strategy defined previously so as to optimize
performance for circuits of this kind. Throughout the
genetic algorithm, each circuit is simulated using small
signal and operating point analysis, and then has its
performance estimated by a number of measures, namely
gain, GBW (gain-bandwidth product), area, power
dissipation and phase margin. Therefore, these measures
actually correspond to the objectives of the optimization to
be performed, and ideal values for these can be specified in
order to drive the evolutionary process as desired.

The genetic algorithm manipulates the circuit
specifications through the chromosome representation. An
operational amplifier can be characterized by a list of real
numbers representing transistor sizes, biasing current, and,

0-7695-0762-X/00 $10.00 � 2000 IEEE

if it is the case, compensating capacitance. Each OpAmp
feature is represented in the chromosome integer string so
that each string element serves as a pointer to the actual
OpAmp feature value. This representation is illustrated in
Fig. 2.

…f1(W1) f2(L1) f3(W2) f4(L2) f5(W3) f6(L3) f7(IB) f8(CP) …

String (Chromosome or
genotype)

Sized
OpAmp

(W2, L2)

(W1, L1)

(W1, L1)

(W3, L3)

IB
CP

Fig. 2 – Representation of a sized OpAmp into the integer
string (chromosome) processed by the genetic algorithm

The functions fi shown in the figure above perform a
simple conversion, whose general expression is given by:

],[);1,...,1,0(

: 1
2

máxmín CCyNx

k
k

x
yf

∈−∈

+=ℜ→Ι
 (16)

In the above expression, y and x are the actual value taken
by the OpAmp feature and the value of the associated string
position respectively. While each string position can
assume N different integer values, each amplifier feature is
constrained to values between Cmin and Cmax. These
constraints are set according to the referred feature and to
the technology being used. For instance, if the feature is a
particular transistor width, Cmin and Cmax will stand for the
minimum width allowed by the technology, Wmin, and the
maximum width chosen by the user, Wmax. The constants k1
and k2 are set in order to make the conversion between x
and y. A complete description of the problem can be found
in [9].

The genetic algorithm employed here was based on the

implementation used in [9], with the inclusion of the
aforementioned changes proposed for the method.

The following parameters were used for the experiments
presented here:

General Parameters

Population: 40
Generations: 300
Rounds: 3
Crossover: 70%
Mutation: 2,5%
Selection Pressure: 0,75
Elitism: Yes

Target Values (useri)

Gain: 100 db
GBW: 1000000 kHz
Dissipation: 10µW
Phase Margin: 60o

Area: 3000µm2

Table 1 – Parameters used for all experiments.

Performance statistics (i.e., gain, GBW, etc.) obtained for
human made design can be found in [5].

Tests were performed so as to compare the original
algorithm with its modified version, employing Euclidean
distances (p=2). The results obtained were the following:

Fig. 3 – Energy graph for original and modified methods

The energy value displayed here is defined by equation
(10) and represents how close to the ideal solution the
system is (zero energy indicates that all the objectives have
achieved the desired values). It can be readily seen here that

0-7695-0762-X/00 $10.00 � 2000 IEEE

the modified version of the algorithm exhibits an energy
level considerably lower than the original one. Also worthy
of note is the fact that the modified algorithm avoids some
of the excessive oscillations displayed by the original
version.

Indeed, the overall evaluation is that the modified
algorithm performs better than the original one. Of the five
objectives, two of them were substantially better optimized
by the modified version (area and dissipation) and one
presented a comparable result for both versions (gain).
Another objective achieved a better performance under the
original version (GBW) and the last one wasn’t
satisfactorily optimized by any of the algorithms (phase
margin).
All in all, it is possible to perceive that in general the
modified algorithm provided a greater stability to the
system, with fewer oscillations occurring throughout the
evolutionary process. The graphs for these results were the
following:

Fig. 4 – Optimization observed for each objective under the
original and modified methods

5 Conclusions

After analyzing the experimental results, it can be
concluded that the proposed modifications had a positive
effect on the algorithm as a whole. The overall performance
of the method improved and, more importantly, the
excessive oscillations observed for the original version
were reduced. Such oscillations can make a genetic
algorithm reach a final solution that is significantly inferior
to others found before, even after numerous generations.
Therefore, the stability improvement provided by the

0-7695-0762-X/00 $10.00 � 2000 IEEE

alterations should indeed be considered a very interesting
result.

On the other hand, subsequent simulations proved that the
modified version of the algorithm has a significant
tendency to favor objectives that are to be minimized
instead of maximized (area and power dissipation for the
experiment presented in the previous section). In fact, the
cause of this behavior can be traced to equation (8), which
defines the average error calculation for each objective
during the weight updating procedure. Here, for
maximization objectives, the normalizing denominator useri
corresponds roughly to the greatest value expected for that
objective. However, when minimization is desired, this
denominator corresponds to the smallest possible value and
thus the error computed in such cases is much larger in
general. As such, these larger errors end up driving the
evolutionary process so as to favor the minimization
objectives over the other ones. This explanation can indeed
justify the modified method’s poor results for GBW and
average results for gain in the experiment presented
previously. Nevertheless, it cannot account for the
unsatisfactory performance observed for the phase margin
objective.

In reality, a simple workaround for this problem would be
to modify equation (8) so that, for objectives that are to be
minimized, the average error would be given by:

ti

tii
ti f

fuser
e

,

,
,

−
= (17)

where the average fitness tif , for objective i at time t is used

as the denominator instead of the target value useri for that
objective. Preliminary tests show that the overall behavior
of the method does become more balanced after this
modification.

In fact, special attention must be given to all functions
involving normalization. Not only can equation (8) be
modified for the reasons already discussed, but also can
equation (15), by which the individual errors ei are
computed during each evaluation. Such functions are
crucial for the adequate comparison of the different
objectives and the method will surely profit from a more
precise normalization.

Aside from that, other modifications can be explored so
as to improve the algorithm’s performance even more. In
particular, it might be interesting to replace equation (14)
for computing the final fitness evaluation by the following
function:

() 1.

1

1

≥




= ∑

=

pewF
pN

i

p
ii (18)

so that both the error ei and the weight wi are taken to the
power of p. Additionally, the usage of other values for p
can also be explored.

0-7695-0762-X/00 $10.00 � 2000 IEEE

References

[1] Allen, P.E., Holberg, D. R., “CMOS Analog Circuit Design”,
Holt, Rinehart and Winston editors, 1987.

[2] Churchland, P.S., Sejnowski, T.J., "The Computational
Brain", MIT Press, 1992.

[3] Fonseca, Carlos M., Fleming, Peter J., “An Overview of
Evolutionary Algorithms in Multiobjective Optimization”,
Evolutionary Computation, Volume 3, Number 1, pp.1-16,
MIT Press, Spring, 1995.

[4] Horn, Jeffrey, “Multicriterion Decision Making”, in
Handbook of Evolutionary Computation, IOP Publishing Ltd
and Oxford University Press, F1.9, 1997.

[5] Laker, K.R., Sansen, W., "Design of Analog Integrated
Circuits and Systems", McGraw-Hill Inc. (eds), 1994.

[6] Zebulum, R.S., Pacheco, M.A., Vellasco, M., ”A Multi-
Objective Optimisation Methodology Applied to the
Synthesis of Low-Power Operational Amplifiers”,
proceedings of the XIII International Conference in
Microelectronics and Packaging, Vol. 1, Ivan Jorge Chueiri
and Carlos Alberto dos Reis Filho (Eds), pp. 264-271,
Curitiba, Brasil, August, 1998.

[7] Zebulum, R.S., Pacheco, M.A., Vellasco, M., “Analog
Circuits Evolution in Extrinsic and Intrinsic Modes”, in the
Proceedings of the Second International Conference on
Evolvable Systems: From Biology to Hardware (ICES98),
Lausanne, Switzerland, September, 23-26, 1998. M.Sipper,
D.Mange and A. Pérez-Uribe (editors), vol. 1478, pp. 154-
165, LNCS, Springer-Verlag, 1998.

[8] Zebulum, R.S., Pacheco, M. A., Vellasco, M., “Variable
Length Representation in Evolutionary Electronics”,
Evolutionary Computation, Volume 8, Number 1, pp.93-120,
MIT Press, Spring, 2000.

[9] Zebulum, R.S., Pacheco, M.A., Vellasco, M., “A Novel
Multi-Objective Optimisation Methodology Applied to
Synthesis of CMOS Operational Amplifiers", Journal of
Solid-State Devices and Circuits, Microelectronics Society -
SBMICRO, 2000.

0-7695-0762-X/00 $10.00 � 2000 IEEE

