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Abstract. Solving a multi-objective problem means to find a set of so-
lutions called the Pareto frontier. Since evolutionary algorithms work on
a population of solutions, they are well-adapted to multi-objective prob-
lems. When they are designed, two purposes are taken into account: they
have to reach the Pareto frontier but they also have to find solutions all
along the frontier. It is the intensification task and the diversification
task. Mechanisms dealing with these goals exist. But with very hard
problems or benchmarks of great size, they may not be effective enough.
In this paper, we investigate the utilization of parallel and hybrid models
to improve the intensification task and the diversification task. First, a
new technique inspired by the elitism is used to improve the diversifica-
tion task. This new method must be implemented by a parallel model
to be useful. Second, in order to amplify the diversification task and the
intensification task, the parallel model is extended to a more general
island model. To help the intensification task, a hybrid model is also
used. In this model, a specially defined parallel tabu search is applied to
the Pareto frontier reached by an evolutionary algorithm. Finally, those
models are implemented and tested on a bi-objective vehicle routing
problem.

1 What is to solve a multi-objective problem ?

The solution of a multi-objective problem (MOP) is not a unique optimal solu-
tion but a set of solutions called the Pareto frontier. These solutions, called
Pareto optimal solutions, are the non-dominated solutions. A solution y =
(y1,¥2,...,Yn) dominates ® a solution z = (21, 29,...,2,) if and only if V i €
{l...n}, yi<z;and Fie{l...n}, y; < 2.

But obtaining the complete set of Pareto optimal solutions for a multi-
objective problem may be impossible to attain. That fact tends to discard exact
methods. Instead, a good approximation to the Pareto set is sought. In this case,
while solving a MOP, two purposes must be reached. On one hand, the algorithm

3 In this paper, we assume that all the objectives must be minimized.
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Fig. 1. Comparison between the Pareto frontier and the best solution of TabuRoute.

must converge to the optimal Pareto frontier. It is called the intensification task.
On the other hand, a good approximation of the optimal Pareto frontier is re-
quired. The identified solutions should be well diversified along the frontier. It
is called the diversification task.

Existing mechanisms are used to take those two goals into account. For ex-
ample, one way to improve the intensification task is to arrange the solutions
according to the Pareto dominance. It is what ranking methods like NSGA [16]
do. The diversification task can be improved by ecological niche methods like
the sharing [6]. However, with very hard instances or large scale benchmarks,
these methods may not be sufficient. In this paper, we investigate the utiliza-
tion of the parallelization and the hybridization to improve the intensification
task and the diversification task. Section 2 describes the parallel multi-objective
evolutionary algorithm (MOEA) we use as well as a new method to help the di-
versification task. Section 3 presents the hybrid model and a specially designed
multi-start tabu search. Section 4 shows an implementation of those techniques
for a bi-objective Vehicle Routing Problem (VRP). Finally, in section 5, the con-
tribution of the different mechanisms is evaluated in order to show their interest.

2 A parallel MOEA

While developing a MOEA for a bi-objective VRP, the authors observe that the
best-known solutions for one of the criteria were bad for the other objective.
It seemed that the algorithm tended to converge prematurely to an area of the
objective space. Then the used sharing method [6] was not able to fill the gap
to the best-known solutions for one of the criteria (figure 1). In this article, we
propose a technique, the Elitist Diversification, whose purpose is to maintain the
population of the MOEA diversified. It is inspired by the elitism. The elitism is a
way to speed up and improve the intensification task. It consists in maintaining
an archive that will contain the Pareto solutions encountered during the search.
Some solutions of this archive are included into the main population of the
MOEA at each generation. In the elitist diversification, other archives are added.
Those archives contain the solutions that are Pareto optimal when one of the
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Fig. 2. The parallel model - the toric structure is not shown in order not to obfuscate
the figure. The standard elitist archive is present in each island.

criteria is maximized instead of being minimized. For example, in the case of a
bi-objective problem where f; and fy are the two objective functions, there are
three archives. One is the standard elitist archive which contains the solutions
that are Pareto optimal when both f; and fo are minimized. A second archive
corresponds to the Pareto front when f; is minimized and f> is maximized. The
last archive corresponds to the case where f; is maximized and f> is minimized.
As in the elitism strategy, solutions from these new archives are included into
the population of the MOEA at each generation. The role of the solutions of the
new archives is to attract the population toward unexplored areas, and then to
avoid the algorithm to converge prematurely to an area of the objective space.
However, if all the archives are embedded in the same MOEA, the improvement
of the diversification task is less important. This leads to the co-operative model
that is the elementary brick in figure 2. In this model, an island has only one
new archive. The standard elitist archive is present in each island. With a certain
period in terms of the number of generations, the islands exchange their standard
elitist archives. The communication topology is shown in figure 2.

To speed up the search and help the intensification task and the diversifica-
tion task, a more general island model is defined. It consists in using more than
one elementary brick. The connection between the islands is shown in figure 2.
Therefore, an island has four neighbors. Two of them have the same kind of
second archive. The communication between the islands is defined as follows: an
island sends its standard elitist archive to all its neighbors. But it only sends
the elitist diversification archive to the two neighbors that have the same kind
of archive. It means the neighbors that are not in the same elementary brick.
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3 A hybrid model

The principle of the hybridization is the following one: first, an approximation of
the Pareto frontier is obtained using a MOEA; then, a local search * is applied
in order to improve the approximation of the Pareto frontier. Therefore, the role
of the hybridization is to help the intensification task. This model has already
been studied in [4] and [17]. In [4], the local method was a simple local search,
it cannot avoid local optima. Furthermore, it uses an aggregation method which
needs to be correctly tuned and which is not able to find all the Pareto optimal
solutions. Finally, for each solution of the frontier of the MOEA, only one new
solution can be found. The method introduced in [17] has the main drawback to
be very costly and it cannot be parallelized to reduce the computational time
needed. Moreover, this method is not able to avoid the local optima.

The method introduced now, IT2-TS (Parallel Pareto Tabu Search) deals with
those difficulties. It is based on a tabu search approach. The starting points are
the solutions of the Pareto set found by the MOEA. Thus, the meta-heuristic can
escape from local optima. Furthermore, each tabu search correspond to a parallel
process. No aggregation method is used. The selection of the next solution is
based on the Pareto dominance. The neighborhood associated with the current
solution can be partitioned into three subsets Ny, N and N3. N; contains the
neighbors that dominate the current solution. N5 includes the neighbors that do
not dominate the current solution and are not dominated by the current solution
either. Nj is the subset of neighbors that are dominated by the current solution.
Then, the next solution is the more dominating individual of V7. If V; is empty,
N, and N3 are considered in sequence.

The tabu search algorithm does not provide a unique solution, but a set of
solutions that are not dominated. Therefore, a small archive is associated with
each tabu search. It contains all the non-dominated solutions found during the
search.

To intensify the search, each tabu search focuses on a limited area of the
objective space. An example of space restriction in a bi-objective case is shown
in figure 5.

4 Application to a bi-objective VRP

4.1 A bi-objective VRP

The Vehicle Routing Problem (VRP) is a well-known problem often studied since
the end of the 50’s. Many practical applications exist for various industrial areas
(eg. transport, logistic, workshop problem ...). The VRP has been proved NP-
hard [10] and applied solution methods range from exact methods [7] to specific
heuristics [8], and meta-heuristics [8][14][13].

4 Here, the term local search is used in a general way. As a matter of fact, it can be a
local search, a tabu search, a simulated annealing ...
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Fig. 3. (a) is better-balanced than (b), but (b) does not artificially improve the balance.

The most elementary version of the vehicle routing problem is the Capacitated
Vehicle Routing Problem (CVRP). The CVRP is a graph problem that can be
described as follows : n customers must be served from a unique depot a quantity
g; of goods (i = 1,...,n). To deliver those goods, a fleet of vehicles with a
capacity @ is available. A solution of the CVRP is a collection of tours where
each customer is visited only once and the total tour demand is at most Q.

Existing studies of the VRP are almost all concerned with the minimization
of the total distance only. The model studied here introduces a second objective
whose purpose is to balance the length of the tours. This new criterion is ex-
pressed as the minimization of the difference between the length of the longest
tour and the length of the shortest tour. As far as we know, the balancing of
the tours as a criterion has been studied in two other cases [9][15]. However, the
balance of a solution was not expressed in the same way.

4.2 A Parallel Pareto Genetic Algorithm

The implemented MOEA is based on a generational Genetic Algorithm (GA).
The GAs have widely been used to solve multi-objective problems, as they are
working on a population of solutions [3]. Two implementations of the GA were
implemented. They differ by the crossovers they use. In a first version, the RBX
[13] and the split crossover, which is based on the GA defined by C. Prins [14],
are used. The split crossover does not work well on benchmarks with clustered
customers. With those benchmarks, the split crossover is replaced by the SBX
crossover [13]. The mutation operator is the Or-opt. It consists in moving 1 to
3 consecutive customers from a tour to another position in the same tour or to
another tour. A 2-opt local search is applied to each tour of each solution. It has
three purposes: it allows the solution to be less chaotic, it can improve the total
length, and it does not allow the second criterion to be distorted (as shown in
figure 3).

In order to favor the intensification task and the diversification task, multi-
objective mechanisms are used. The ranking function NSGA [16] is used. To
maintain diversity along the Pareto frontier, we use a sharing technique that aims
to spread the population along the Pareto frontier by penalizing individuals that
are strongly represented in the population. The used elitism is the one defined
in section 2.

Preliminary experiments have shown that the second criterion is easier to
solve than the first one. Therefore, to save computational resources, only the
part of the parallel model corresponding to the minimization of the total length
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Fig. 4. The genetic algorithm.

and the maximization of the second criterion was implemented. Moreover, main-
taining the archives is costly. To avoid that and a too strong pressure, we use
a small archive, as shown by Zitzler and Thiele [19]. To reduce the size of the
archive, a clustering algorithm, average linking method [12], is used. It has been
proved to work well with data such as the Pareto frontier [19].

The structure of the GA is summarized in figure 4. The different steps are:

1. Selection: SUS. 4. Mutation. 7. Updating of the archives.
2. Elitism. 5. 2-opt local search.
3. Recombination. 6. Replacement.

4.3 A parallel Pareto tabu search for the VRP

The model proposed in section 3 is used. The following implementation of IT2-
TS is made. The starting points are the Pareto frontier found by the GA. The
neighborhood operator is the or-opt. The tabu list is defined as follows: when
a customer is moved from a tour, it cannot be put back into that tour for NV
iterations. As suggested in [5], the solutions that violate the capacity constraint
can be accepted. The zone from the objective space associated to a tabu search is
defined as follows: they are the solutions so that the distance between a solution
i

and the line of slope 5 which goes through the starting point is smaller than a

value I'. It is illustrated in figure 5.

5 Evaluation

The evaluation® was done on the standard benchmarks of Christofides [2]. More
precisely on the benchmarks numbers 1, 2, 3, 4, 5, 11 and 12. They correspond
to CVRP instances. The first five benchmarks correspond to maps where the
customers are uniformly distributed on the map, while benchmarks 11 and 12
correspond to clustered maps.

To evaluate the contribution of the elementary brick parallel model, we use
the entropy measure [11][1]. The entropy indicator gives an idea about the di-
versity of a Pareto front in comparison with another Pareto front. It is defined

® The results can be found at the url http://www.lifl.fr/~jozef.
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Problem|E(W, Wo)|E(Wo, W)
1(50) | 0.84 0.04
2 (75) 0.73 0.67
3(100) | 0.83 0.74
4(150) | 0.85 0.74
5 (199) 0.86 0.79
11 (120)] 0.92 0.01
12 (100)|  0.93 0.82

Table 1. Contribution to the diversification task.

as follows: Let PO; and PO> be two sets of solutions. Let PO* be the set of
optimal Pareto solutions of PO; U POs. Let N; be the cardinality of solutions
of PO; U PO* which are in the niche of the i** solution of PO; U PO*. Let n;
be the cardinality of solutions PO; which are in the niche of the i** solution
of PO, U PO*. Let C be the cardinality of the solutions of PO; U PO*. Let
v = Eil NL be the sum of the coeflicients affected to each solution. The more
concentrated a region of the solution space, the lower the coefficient of its solu-
tions. Then the following formula is applied to evaluate the entropy E of PO;

relatively to the space occupied by PO*:

C

-1 1 n; n;
E(PO:,P0O») = E ;(Eglg 6) (1)

The results are shown in table 1. In this table, E(W, Wo) is the entropy of
the algorithm with the elitist diversification compared to the algorithm without.
E(Wo, W) is the reverse. Except for the first benchmark, the new mechanism im-
proves the diversity. For the first benchmark, the GA was able to reach the best
solution for the first objective without the new mechanism which is therefore use-
less. Moreover, the new mechanism has the effect to slow down the convergence
for the second objective (figure 6). However, this consequence is compensated
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Fig. 6. Two examples of Pareto frontiers for the instances 1 and 3.

Problem[E(P, NP)|[E(NP, P)|C(P, NP)[C(ND, P)
1(50) | 0.86 0.78 0.75 0.25
2 (75) | 0.85 0.69 0.91 0.08

3 (100) | 0.90 0.73 1.00 0.00
4(150) | 0.90 0.78 0.85 0.15
5(199) | 0.91 0.71 0.88 0.12
11 (120)[ 0.94 0.70 0.73 0.27
12 (100)| 0.92 0.83 0.70 0.30

Table 2. Contribution of the parallelization.

by the tabu search of the hybridization. It can also be avoided by using the full
parallel model described in section 2. To save computational resources for the
convergence to the total distance objective which is more difficult, only half of
the model was implemented. Furthermore, it can be dealt by the hybridization.

In order to show the interest of the general parallel model, we have compared
with the results obtained when only one island is used. The measures used are
the entropy measure E, which has already been used before, and the contribution
measure C. It quantifies the domination between two sets of non-dominated so-
lutions. The contribution of a set of solutions PO; relatively to a set of solutions
PQOs is the ratio of non-dominated solutions produced by PO;. Let D be the set
of solutions in POy N PO,. Let Wy (resp. W») be the set of solutions in PO,
(resp. PO,) that dominate some solutions of POs (resp. PO;). Let Ly (resp.
L) be the set of solutions in PO; (resp. PO3) that are dominated by some
solutions of POs (resp. PO;). Let Ny (resp. N3) be the other solutions of PO,
(resp. POy): N; = PO; \ (CUW;UL;). Let PO* be the set of Pareto solutions of
PO1UPOQO;. So, ||PO*|| = ||D|| + ||Wi|| + [|N1]| + ||W2|| + || N2||. The contribution
of a set PO relatively to PO- is stated as follows:

D
N AN AT

C(PO1,PO,) = PO (2)
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Problem|Run 1|{Run 2|{Run 3|Run 4|Run 5
1(50) | 0.37 | 0.48 | 0.29 | 0.53 | 3.39
2 (75) | 1.89 | 0.60 | 2.33 | 1.46 | 1.15
3 (100) | 0.41 | 0.81 | 1.13 | 0.62 | 0.85
4 (150) |24.16 | 1.73 | 3.67 | 3.71 | 1.82
5(199) | 6.11 {20.40 | 5.13 | 2.89 | 4.54
11 (120) 12.44 | 3.44 | 1.10 | 2.18 | 4.50
12 (100)| 1.31 | 0.99 | 0.41 | 2.01 | 0.62

Table 3. Contribution of the local search.

Problem|Best-known|Best found| % [Avg. found| %
1(50) | 52461 | 524.61 [0.00] 525.89 [0.24
2 (75) 835.26 840.00 |0.56] 846.19 |1.38
3 (100) 826.14 829.43 |0.39| 832.62 |0.78
4 (150) | 1028.42 1059.09 |2.98| 1069.32 [3.97
5 (199) | 1291.45 1353.52 |4.80| 1365.56 |[5.73
11 (120)| 1042.11 1042.11 |0.00f 1047.49 |(0.51
12 (100)| 819.56 819.56 |0.00| 819.56 |0.00

Table 4. Comparison with the best-known total length.

The results are given in table 2, where P is for Parallel algorithm and NP for
Non-Parallel algorithm.

To quantify the contribution of the local search, the generational distance [18]
is used. Normally it is used between a front and the optimal one. But regarding
the GA front, the front given by the local search can be considered as an optimal
one. The results are reported in table 3 for five different runs for each problem.

One of the main problems in multi-objective optimization is that optimal
Pareto frontiers are not known. We can only compare the value obtained for the
total length criterion with the best-known solutions. The results are shown in
table 4.

6 Conclusion

In this paper, we have investigated the utilization of parallel and hybrid meta-
heuristics to improve the intensification task and the diversification task. First,
a new mechanism, the elitist diversification, was proposed to favor the diversi-
fication. Its utilization leads us to the design of a parallel model that improves
the intensification and the diversification. Second, a tabu search, IT2-TS, was
specially designed for the hybridization with a MOEA. These methods were im-
plemented and tested on a bi-objective Vehicle Routing Problem. The measures
show that the proposed techniques ensure a better convergence to the Pareto
frontier and help the diversification of the found set. Furthermore, the imple-
mented algorithm leads to good results for the VRP studied.
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