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Abstract. The design of large scale water distribution systems is a very
difficult optimisation problem which invariably requires the use of time-
expensive simulations within the fitness function. The need to accelerate
optimisation for such problems has not so far been seriously tackled.
However, this is a very important issue, since as MOEAs become more
and more recognised as the ‘industry standard’ technique for water sys-
tem design, the demands placed on such systems (larger and larger water
networks) will quickly meet with problems of scaleup. Meanwhile, LEM
(Learnable Evolution Model’) has appeared in the Machine Learning lit-
erature, and provides a general approach to integrating machine learning
into evolutionary search. Published results using LEM show very great
promise in terms of finding near-optimal solutions with significantly re-
duced numbers of evaluations. Here we introduce LEMMO (Learnable
Evolution Model for Multi-Objective optimization), which is a multi-
objective adaptation of LEM, and we apply it to certain problems com-
monly used as benchmarks in the water systems community. Compared
with NSGA-II, we find that LEMMO both significantly improves per-
formance, and significantly reduces the number of evaluations needed
to reach a given target. We conclude that the general approach used in
LEMMO is a promising direction for meeting the scale-up challenges in
multiobjective water system design.

1 Introduction

Fast optimization (in terms of using as few fitness evaluations as possible) is
more and more essential when faced with real-world problems in which each fit-
ness evaluation involves running an time-expensive simulation. However, there
is of course a compromise between speeding up the optimization method, and
ensuring good quality in the obtained solutions (see figure 1). One area in which
this issue is paramount is in the design of large scale water distribution net-
works. This area contains various difficult and complex optimisation problems
which invariably requires the use of time-expensive simulations within the fitness



function. These problems are typically multi-objective (often trading off finan-
cial cost against requirements for pressure, speed of flow and other aspects of
the required design), and there is an increasing body of published research which
addresses such problems, e.g.: [2,26,9,23,6,4,7,1] However, the need to accel-
erate optimisation for such problems has not so far been seriously tackled. This
is presumably because the problems involved are those of design, and sufficient
time often exists to allow long optimisation runs before a final design is to be
scrutinised and approved. However, as the quality of MOEA approaches causes
them to be considered for ever larger problems, the time taken to find good
solutions to such larger problems (e.g. a water design network with thousands of
pumps, which is not uncommon) may turn out to be unacceptable with existing
methods.

In this article, we address this scale-up problem by investigating a method
based on the Learnable Evolution Model (LEM) [16,17], which has appeared
in recent years in the machine learning literature, but has so far been very
little explored on real problems. The idea, which involves combining machine
learning with evolutionary search, is a very generalised notion of which certain
current trends in evolutionary computation (such as Estimation of Distribution
Algorithms [15]) can be seen as specific instances. In particular, results to date
on benchmark function optimisation problems show that LEM can save very
significantly on the number of fitness evaluations needed to reach a certain target
fitness. Our adaptation of this method to multiobjective optimisation, and in
particular its application to water network design problems, is investigated here.

The remainder of the article is set out as follows. In section 2 we describe
LEM and LEMMO (our version of this method). In section 3 we describe water
systems design optimisation problems in general, and present the benchmark
problems we use and briefly describe the associated fitness function simulator. In
section 4, we describe the implementation of our genetic algorithm, the different
variants of LEMMO and the metrics we use. Section 5 presents results from
our LEMMO method, compared against NSGA-II (a well-known high-quality
MOEA). Some concluding discussion is provided in section 6.

2 LEMMO

There are several publications that investigate the hybridisation of machine
learning and evolutionary algorithms, e.g. Sebag [29,27,28,10-12], while some
works concentrate on statistical learning integrated within an EA [21,15]. These
and similar studies so far have concentrated on binary encodings and have rarely
strayed from single-objective optimisation. However, a recent highly general
framework for integrating machine learning and evolutionary search was pro-
posed by Michalski, which we describe below.

2.1 LEM

The Learnable Evolution Model (LEM) [16,17] integrates a symbolic learning
component within evolutionary search; it seeks out rules (or other predictive
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Fig. 1. Partition of the potential solutions.

models) explaining the differences between the better and worse performers in
the population, and generates new individuals based on the templates specified
in these rules. The LEM methodology has proven able to significantly improve
efficiency on a variety of test problems. It is easy to describe the general shape of
LEM. Given a machine learning method, and an EA, LEM consists of Evolution
phases interrupted by Learning phases. During an Evolution phase, a normal EA
is running. For the purposes of LEM, we can regard the result of one of these
phases to be a collection of individuals with their associated fitnesses (i.e. all
or a subset of those visited by the EA). During a Learning phase, this result of
the most recent Fvolution phase is used as training data by a machine learning
method, which then learns a model which can discriminate between good and bad
solutions. The details are highly general and there is as yet no theory concerning
the best way to do this; however, in LEM work so far, a rule-induction method is
used to learn a set of rules which are able to predict whether a genome’s fitness
is above a given threshold (a positive rule), and a similar set of rules is learned
which capture bad solutions, whose fitness is therefore predicted to lie below a
given threshold. These rules are then made use of in the generation of an initial
population for the next evolution phase, and so it repeats. A particular instanti-
ation of a LEM method involves deciding on what machine learning method to
use, precisely how to use the rules to help generate the initial population of the
next Fwvolution phase, and deciding when to switch between phases.

2.2 Adaptation to Multi-Objective genetic algorithm

Our framework for incorporating LEM into MO search is described next. We
first note that our framework can be used with any MO algorithm. The only
requirement is that the MO algorithm maintains an up-to-date Pareto set after
each generation.



We have designed LEMMO (Learnable Evolution Model for Multiobjective Op-
timization), which is designed to seek rules which discriminate between good
and bad solutions from the multiobjective viewpoint. In LEM, this discrimina-
tion is based purely on thresholds associated with a single-objective fitness; the
class of good solutions is simply called good, and the class of poor solutions is
simply termed bad. In LEMMO, there are various possible ways to do this, and
our Experiments section investigates some of these. In one method, for example,
we only use individuals on the current approximation to the Pareto front as the
good set, and individuals of rank three or below (in the non-dominated sorting
sense) as the bad set; section 4 provides details of the different variants studied
here.

The rules learned are then used to help create (and/or filter) new individuals,
by seeking solutions that match the positive rules and don’t match the negative
rules. There are several ways to design and apply such a mechanism, and part of
our ongoing research is to find the ideal ways of doing this for a range of water
system design problems.

LEMMO is designed to use any machine learning method, but particularly
attunded to using a rule induction algorithm, in order to produce rules to create
new individuals. LEM publications so far have used the AQ learning algorithm.
Although existing implementations, such as AQ11 [18] and AQ15 [19] handle
noise with pre and post-processing techniques, the basic AQ algorithm heav-
ily depends on specific training examples during search (the algorithm actually
employs a beam search). Rather than using a sophisticated version of AQ, we
decided in these initial experiments to use a rule induction algorithm with which
we are more familiar, and which does not suffer from the lack of robustness to
specific training examples as badly as basic AQ; we therefore used the well-
known C4.5 decision tree induction algorithm [22], combined with ‘C4.5rules’
(which extracts rules from the resulting tree), which is provided with the C4.5
code distribution. An example of a rule generated in our application is given
figure 2. The features in a rule (A3, A7 etc ...) refer to specific pipe connections
in a water network, and the choices for such a feature are potential diameters
for the pipe in question (see next section).

After learning a set of rules in the Learning stage of LEMMO, we gener-
ate several new matching individuals for each rule that is of the class good
(called a positive Tule). For example, an individual which matches the schema
FRRRAk Rk PRk R* will match rule R3. Typically, only a few parts of the
genotype are ‘fixed’ by a rule; the rest of the genotype is (in this study) filled
in via one-point crossover of an arbitrary pair of selected parents, ensuring that
the parts fixed by the rule are protected. Following this. we verify that the new
generated individuals do not match any negative rules, repairing any individual
which does. Figure 3 shows the entire process.



Fig. 2. Example of produced rules by C4. and C4.5rules for continuous attributes.

R1: A3 <= 0 AND A7 <= 6 AND A18 <= 4
—-> class bad

R2: A19 <= 4 AND A21 <=1

-> class bad

R3: A7 > 6 AND A10<=5

-> class good

R4: A18 > 4

-> class good
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Fig. 3. Creation of new individuals using learned rules.

3 Application to Water System Design

Water distribution network modeling is used for a variety of purposes. Computer
modeling of water distribution networks continues apace in the water industry
as computers become increasingly powerful, and more complex systems need to
be modeled. Open source software such as EPANET [24] is often used to model
water systems, and indeed EPANET is what we used in the current research. In
recent years, computational methods such as non-linear programming, dynamic
programming and search techniques have been used to optimise the design, op-
eration and rehabilitation of these networks, however MOEA methods, due to
their general success in this arena, are becoming increasingly favoured.
Optimisation problems in this area are usually either the design of networks
for new supply areas (design problems), modifying existing designs to meet new
demands or other factors (rehabilitation problems), and modifying network pa-
rameters to ensure that they are accurate with respect to the real world (calibra-
tion problems). The test problems used in this article are of the first and second
types respectively, and both are regularly used in the water systems research
community.

We note that EPANET can be criticised for its suitability and accuracy in cer-
tain contexts. However, at this stage we feel that such problems outweighed by
the fact that EPANET is freely available, and commonly used as a platform for



this field of research.

3.1 NY problem

Fig. 4. The New York City problem.

The first test problem we use is the the New York Tunnels pipe network
(NYT). The objective of the NYT problem was to determine the most eco-
nomically effective design for addition to existing system of tunnels that con-
stituted the primary water distribution system of the city of New York. Tunnel
(pipe)diameters are considered as design variables. There are 15 available dis-
crete diameters 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192,
204 inches and one extra possible decision which is ’do nothing’ option. The
minimum head requirement at all nodes is fixed at 255 ft except for node 16,
17 and 1 that are 260, 272.8 and 300 ft respectively. All twenty one tunnels are
considered for duplication. Supplying demand at an adequate pressure to con-
sumers is the main constraint in the design of water distribution systems. Each
pipe has a cost. The cost function is a non-linear function: C' = 1.1 x D};** x Ly
in which cost C'is in dollars, diameter D;; is in inches, and lenght L;; is in feet.
A full enumeration of all possibilities would require: 162! = 1.9342 x 10%%. From
an optimisation perspective, the objective of the NYT problem is to modify the
rehabilitated pipe diameters to meet the demands at the nodes. The current
optimal solution for this is 38.64 million dollars and no pressure deficit although
this can vary slightly depending on the modelling software and parameters used.



3.2 Hanoi problem

Our second, larger test problem concerns a water distribution network in Hanoi,
Vietnam, is considered in this study. The network [8] consists of one reservoir
(node 1), 31 demand nodes and 34 pipes (see figure 5). The minimum pressure
head required at each node is 30 m. The cost of commercially available pipe sizes
(12, 16, 20, 24, 30, 40; in inches) was calculated using the equation provide in
[8]) C=11x Dzlj5 X L”
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Fig. 5. Hanoi problem.

4 LEMMO for Water distribution systems

Our comparative MOEA is NSGA-II [3]. That is, the comparative algorithm
is NSGA-II, while the variants of LEMMO are all NSGA-II hybridised with
phases in which rules are learned (by the process described above) leading to the
generation of an initial population for the next phase of evolution (i.e. NSGA-II).

4.1 Implementation and parameters

In all cases, the encoding is straightforward, with one individual containing one
gene for each pipe, representing a choice of diameter for that pipe. In all cases
we use as operator: one-point crossover and single-gene ‘random new allele’ mu-
tation.

The population size is always 100, the crossover rate is 0.9, the mutation rate is
0.9, and in every trial of every experiment the maximum number of evaluations
was set to 250,000.



4.2 LEMMO variants

For all the explored schemes, the Learning is executed on decision vectors (here
the size of the pipe) and the value of the objectives is used for the classification
task. During the classification phase, each decision vector is put into a class (bad
or good) according to different strategies that are explained below. This classi-
fication is re-done before each call of the induction algorithm in order to avoid
conflict between rules.

The different LEMMO variants explored are:

— LEMMO-1: run Learning when there has been no change to the approxima-
tion to the Pareto front for two successive generations.

— LEMMO-fix1: run Learning every 10 generations, using the initial population
of the previous Ewolution phase as the bad set and the final population of
that phase as the good set.

— LEMMO-fix2: run Learning every 10 generations, using the 20 individuals
most recently inserted into the Pareto set as the good set, and the remaining
individuals of the current population as the bad set.

— LEMMO-{ix3: run Learning every 10 generations, using randomly chosen
individuals from the current approximation to the Pareto set as the good
set, and the remaining individuals of the current population as the bad set.

— LEMMO-fix4: run learning every 10 generations, using the best 30% of in-
dividuals found so far on one of the objectives (randomly chosen in each
learning phase) as the good set, and the worst 30% of individuals found so
far on that objective as the bad set.

4.3 Quality measures

As suggested in [14], the S metric [30] and the R metrics [13] are generally better
than other metrics in terms of their properties with respect to sensitivity to
scaling, compatibility with common-sense ‘outperformance’ relations [13], cycle-
inducing properties (i.e. some metrics may rate set A as better than set B,
set B as better than set C and set C' as better than set A, which is clearly
undesirable), and computational overhead. We mainly use the S metric in this
study (although it has a rather high computational overhead, this is not such a
problem when k = 2 and the non-dominated sets are not overly large), but also
supplement our results with the use of the R;r metric. Regarding the S metric
(details in Zitzler in [30]), its implementation requires a reference point Z,.f.
In this work we calculate Z,.; by using the worst possible solutions in terms of
both objectives. For the cost objective, we use the cost arising from using the
largest (most expensive) diameter for each pie, and for head deficit objective we
take the value resulting from using the minimum diameter for each pipe. When
we use the Rig metric (details in [13] and summarised in [14]), this requires a
reference non-dominated set, for which we choose an arbitrary result from an
NSGA run.



5 Results

In our first set of experiments the aim was to explore a number of parameter
variants of our basic LEMMO method, in order to establish a feel for the balance
required between learning and evolutionary search on the smaller of the two test
problems. Note that even though the NYT and Hanoi water system test prob-
lems are relatively small in terms of design variables (compared to other real
water system design problems), the computational cost of fitness evaluation re-
mains very great, so we needed to limit the number of experiments. We therefore
performed our initial experiments on the smaller of the two problems (NYT),
and used a second set of experiments to begin to explore scale-up properties by
testing the best variant from the first set of experiments on the larger problem
(Hanoi).

5.1 Results on the NYT problem

We did 30 trials each on the NYT problem with each of the five LEMMO variants
and NSGA-II. The obtained approximate Pareto fronts are highly populated. Ta-
ble 1 gives the S metric statistics, showing the percentage improvement (positive
values) of the given LEMMO scheme over the corresponding value achieved by
NSGA-II. For example, the median S metric value achieved by LEMMO-fix4
was 9.12% better than the median achieved by NSGA-II. We can see that the
LEMMO methods, particularly LEMMO-fix4, led to better final approximate
Pareto set quality than NSGA-II. The standard deviation column shows the
percentage improvement of the given LEMMO scheme over the standard de-
viation for NSGA-II. It is notable that in each case the standard deviation is
considerably reduced, suggesting that the LEMMO methods not only achieve
better quality results, but do so more reliably than NSGA-II. Overall, LEMMO-
fix4 seems to be the clear winner. For both LEMMO-fix3 and LEMMO-fix4, the
improvement in the median and mean was found to be significant at a 95% con-
fidence level based on a randomisation test [5]. For the R1g metric (see table 3),
we observe that all the schemes are better than NSGA-II.

Table 2 presents statistics on the number of evaluations required to obtained
the final Pareto front over the 30 runs for each scheme. That is, the number of
evaluations at which further improvements to the Pareto front ceased; this is
essentially a convergence measure. Meanwhile, table 2 shows the comparison of
this measure between each of the LEMMO schemes and NSGA-II. For exam-
ple, the median convergence time for LEMMO-fix1 was 16.28% faster than the
median convergence time for NSGA-II. Generally, the LEMMO schemes are not
always faster than NSGA-II, however this must of course be traded off against
the fact that (as indicated above) the occasional slower convergence does lead to
better results than NSGA-II. However, LEMMO-fix4 again turns out to be the
best in this sense, achieving reliably faster convergence, and to better results. It
is worth examining figure 6, which illustrates the evolution of the S metric value
over time for LEMMO-fix1l and for NSGA-II. The LEMMO scheme is always



ahead of NSGA-II in quality for a given time.

Table 4 presents the variation of the number of evaluations required to obtained
different values of the normalized S metric between the scheme and NSGA-II
over 30 runs. The first value 0.955 is chosen for this problem as it show the be-
ginning of the convergence of the algorithm for this problem. The second value
0.968 is chosen as it is rather at the end of the convergence.

All the schemes are faster than NSGA-II to obtained a normalized Smetric
greater than 0.968. We notice that LEMMO-fix4 is the less expensive scheme
in comparison of NGSAII in median (-16.66%) and in mean (-20.58%) to obtain
this value.

If we have a look to the solutions generated by LEMMO-fix4, we can notice that
the best mono-objective solution obtained in [20,25] is in all the obtained Pareto
sets. The size of the pipes is the same than in [25].

Table 1. Quality assessment S metric (S(Scheme) - S(NSGAII))/S(Scheme).

Scheme [S Median S Mean S Min S Max S Std Dev.
LEMMO-1 | 7.83% 4.9% 7.3% 0.26% -33.32%
LEMMO-fix1| 828% 5.44% 3.4% 0.26% -57.6%
LEMMO-fix2| 8.19% 5.5% 2.04% 0.18% -25.9%
LEMMO-fix3| 8.14% 6.75% 8.84% 0.42% -58.58%
LEMMO-fix4| 9.12% 6.8% 7.77% 0.27% -22.19%

Table 2. Statistic on number of evaluations for finding the final Pareto front over 30
runs for the different tested schemes (T(Scheme)-T(NSGAII)/T(Scheme)).

Scheme Median Mean Min Max Std Dev.
LEMMO-1 [+14.07% +6.02% +29.8% -1.84% +4.11%
LEMMO-fix1|-16.28% -11.81% -10.04% -0.93% +1.26%
LEMMO-fix2| -8.97% -4.54% +20.69% -0.00% +5.22%
LEMMO-fix3|-14.69% -7.38 -14.41% -0.36% +8.53%
LEMMO-fix4|-16.14 % -8.45 % +25.40% -0.44% -21.74%

In tables 5 and 6, we show for the different possibilities of the parameters for
each scheme the quality of the metrics. We observe that the choice of 10 was a
good one.



Table 3. Quality assessment R1r metric with a front of NSGA-II for NY problem.

Scheme [R1g Median R1gr Mean R1g min R1z max R1g Std Dev.
NSGA-II 0.39172 0.44780 0.37525 0.62271 0.09460
LEMMO-1 0.38323 0.43119 0.35229 0.64671 0.09236
LEMMO-fixl| 0.38024 0.41153 0.35229 0.64271 0.09044
LEMMO-fix2| 0.38025 0.39476 0.35229 0.51597 0.05348
LEMMO-fix3| 0.38124 0.40108 0.35229 0.65469 0.07496
LEMMO-fix4| 0.38224 0.39680 0.36527 0.51497 0.04350

Table 4. Statistic on number of evaluation for finding a normalized Smetric greater
than 0.955 and 0.968 over 30 runs for the different tested schemes (T(Scheme)-
T(NSGA-II)/T(Scheme)) on NY problem.

Snorm >0.955 Snorm > 0.968

Scheme Median Mean | Median Mean
LEMMO-1 0% +16.16%| -16% -6.8%
LEMMO-fixl| +10% +10% | -10.10% -5.01%
LEMMO-fix2|+16.66% +16.66%| -7.8% +2.6%
LEMMO-fix3| +6.25% +14.28%| -13.51% -10.81%
LEMMO-fix4| +10 % 0% |-16.66 % -20.58%

Table 5. Impact of the parameters: R1r metric with a front of NSGA-II on NY
problem.

Scheme (parameter)|R1 g Median R1p Mean R1g Std Dev.
LEMMO-fix1 (5) 0.38124 0.38503 0.02553
LEMMO-fix1 (10 0.38024 0.41152 0.09044
LEMMO-fix1 (20 0.38024 0.42664 0.12099
LEMMO-fix4 (5) 0.40118 0.47329 0.07234
LEMMO-fix4 10; 0.38224 0.39681 0.0435
LEMMO-fix4 (20 0.37924 0.39654 0.07272

Table 6. Statistic on number of evaluation for finding a normalized Smetric greater
than 0.955 and 0.968 over 30 runs for the different tested schemes (T(Scheme)-
T(NSGA-II)/T(Scheme)) on NY problem.

Snorm >0.955

Snorm > 0.968

Scheme (parameter)] Median Mean | Median  Mean
LEMMO-fix1 (5) [+21.05% +21.21%| +2.31  +4.65%
LEMMO-fix1 (10) | +10%  4+10% | -10.10% -5.01%
LEMMO-fix1 gZO; +16.66% +16.66%| +13.51% +2.38%
LEMMO-fix4 (5) |+6.25% +16.66%| -14.28%  -7.89%
LEMMO-fix4 (10) | +10 % 0% -16.66 % -20.58%
LEMMO-fix4 (20) | +6.89% +6.66% | -2.43% +2.43%
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Fig. 6. Example of evolution of the normalized S-metric during the evolution against
model evaluation on NY Problem.

5.2 Results on the Hanoi Problem

Having found that that the LEMMO schemes, but particularly LEMMO-fix4,
seem capable of improving speed (and quality) of results, we did further exper-
iments with LEMMO-fix4 on a larger problem, the Hanoi network [8,7]. The
larger size of this problem (and other time constraints) mean that at the mo-
ment we can only report on results of 10 trial runs on this problem for each of
NSGA-IT and LEMMO-fix4. Table 7 shows the results in terms of the R1g met-
ric (in this case, lower values are better). It is clear that LEMMO-fix4 achieved
far better quality results than NSGA-II on this larger problem, and we find the
comparisons between mean and median are significant at a 90% confidence level
based on a randomisation test [5].

Table 7. Quality assessment R1r metric with a front of NSGA-II for Hanoi problem
on 10 experiments.

Scheme [R1gz Median R1gp Mean R1g min R1p max R1g Std Dev.
NSGA 11 0.05439 0.06871 0.00199 0.02745 0.07335
LEMMO-fix4| 0.01247 0.01854 0.00598 0.03992 0.01261

We also compared LEMMO-fix4 and NSGA-IT on this problem in terms of
their speed in attaining certain chosen values of the S metric (we chose the S
metric for this for pragmatic reasons concerning our current implementation).
We found that to obtain 0.711, LEMMO-fix4 required on average 27.5% fewer
evaluations than NSGA II. Meanwhile, LEMMO-fix4 obtains the final S metric



0.7488 in 6 out of 10 experiments, but this is never achieved by NSGA-IT within
the 250,000 evaluations limit.

6 Conclusion

We have reported on initial research into ways to find good solutions to mul-
tiobjective water systems design problems in fewer evaluations, with the ulti-
mate goal of enabling multiobjective EAs to be applied regularly to large scale
such problems. In particular, inspired by impressive speedup results reported
on other (but single-objective) problems we have started to explore whether the
LEM method [16,17] can be successfully used in this domain. Our adaptation
of this technique, called LEMMO, and in particular the variant in which the
learning method focuses on single-objective values (but alternates between ob-
jectives), has indeed been found to significantly improve both the speed and
quality of solutions to two benchmark water systems design problems. The fact
that LEMMO-fix4 was the better variant suggests that it is very hard to capture,
in simple rules, characteristics of solutions which relate to their distance from
the Pareto front (which was required of the other LEMMO variants); this in-
deed seems intuitively fair. We therefore recommend alternating single-objective
based learning in such schemes applied to multiobjective problems, although of
course the idea of learning correlates of distance from the Pareto front remains
an intriguing research area.

We were particularly interested in the LEM framework as a way of reducing
the required number of evaluations for these problems, however the achievement
of better quality results was a welcome added bonus. Indeed it partly makes up
for the fact that we would prefer to see more dramatic improvements in speed
to achieve a given target. However, we feel that significantly further reduced
relative numbers of evaluations will be achieved on larger problems (note that
LEMMO-fix4 speedup on the NYT problem was around 16%, and on the larger
Hanoi problem the speedup was around 28%), where the ‘focussing’ effect of
the Learning phase becomes relatively more imperative. Meanwhile, considering
that there is an immense space of possibilities for the way in which the Learning
phase in LEMMO can be configured (e.g. different learning methods, different
ways of generating new solutions from the learned models, and so on), it is very
encouraging that these first few attempts have already led to promising results.
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