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Abstract 

This paper reviews the multiobjective fitness evaluation 
method called Energy Minimization [6,7,8] and presents an 
analysis of the method’s behavior when used in a genetic 
algorithm applied to the synthesis of single-ended Miller 
operational amplifiers. A modified model is proposed in 
order to overcome some of the weaknesses pointed out and 
improve the model’s performance. Finally, experimental 
results are presented and analyzed, leading to an overall 
evaluation of the benefits provided by the proposed 
modifications. 

1 Introduction 

In real-world problems, particularly in evolutionary 
electronics, it is often necessary to simultaneously optimize 
multiple performance measures, or multiple objectives. 
Unfortunately, some inconveniences frequently arise when 

known optimization techniques, both conventional and 
non-conventional, are applied to multiobjective problems. 
Indeed, these techniques are in general designed originally 
for single-objective problems, that is, problems in which 
the levels of optimality of the solutions can be given by the 
ordering of one single performance measure (e.g., a scalar 
value). The conventional gradient descent technique and 
also the widely used simulated annealing and genetic 
algorithm techniques are all examples of these, the latter 
one being the subject of this paper. 

The actual problem is that, when multiple performance 
measures are necessary to rate a solution’s optimality, there 
is no straightforward procedure to appropriately compare 
two distinct solutions. Thus, it becomes necessary to define 
a way in which the different evaluations can be combined 
so as to provide a correct decision about which solution is 
better, and how much better it is. Indeed, without a suitable 
workaround to this obstacle, none of the aforementioned 
techniques can work efficiently in multiobjective 
optimization problems. 
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This article includes three additional sections. Section 2 
reviews some multiobjective optimization techniques with 
emphasis on the energy minimization method, focus of this 
work. In section 3, we discuss the energy minimization 
method’s behavior and propose modifications. Section 4 
presents experimental results and finally in section 5 final 
considerations are discussed. 

2 Review of Multiobjective Optimization 
Techniques 

2.1 Linear Scalar Aggregation 

The linear scalar-aggregative approach [3,4] corresponds 
to the most simple and direct method for combining the 
multiple performance measures. It consists simply of a 
weighted sum of the individual measures for each objective, 
with the final fitness evaluation F for a given solution being 
thus given by: 

∑
=

=
n

i
ii fwF
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where fi corresponds to the fitness evaluation relative to 
objective i, and wi corresponds to the respective weight, for 
a total of n objectives. 

This method has the important advantage of being very 
easy to implement, aside from being extremely efficient 
computationally speaking. However, it also has a number 
of problems, one of the most serious of them being the 
great difficulty in choosing appropriate weights wi for a 
given problem.  

Indeed, for certain problems it can be considered that the 
different objectives all have the same importance and, in 
such cases, it becomes natural to choose equal values for 
the weights. However, in most situations the optimization 
of a particular objective may be more important than 
another one, or it can even be more complicated to define 
which objective has greater priority. Thus, in practice, the 
application of this method to a given problem almost 
always ends up in a costly and tiresome fine-tuning 
process, in which the algorithm is repeatedly tested with 
different sets of weights until satisfactory results are 
obtained. 

2.2 Dominance and the Pareto-Optimal Set 

The problem of comparing two different solutions may be 
partially solved by the concept of dominance. This concept 
states that a given solution v dominates another solution u 
only if for no objective the evaluation of v is worse than 
that of u. Moreover, for at least one objective the solution v 
must present a better evaluation than that of u [4]. Thus, 
formally, this dominance of v over u can be defined by:  
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where a hypothetical maximization problem of n objectives 
is considered, with vi and ui corresponding respectively to 
the evaluations of solutions v and u for objective i. 

Obviously, we have that in particular a solution v 
dominates another solution u when it presents superior 
evaluations for all objectives. Aside from that, if a given 
solution is not dominated by any other, then that solution is 
said to belong to the Pareto-optimal set. Therefore, this set 
actually corresponds to all those solutions that, in the 
absence of any other information about the problem, cannot 
be surely stated as being inferior to anything: any other 
solution will always have an inferior evaluation for at least 
one objective. 

Indeed, there are several optimization methods for 
multiobjective problems that seek the Pareto-optimal set, or 
Pareto Frontier. After all, it can be readily seen that the 
optimal solution to the problem will surely belong to this 
set, whatever solution that is. On the other hand, these 
techniques are in general quite costly computationally 
speaking, aside from the fact that they only partially solve 
the problem at hand: after all, of all solutions in the optimal 
set, which is the most desirable one? 

2.3 Compromise Solutions and Distance-to-Target 
Techniques 

In practice, for many real-world problems a good solution 
must necessarily satisfy all the objectives at hand to a 
minimum extent. In these situations, it is not considered 
acceptable for a given solution to present a spectacular 
performance for one objective at the same time it is a 
complete blunder for another. As an example of this, we 
can mention the typical problem of optimizing a product so 
as to minimize its cost and maximize its quality. In such a 
scenario, it is simply unacceptable to find a solution of 
extremely low cost but whose quality is mediocre. In other 
words, it is necessary to find a balanced solution, with the 
best possible compromise between low cost and high 
quality. 

One way to achieve such a goal is to perform the 
evaluation of a given solution f by calculating the distance 
between the vector composed of the individual measures fi 
and the target-vector user made of ideal evaluations for 
each objective [4]. Formally, such an evaluation method 
can be described by: 
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Thus, for p=1 we have the so-called Manhattan or 
metropolitan distance, which actually consists of a simple 
linear aggregation of the objectives combined with a target 
solution [4]. With p=2, however, we obtain the more 
commonly used Euclidean distance. The non-linearity 
introduced by such an evaluation method prevents an 
improvement for a performance fi from counteracting an 
equivalent worsening of another measure fj. Effectively, the 
quadratic form causes the solution to be more penalized for 
a value fj far from the target value userj than it is benefited 
for having another value fi close to its target useri. Thus, we 
can see that now there is a “pressure to compromise” so 
that it becomes harder for an unbalanced solution to be 
considered superior to a more compromising one. 

In reality, the greater the value used for p, the greater will 
be the pressure exerted. In other words, larger values for p 
will increase the penalty given to those solutions with 
mediocre performance for an objective. Thus, priority will 
be given to those solutions that do not blunder in any 
aspect, even if they do not excel in any objective in 
particular. Aside from that, for the extreme case when 
p→∞, we obtain the technique known as minimax or 
MinMax [4], in which the evaluation of a given solution 
corresponds to the maximum distance of any of the n 
objectives relative to its target, that is:  

( ) nifuserF ii ≤≤−= 1||max  (4) 

This way, for a problem with two objectives the optimal 
solution will correspond to the exact intersection of the 
evaluation curves for each objective.  

2.4 The Energy Minimization Method 

The energy minimization method [6,7,8,9] attempts to 
solve the main inconvenience of most scalar aggregation 
techniques, which is the choice of the weights associated 
with each objective. Additionally, this method also 
incorporates the user’s specifications, which is not trivially 
done with techniques that seek the Pareto-optimal set. The 
method, described below, is designed for use within a 
genetic algorithm. Its fundamental property is to adaptively 
update the weights throughout the evolutionary process so 
that greater priorities are constantly shifted to the objectives 
less satisfied by the population of solutions in general.  

First, the linear scalar aggregation equation (1) is 
rewritten as follows:  

∑
=

=
n

i
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 (5) 

Here, a normalized fitness vector is used, Fnorm. The 
normalization is usually implemented by the following 
equation:  

i

i
i f

f
Fnorm =  (6) 

where the denominator represents the fitness average for 
the population of solutions relative to objective i.  

Based on the weight updating equation used in back-
propagation artificial neural networks [2], the following 
formula was proposed for redefining the weight values:  

tititi ekwkw ,2,11, ).1.(.. αα −+=+  (7) 

This equation uses an additional index t, which specifies a 
particular generation of the evolutionary algorithm. Thus, 
wi,t+1 is the weight value associated with objective i for the 
following generation and it is based on the current weight 
wi,t and an error measure ei,t. Here, k1 and k2 are 
normalization constants, computed by a procedure which 
will be described shortly. The central idea of this weight-
updating scheme is to assign larger weights to the 
objectives with larger errors. The error measure includes 
the user’s specification and is calculated in the following 
manner:  

i
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Thus, the difference between the average performance 
and the desired value specified by the user for objective i is 
taken into consideration for the error computation at a 
given time t. As such, the second term of equation (7) 
guarantees that the fitness function defined by equation (5) 
is dominated by those objectives with evaluations farthest 
from the desired values.  

The effect generated by the first portion of equation (7) is 
analogous to the usage of momentum in the learning 
procedure of artificial neural networks, since it introduces 
memory to the system in a similar way. As happens in the 
context of neural networks, the purpose of inserting this 
term is to increase the system’s stability. In this case, the 
inclusion of the previous weight value avoids drastic 
changes in the equation’s outcome, which could make the 
genetic algorithm oscillate excessively. The constant α 
present in equation (7) is used to balance the two terms of 
this equation appropriately and can be assigned any value 
between 0 and 1.  

The algorithm is initialized by choosing the starting 
values for the weights. The sum of these weights is defined 
by an integer value Sw0 defined by the user:  

∑
=

=
n

i
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The value of Sw0 is completely arbitrary and does not 
influence the outcome of the system.  

Finally, we can determine the values for the k1 and k2 

normalization constants. The purpose of these constants is 
to enable the definition of a measure of the system’s 
convergence state based on the sum of the weights Sw,t for a 
given time t. Establishing an analogy with hopfield neural 
networks, the following scalar quantity is defined:  

∑
=

=
n

i
iwE

1

2
 (10) 

where E corresponds to the energy of the system. In fact, 
without considering the first term of equation (7), each 
weight wi,t is proportional to the corresponding error ei,t. If 
that term is also to be taken into consideration, then it is 
necessary that the sum of the weights be proportional to the 
sum of the errors of the system at any given time t, that is:  
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where:  
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where Se0 corresponds to the sum of the errors observed for 
the first generation and k3 is proportionality constant that 
takes into consideration the effect of the value chosen for 
Sw0. For the sum of the weights to keep obeying the 
aforementioned relation, the following values must be 
assigned to the normalization constants:  
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It should be noted that the computation of Sw,t takes place 
before the calculation of the weight values themselves. 
Thus, the energy obtained by equation (10) is guaranteed to 
yield a coherent measure of the state of the evolutionary 
process. Therefore, the minimization of the system’s energy 
actually corresponds to the satisfaction of multiple 
objectives. [6,7,8,9]  

3 Analysis of the Energy Minimization Method 
and Proposed Modifications 

3.1 Analysis of the Method’s Behavior 

The energy minimization method’s main virtue is 
undoubtedly its capacity to adapt itself to the reality it 
faces. This way, a good diversity is always maintained in 
the population throughout the evolutionary process. Indeed, 

favoring less satisfied objectives at all times prevents any 
particular generation from being entirely composed of 
solutions that neglect a certain set of objectives so as to 
excel in others. Thus, a better exploration of the search 
space is performed, making the algorithm as a whole more 
robust and efficient in comparison to the traditional scalar 
aggregation method. Additionally, the inconvenient process 
of choosing the set of weight values for each objective is 
also avoided as was mentioned before.  

On the other hand, whenever compromise solutions are 
desired this method doesn’t necessarily converge to a 
satisfactory result. In fact, the constant shifting of the 
priorities of the objectives often produces a speciation of 
the population, with groups of solutions specializing in the 
satisfaction of different sets of objectives. Thus, every time 
the weights are updated a different group of solutions (a 
different species) begins to dominate the remainder of the 
population. As such, it ends up that the best solution 
yielded by the algorithm frequently oscillates between 
different solutions that excel in different sets of objectives, 
hardly ever converging to a final stable result. Obviously, if 
there is an optimal solution that dominates all the others 
then the algorithm will in principle converge towards it.  

3.2 Proposed Modifications 

The main purpose of the modifications proposed here is 
to prevent the algorithm from oscillating, converging 
instead to a definitive solution. Aside from that, it is desired 
that the final result yielded by the algorithm be a balanced 
compromise solution, with no particular objective being 
excessively neglected.  

To do so, the final fitness evaluation function described in 
equation (5) will be modified. This equation originally 
calculates the final result simply by computing the 
weighted sum of the normalized evaluations Fnorm. 
Instead, the new fitness measure will consider the distance 
between the solution’s vector of evaluations and the target 
vector of user-defined values for each objective (see section 
2.3).  

Thus, formally we rewrite equation (5) and combine it 
with equation (3), obtaining:  
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where ei corresponds to the error of the solution’s 
evaluation relative to its target value for objective i, and p 
defines how the vector distance is measured, as seen in 
section 2.3.  

As such, by employing p=2 we define a solution’s final 
fitness as the quadratic weighted sum of the errors of its 
individual evaluations for each objective. Moreover, as 
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previously discussed, by increasing the value of p we also 
increase the “pressure to compromise” induced by the 
algorithm (see section 2.3). Consequently, the speciation 
tendency observed for the original method can be averted, 
preventing the evolutionary process from excessively 
oscillating between different species. It should also be 
noted that, with this modified equation, the evolutionary 
process will be driven more strongly towards a compromise 
solution, as well as being prevented from oscillating wildly 
(see section 2.3). 

At this point, it should be noted that this fitness 
evaluation is only coherent when the errors ei are 
normalized so that they can be appropriately compared to 
each other. Indeed, it must also be observed that a correct 
normalization should consider each of the evaluations fi for 
a given objective i relative to its search space. Thus, for 
instance, the best possible evaluation for a particular 
objective i could yield ei= 0, with the worst possible value 
corresponding to ei = 1.  

Unfortunately, in many cases this search space is not 
known a priori. Thus, it is usually necessary to estimate it 
during the evolutionary process itself and, in order to do 
this, values like the best and worst evaluations found so far 
(besti and worsti) could be utilized. Also, the average 
evaluation avgi of the entire population could also be 
employed to extract the notion of a “reasonable” evaluation 
for the current stage of the evolution. Optionally, the target 
values useri could also be used in order to achieve a more 
controlled estimate of the search space, although these 
values can somewhat distort the evolutionary process due 
to their arbitrary nature.  

Therefore, with all these observations in mind, the 
following equation is proposed for error normalization:  

ii

ii
i avgbest

fbest
e

−
−

=  (15) 

where besti corresponds to the best evaluation found so far 
for objective i, while avgi corresponds to the average 
evaluation obtained for the entire population relative to this 
objective.  

4 Experimental Results 

In order to measure the impact of the proposed 
modifications, the algorithm was tested in a complex 
problem of electrical circuit evolution on which the energy 
minimization method has already been previously applied. 
[8] 

4.1 Electrical Circuit Evolution Problem 

Although constituting only a small part of the total area of 
modern chips, analog circuitry is usually the limiting factor 
of their overall performance [5]. The current trend towards 
the achievement of low-power, low-area and high-speed 
analog cells such as operational amplifiers may increase the 
complexity of VLSI analog design, if hard specifications 
have to be met. 

The Miller OTA (Operational Transconductance 
Amplifier) is a two-stage amplifier whose compensation 
capacitance introduces the Miller effect, and presents low 
output impedance for most of its frequency range [1,5]. The 
pmos-npn topology is employed here because of its better 
performance compared to the other ones, and is shown in 
Fig. 1. 

 

Iee1     Iee2

Iee1 = Iee2=1.52uA

D1    D2

Q2A Q2B

M1A=(37,8) M1B=(37,8)

Q5

Q3

Rb = 920k

M4D = (8,46)M4A = (7, 54)M4C  M4B

M4C = (7,9) M4B = (37,13)

+- Cc=1.2p

RL      CL

RL=100k
CL=10p

 

Fig. 1 – Miller OTA in BiCMOS technology: pmos-npn 
topology 

 We apply a genetic algorithm together with the multi-
objective strategy defined previously so as to optimize 
performance for circuits of this kind. Throughout the 
genetic algorithm, each circuit is simulated using small 
signal and operating point analysis, and then has its 
performance estimated by a number of measures, namely 
gain, GBW (gain-bandwidth product), area, power 
dissipation and phase margin. Therefore, these measures 
actually correspond to the objectives of the optimization to 
be performed, and ideal values for these can be specified in 
order to drive the evolutionary process as desired. 

The genetic algorithm manipulates the circuit 
specifications through the chromosome representation. An 
operational amplifier can be characterized by a list of real 
numbers representing transistor sizes, biasing current, and, 

0-7695-0762-X/00 $10.00 � 2000 IEEE 



if it is the case, compensating capacitance. Each OpAmp 
feature is represented in the chromosome integer string so 
that each string element serves as a pointer to the actual 
OpAmp feature value. This representation is illustrated in 
Fig. 2. 

…f1(W1)   f2(L1)   f3(W2)   f4(L2)   f5(W3)   f6(L3)   f7(IB)   f8(CP) …  

String (Chromosome or 
genotype )   

Sized 
OpAmp 

(W2, L2) 

(W1, L1) 

(W1, L1) 

(W3, L3) 

IB 
CP 

 

Fig. 2 – Representation of a sized OpAmp into the integer 
string  (chromosome) processed by the genetic algorithm 

The functions fi shown in the figure above perform a 
simple conversion, whose general expression is given by: 

],[);1,...,1,0(

: 1
2

máxmín CCyNx

k
k

x
yf

∈−∈

+=ℜ→Ι
 (16) 

In the above expression, y and x are the actual value taken 
by the OpAmp feature and the value of the associated string 
position respectively. While each string position can 
assume N different integer values, each amplifier feature is 
constrained to values between Cmin and Cmax. These 
constraints are set according to the referred feature and to 
the technology being used. For instance, if the feature is a 
particular transistor width, Cmin and Cmax will stand for the 
minimum width allowed by the technology, Wmin, and the 
maximum width chosen by the user, Wmax. The constants k1 
and k2 are set in order to make the conversion between x 
and y. A complete description of the problem can be found 
in [9]. 

 
The genetic algorithm employed here was based on the 

implementation used in [9], with the inclusion of the 
aforementioned changes proposed for the method.  

The following parameters were used for the experiments 
presented here:  

 

General Parameters 

Population: 40 
Generations: 300 
Rounds: 3 
Crossover: 70% 
Mutation: 2,5% 
Selection Pressure: 0,75 
Elitism: Yes 

 

Target Values (useri) 

Gain: 100 db 
GBW: 1000000 kHz 
Dissipation: 10µW 
Phase Margin: 60o 

Area: 3000µm2 

Table 1 – Parameters used for all experiments. 

Performance statistics (i.e., gain, GBW, etc.) obtained for 
human made design can be found in [5]. 

Tests were performed so as to compare the original 
algorithm with its modified version, employing Euclidean 
distances (p=2). The results obtained were the following:  

 

 

Fig. 3 – Energy graph for original and modified methods 

The energy value displayed here is defined by equation 
(10) and represents how close to the ideal solution the 
system is (zero energy indicates that all the objectives have 
achieved the desired values). It can be readily seen here that 
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the modified version of the algorithm exhibits an energy 
level considerably lower than the original one. Also worthy 
of note is the fact that the modified algorithm avoids some 
of the excessive oscillations displayed by the original 
version.  

Indeed, the overall evaluation is that the modified 
algorithm performs better than the original one. Of the five 
objectives, two of them were substantially better optimized 
by the modified version (area and dissipation) and one 
presented a comparable result for both versions (gain). 
Another objective achieved a better performance under the 
original version (GBW) and the last one wasn’t 
satisfactorily optimized by any of the algorithms (phase 
margin).  
All in all, it is possible to perceive that in general the 
modified algorithm provided a greater stability to the 
system, with fewer oscillations occurring throughout the 
evolutionary process. The graphs for these results were the 
following:  

 

 

 

 

 

Fig. 4 – Optimization observed for each objective under the 
original and modified methods 

5 Conclusions 

After analyzing the experimental results, it can be 
concluded that the proposed modifications had a positive 
effect on the algorithm as a whole. The overall performance 
of the method improved and, more importantly, the 
excessive oscillations observed for the original version 
were reduced. Such oscillations can make a genetic 
algorithm reach a final solution that is significantly inferior 
to others found before, even after numerous generations. 
Therefore, the stability improvement provided by the 
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alterations should indeed be considered a very interesting 
result.  

On the other hand, subsequent simulations proved that the 
modified version of the algorithm has a significant 
tendency to favor objectives that are to be minimized 
instead of maximized (area and power dissipation for the 
experiment presented in the previous section). In fact, the 
cause of this behavior can be traced to equation (8), which 
defines the average error calculation for each objective 
during the weight updating procedure. Here, for 
maximization objectives, the normalizing denominator useri 
corresponds roughly to the greatest value expected for that 
objective. However, when minimization is desired, this 
denominator corresponds to the smallest possible value and 
thus the error computed in such cases is much larger in 
general. As such, these larger errors end up driving the 
evolutionary process so as to favor the minimization 
objectives over the other ones. This explanation can indeed 
justify the modified method’s poor results for GBW and 
average results for gain in the experiment presented 
previously. Nevertheless, it cannot account for the 
unsatisfactory performance observed for the phase margin 
objective. 

In reality, a simple workaround for this problem would be 
to modify equation (8) so that, for objectives that are to be 
minimized, the average error would be given by: 

ti

tii
ti f

fuser
e

,

,
,

−
=  (17) 

where the average fitness tif , for objective i at time t is used 

as the denominator instead of the target value useri for that 
objective. Preliminary tests show that the overall behavior 
of the method does become more balanced after this 
modification. 

In fact, special attention must be given to all functions 
involving normalization. Not only can equation (8) be 
modified for the reasons already discussed, but also can 
equation (15), by which the individual errors ei are 
computed during each evaluation. Such functions are 
crucial for the adequate comparison of the different 
objectives and the method will surely profit from a more 
precise normalization. 

Aside from that, other modifications can be explored so 
as to improve the algorithm’s performance even more. In 
particular, it might be interesting to replace equation (14) 
for computing the final fitness evaluation by the following 
function: 

( ) 1.
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so that both the error ei and the weight wi are taken to the 
power of p. Additionally, the usage of other values for p 
can also be explored. 
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