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Abstract. MOEAs are getting immense popularity in the recent past,
mainly because of their ability to find a wide spread of Pareto-optimal
solutions in a single simulation run. Various evolutionary approaches to
multi-objective optimization have been proposed since 1985. Some of
fairly recent ones are NSGA-II [9], SPEA2 [19], PESA [1] (which are
included in this study) and others. They all have been mainly applied
to two to three objectives. In order to establish their superiority over
classical methods and demonstrate their abilities for convergence and
maintenance of diversity, they need to be tested on higher number of
objectives. In this study, these state-of-the-art MOEAs have been inves-
tigated for their scalability with respect to the number of objectives (2
to 8). They have also been compared on the basis of -(1) Their ability
to converge to pareto front, (2) Diversity of obtained non-dominated so-
lutions and (3) Their running time. Four scalable test problems [9] are
used for the comparative study.

1 Introduction

Evolutionary algorithms are often praised for their ability to search multiple
solutions in parallel and to handle complicated tasks such as discontinuities,
multi-modality and noisy function evaluations. Their population based approach,
which enables them to find multiple optimal solutions in one single run, is es-
pecially useful in the conetxt of multi-objective optimization which involves the
task of finding more than one optimal solution. Though there exists a number of
efficient algorithms, most of the work that has been done in evolutionary multi-
objective optimization is restricted to 2 and 3 objectives. The main motivation
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behind this work is to investigate how these algorithms behave when tested on
higher dimensional problems.

Scalability of some recent algorithms (section 3) is to be investigated using an
experimental study (section 5). This study would involve experiments with cho-
sen algorithms (section 3) on four scalable (in terms of objectives) test problems
(section 2) for 2 to 8 objectives. For comparison purposes, three performance
metrics are to be used (section 4). Results are presented and discussed in section
6.

2 Test Problems

Most earlier studies on MOEAs introduced test problems which were either
simple or not scalable [16,14,11]. Few others were too complicated to visualize
the exact shape and location of the resulting Pareto-optimal (PO) front. In this
study four scalable test problems, namely DLTZ1, DLTZ2, DITZ3 and DLTZ6
[9], are chosen on the basis of the following properties- (1) They are easy to
construct (Bottom-up approach [9]), (2) They can be scaled to any number of
decision variables and objectives, (3) Exact shape and location of the resulting
PO front for these problems are known and (4) Difficulties in both converging to
the true PO front and maintaining a widely distributed set of solutions can be
controlled. In these test problems, the total number of variables aren = M+k—1.
Where M is the number of objectives and k can be set by the user giving him
the freedom to scale to any number of variables. All these test problem require
a functional g(x,r) to be set, where the cardinality |xps| = k. Choices of g(xpr)
and k were made according to the suggestions in [9].

For DLTZ1, DLTZ2 and DLTZ3, the PO solutions corresponds to xp; =
{0.5,0.5,...,0.5}7 and the objective function values corresponding to the PO
lie on Y0y fm = 0.5 for DLTZ1 and on Y_»_, f? = 1 for DLTZ2 and DLTZ3.
The g function in DLTZ3 introduces (3* — 1) local PO fronts and one global
PO front. All local PO fronts are parallel to the global PO front and an MOEA
can get stuck to any of these local PO fronts, before converging to the global
PO front (at g* = 0). On the other hand, DLTZ6 tests an MOEA’s ability to
converge to a curve. In this case there is only one independent variable describing
the PO front.

3 Algorithms Used

Earlier MOEAs (MOGA [10], NSGA [17] and NPGA [12]) were critisized for
their dependence on sharing parameter [8] and lack of elitism [15,18]. Different
algorithms that over come these shortcomings have been proposed. Few such
algorithms are - PAES [13], SPEA [21] and NSGA-II [8]. In these algorithms,
elitism maintains the knowledge acquired during the algorithm execution by
conserving the individuals with best fitness in the population or in an auxiliary
population. For the maintenance of spread of solutions grid based techniques



(PAES), clustering (SPEA) or crowding (NSGA-IT) were used. Further improve-
ments to these algorithms have also been proposed.

NSGA-IT (Non-dominated Sorting Genetic Algorithm-IT) with controlled eliti-
sm [5] limits the maximum number of individuals belonging to each front by a
geometric decreasing function (governed by the reduction rate r) to introduce
more diversity into the population. NSGA-II, as reported in [8], outperformed
PAES in preserving the spread of non-dominated front on five 2-objective test
problems (listed in [8]). PESA (Pareto Enveloped-based Selection Algorithm)
[1], an improvement of PAES, uses the hyper-cubes grid division not only for
crowding as in PAES, but also for selection process. PESA was compared with
PAES and SPEA on six test functions 7; to T [2] (each of which is a 2-objective
problem defined on m parameters) and was reported to outperform SPEA and
PAES on these test functions.

SPEA2 (Strength Pareto Evolutionary Algorithm 2) [19] was proposed as an
improvement of SPEA and incorporated a revised fitness assignment strategy,
a density estimation technique and an enhanced archive truncation method.
Performance of SPEA2 was compared with SPEA, NSGA-II and PESA on
some combinatorial and continuous problems. Similar performances of NSGA-IT
and SPEA2 were reported along with the fast convergence properties of PESA
on these problems. All the test problems used here (except for the 3 and 4-
objective knapsack problem and 3 and 4-objective KP-750-m problem [21] ) were
2-objective problems.

In this study we have taken three of these recent MOEAs (PESA, SPEA2
and NSGA-II) and compared their performances on specially designed scalable
test problems (section 2) over 2 to 8 objectives. For a detailed description of
these algorithm we refer the readers to the original papers. Since the test prob-
lems that we are dealing with have a continuous space, real encoding should be
preferred to avoid problems related to hamming cliffs and to achieve arbitrary
precision in the optimal solution. For this reason, in all the algorithms real-coded
parameters were used and crossover (Simulated Binary Crossover or SBX [7])
and mutation (polynomial mutation [4]) operators were applied directly to real
parameter values.

4 Performance Metrics

Zitzler [20] showed that for an M —objective optimization problem, at least M
performance metrics are needed to compare two or more sets of solutions. Use of
any number less than M would result in inaccurate judgement because of dimen-
sionality reduction. Deb [6] suggested that we can overcome this dimensionality
problem using a functionally independent set of variables, which would of course
make it theoretically inaccurate but practically feasible. He also suggested two
new running performance metrics - one for measuring the convergence to the
reference set and other for measuring the diversity in population members at
every generation of an MOEA run. In this study these two metrics (with slight
variation) have been used in addition to a third one, which simply measures the



Table 1. Parameter settings for calculating the diversity metric

Reference plane M —th objective function fir =0
Number of grids (G;) Population size
Target (or reference) set of points (P*)|One assumed solution in each grid

running time of the MOEA. All three metrics, which were applied to only the
final non-dominated set obtained by an MOEA to evaluate its performance, have
been discussed in detail below.

The following metric represents the distance between the set of converged
non-dominated solutions and the global PO front; hence lower values of con-
vergence metric represent good convergence ability. Let P* be the reference or
target set of points on the PO front and let F be the final non-dominated set
obtained by an MOEA. Then from each point ¢ in F the smallest normalized
Euclidean distance to P* will be:

P ([ fulD) = F1G)
=y 2 (i) o

Here, f*%* and f™" are the maximum and minimum function values of k-th
objective function in P*. However in this study, no target points were chosen
because equations of PO fronts were known for all the four test problems. The
orthogonal distance of a point A in the non-dominated set from the PO front
was calculated directly from the equation of PO front. E.g. in DLTZ2 or DLTZ3

di = lrall —1 (2)

Once these distances are known the convergence metric can be obtained by
averaging the normalized distance for all points in F.

Diversity metric is a number in the range [0, 1], where 1 corresponds to best
possible diversity and a 0 corresponds to worst possible diversity. In calculat-
ing the diversity metric, the obtained non-dominated points are projected on
a hyper-plane, thereby losing a dimension of the points. The plane is divided
into a number of small grids (or M —1 dimensional boxes). Depending on each
grid contains a non-dominated point or not, a diversity metric is defined. If all
grids are represented with at least one point, the best possible (with respect to
the chosen number of grids) diversity measure is achieved. If some grids are not
represented by a non-dominated point, the diversity is poor. Various parameters
required to calculate this metric and their chosen values are given in table 1.

Calculating the diversity metric Following steps are involved in calcu-
lating the diversity metric:



Table 2. Lookup table for calculating diversity metric

|h(...j-1 )|h( )|h(J—|—1 )|m(h(J ))|
0.00
0.50
0.50
0.67
0.67
0.75
1.00

O ~=O~=OO
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1. For each grid indexed by (4, j,...) calculate following two arrays:

. 1, if the grid has a representative point in P*;
H(ZJJ7"')={ g p p

0, otherwise.

1, for the chosen reference set P*

3)

hiyj,...) = { 1,if H(i, j, ...) = 1 and the grid has a representative point inF;

0, otherwise.

_ { 1, if the grid has a representative point in F for the chosenP*;

0, otherwise.

2. Assign a value m(H (i, 7, . . .)) to each grid depending on its and its neighbor’s
h(). Similarly, calculate m(H (3, j,...)) using H() for reference points.

3. Calculate the diversity metric (of the population P of non-dominated solu-
tions produced by an MOEA) by averaging the individual m() values for h()
with respect to that for H():

H(ij,)#0
D(P) = 5
( ) iGy--- m(H(z,], .. )) ( )
H(i,j,...) 70

Value function m() for the grid was calculated by using its h() and two
neighboring h() dimension-wise. With a set of three consecutive binary h() val-
ues, there are a total of 8 possibilities. Suggested [6] values of m() were used
in this study (Table 2). Two or more dimensional hyper-planes are handled by
calculating the above metric dimension-wise.

Figure 1 shows a sample calculation of diversity metric in case of 2-objective
DLTZ2 or 2-objective DLTZ3 problem. Here circles represent the reference or
target points, in every partition there is one such point and hence the number
of partions is same as population size. Boxes represent the set of non-dominated
points given by an MOEA. The fo = 0 is used as the reference plane here and
the complete range on f; values are divided into G; = 10 grids. This complete
range depends on the PO front the algorithm has converged to and the resulting

(4)
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Fig. 1. Calculating the diversity metric

divesrsity metric will also be different. For boundary grids, an imaginary neigh-
boring grid with a h() and H() value of one is always assumed. In figure 1, these
grids are shown with dashed lines. Even if we have more than one points in a
grid, h() still remains as one. Based on moving window containing three consec-
utive grids, the m() values are computed in the figure. To avoid the boundary
effects of using the imaginary grid, the metric value is normalized as follows:

B ZH 0m(h(i,j,...))—ZH 0m(0)
D(P) = (4, )# (ir)s---) 7 (©)

e m(H(z,],)) —Z iy
H(i,j,...)7#0 H(i,j,...)#0
where 0 is a zero-valued array. Though in our study H(i,j,...) is always
equal to 1 (each grid contains one reference point), H (i, j,...) # 0 consideration
in computing the D(P) term and the boundary grid adjustment was suggested
to allow a generic way to handle disconnected PO fronts in the original work

[6]-




Ideally we want our algorithm to give us non-dominated solutions on the
global PO front and if we divide our objective space corresponding to this global
PO front into grids equal to the population size, then one point in each grid
would be the best possible diversity (D(P) = 1). We will call this diversity
metric (obtained by splitting the global PO region into grids) diversity metricl.
But if the algorithm isn’t able to converge to the global PO front then the above
metric will not be able to measure the diversity of non-dominated solutions
produced by the MOEA. In such cases we should calculate our diversity metric
based on the actual converged front instead of global PO front. We will call
this diversity metric (obtained by splitting the converged PO region into grids)
diversity metric2.

To compare two algorithms (for diversity) the use of diversity metric2 should
be preferred because even if one of them has converged to true PO front and
the other hasn’t, the diversity metric2 of the former will be almost equal to its
diversity metricl value, which would not be the case with latter.

The third metric used in the study is simply the running time of an algorithm
(in seconds) for the particular settings. It has been included in the performance
metric set to evaluate how an MOEA scales in terms of time with increase
in number of objectives. A linear or polynomial increase in running time is
acceptable but an exponential increase is undesirable.

5 Experimental Study

To make the comparisons fair the number of function evaluations were kept
constant for all three algorithms on a particular setting. Before the actual ex-
perimentation some tuning of the parameters involved was required. Finding
values for which an algorithm works best is, in itself, an optimization problem
and if we are judging the performance on the three metrics it becomes a Muti-
objective Optimization Problem (MOOP) for each of the parameter involved.
A very simplistic approach was adopted to tune (instead of optimizing) these
parameters. Experiments with only 2-objectives were used and the purpose of
this tuning was to find a set of values for which an MOEA performs well. Table
3 gives the tuned values used for all the experimentation. Parameter tuning was
carried out on problems DLTZ2 and DLTZ3 and only the convergence and di-
versity metrics were used to evaluate the performance of the algorithm, running
time was not considered.

Population size plays a crucial rule in the performance of an MOEA. As the
number of objective functions (M) increases, more and more solutions tend to
lie in the first non-dominated front. Most MOEAs assign the similar fitness to
all solutions in the first non-dominated front. So as the number of objective
functions increase, there is no (very little) selection advantage to any of these
solutions. In absence of any selection pressure for better solutions, the task of
recombination and mutation operators to find better solutions may be difficult
in general. It has been shown empirically [3, pages 404-405] that for a particular
M, the proportion of non-dominated solutions decreases with population size.



Table 3. Tuned parameter values

Parameter [PESA[SPEA 2[NSGA-I]|
Crossover probability p. 0.8 0.7 0.7
Distribution index (DI) for SBX 7 15 15 15
Mutation probability p., (if n = # of variables)| 1/n 1/n 1/n
DI for polynomial mutation 7y, 15 15 20
Ratio of internal population size to archive size| 1:1 1:1 1:1
# of grids per dimension (PESA) 10 - -

Table 4. Population scheme - for Internal or main population (which is same as ex-
ternal population as the result of parameter tuning)

M|Population Size|Maximum proportion of
non-dominated solutions

2 20 0.2

3 50 0.22

4 100 0.28

5 150 0.36

6 250 0.45

7 400 0.52

8 600 0.60

9 850 0.68

10 1150 ~0.75

If we require a population with a user-specified maximum proportion of non-
dominated solutions, then these empirical results can be used to estimate what
would be a reasonable population size. This requirement on population size in-
creases exponentially with M. Ideally to investigate the scaling of an MOEA we
should present it with a population having equal proportion of non-dominated
solutions, for all M, to start with, but this is practically impossible because
of exponential increase in population size. The population scheme used in this
study is given in table 4. This scheme is quadratic with R? = 0.9916.

Number of generations used for different problems and different number of
objectives (M) are listed in table 5. More number of function evaluations were
used for DLTZ3 and DLTZ6 because they can introduce more difficulties to a
MOEA in converging to PO front and in finding a diverse set of solutions. DLTZ3
tests the ability of an MOEA by introducing local PO fronts and DLTZ6 tests
them for their ability to converge to a curve.

Number of generations from 6-objectives onwards was doubled because none
of the algorithms was able to converge to the global PO front in these many
generations. Converging to a PO front means having a convergence metric less
than a threshold (say €). Any appropriate value of € can be chosen. But here,
instead of choosing some such threshold, the algorithms were compared (for



Table 5. # of generations for different problems and # of objectives (M)

# of generations

|For M =2,3 and 4| For M =6 and 8
DLTZ1 & DLTZ2 300 600
DLTZ3 & DLTZ6 500 1000

convergence) solely on the basis of the convergence metric that they can achieve
in given number of function evaluations.

6

Results

Tables 6, 7 and 8 give the convergence metric, diversity metric(1 & 2) and run-
ning times respectively for all three algorithms over 2 to 8 objectives. Presented
values are averaged over 30 runs for 2, 3 and 4 objectives and 10 runs for 6 and
8 objectives. As an illustration, results for problem DLTZ3 are plotted in figure
2. Following is the discussion over the results obtained. Few other points, which
have been observed during this extensive comparative study, are also discussed.

1.

Scalability Each algorithm scale differently in terms of the performance
metrics chosen.
— PESA scale very well in terms of convergence but poorly in terms of
diversity maintenance and running time.
— SPEA2 scales well in terms of diversity maintenance but suffers in con-
verging to the global PO front and in running time.
— NSGA-II scales well in terms of running time and diversity maintenance
but suffers in converging to the global PO front.
Convergence to PO front Ability to converge to the PO front was found
best in PESA, though it cannot produce a very diverse solution on the con-
verge front.
SPEA2 has better convergence than NSGA-II for small number of objec-
tives but for higher number of objectives both of them have comparable
performances, which is inferior to PESA. Both SPEA2 and NSGA-IT had
difficulties in dealing with local PO fronts especially for higher number of
objectives.
Diversity in obtained solutions Even in terms of diversity of solutions in
the converged front SPEA2 and NSGA-II have similar performances, which
is much better than PESA.
Running Time NSGA-II was the fastest of all three algorithms, primarily
because it doesn’t involve expensive calculations related to clustering (as in
SPEA2) or grid based calculations (as in PESA). Exponential increase in
running time for PESA makes it impractical for higher objectives.
Grid size in PESA Grid size in PESA is a crucial factor. If we choose
very fine grids we can hope to get a good performance in terms of diversity
but that would make the algorithm even more expensive.



Table 6. Results of Convergence Metric (averaged over 30 runs for 2, 3 and 4 objectives
and 10 runs for 6 and 8 objectives)

Mean Standard Deviation
Objectives| PESA | SPEA2 [NSGA-II| PESA [SPEA2|NSGA-II
| Convergence Metric for DLTZ1 |
2 2.86948 | 3.08825 2.27666 |5.93164 | 5.35433 | 5.43593
3 0.04419 | 0.04843 0.38360 |0.12320 | 0.05331 | 0.50094
4 0.02317 | 0.29925 3.10281 | 0.09059 | 0.66360 | 4.08272
6 0.00117 | 5.99951 |120.19162 | 0.00089 | 7.67166 |101.19802
8 0.00407 | 498.27151 | 465.30155 | 0.00015 (13.38934| 14.79745
| Convergence Metric for DLTZ2 |
2 0.00008 | 0.00026 0.00180 |0.00019 | 0.00029 | 0.00082
3 0.00035 | 0.00663 0.01003 |0.00013 | 0.00224 | 0.00234
4 0.00170 | 0.03369 0.04529 |0.00039 | 0.00846 | 0.01373
6 0.00301 | 2.00216 1.67564 | 0.00040 | 0.07843 | 0.10533
8 0.00689 | 2.35258 2.30766 | 0.00109 | 0.03523 | 0.04242
Convergence Metric for DLTZ3 |
2 22.52023| 16.87313 | 21.32032 |22.90480(16.72477| 11.15397
3 1.80296 | 2.39884 5.65577 | 5.78546 | 4.72212 | 6.26729
4 1.16736 | 4.00596 | 66.94049 | 3.50522 | 4.00594 | 39.06815
6 0.15035 | 217.95360 [1273.30601| 0.12692 (76.62720| 64.21416
8 7.23062 |1929.94832|1753.41364| 2.25611 |11.09337| 62.63447
| Convergence Metric for DLTZ6 |
2 0.79397 | 0.77622 0.63697 |0.32237 | 0.23794 | 0.29986
3 0.20528 | 0.29271 0.24515 |0.21199 | 0.23631 | 0.22849
4 3.60430 | 5.07137 | 6.32619 | 0.38084 | 0.22360 | 0.36229
6 5.30454 | 10.53682 | 9.48750 |0.31227 | 0.00819 | 0.27429
8 6.32247 | 10.62932 | 10.27306 | 0.10668 | 0.04585 | 0.05803

6. Swapping offspring in SBX Swapping the offspring in SBX helped im-
proving the performance of all three algorithms. This is because the way
SBX has been formulated - either offspringl always gets a variable value
greater than offspring?2 or it always gets a smaller value. PESA always takes
one offspring generated each time and rejects the other one, hence improved
performance on PESA can be explained but the improvement in performance
of SPEA2 and NSGA-II is something that is to be investigated.

7 Conclusion

All of the work that has been done in MOEAs is mostly limited to 2 and 3
objectives. In this paper scalability issues related to three of the state-of-the-art
algorithms (PESA, SPEA2 and NSGA-II) were explored. These algorithms were
tested for their scalability with respect to number of objectives (2 to 8). These
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Table 7. Results of Diversity Metrics 1 & 2 (averaged over 30 runs for 2, 3 and 4
objectives and 10 runs for 6 and 8 objectives)

Mean Standard Deviation
Objectives| PESA |SPEA2|NSGA-II PESA |SPEA2|NSGA-II

| Diversity Metricl for DLTZ1 |

0.25093| 0.55656 | 0.44784 (0.14059| 0.34527 | 0.23329
0.42116| 0.63186 | 0.57752 (0.07563| 0.04565 | 0.15660
0.37605| 0.54176 | 0.38676 |0.07125|0.02007 | 0.11091
0.33643| 0.35645 | 0.19343 (0.04046| 0.15384 | 0.04365
0.25245| 0.26107 | 0.19744 (0.00764|0.01021 | 0.01238

| Diversity Metric2 for DLTZ1 |

0.50019| 0.86516 | 0.72559 |(0.17016|0.11721| 0.13887
0.52274| 0.78292 | 0.76969 |0.10693|0.06054 | 0.09305
0.48240| 0.67836 | 0.58683 |0.09175|0.04362 | 0.09545
0.39297| 0.48162 | 0.38293 (0.05970|0.11778| 0.01930
0.29631| 0.35056 | 0.37425 |0.02745|0.02485| 0.01172

Diversity Metricl for DLTZ2 |

0.57396| 0.81867 | 0.75177 |0.09135|0.01766 | 0.03891
0.57163| 0.67260 | 0.74996 |0.04344|0.03255| 0.02064
0.52708| 0.62136 | 0.71360 (0.03692|0.01773 | 0.01881
0.47099| 0.29675 | 0.48248 [0.02660|0.01939 | 0.01613
0.43230( 0.30944 | 0.52913 (0.04908| 0.00628 | 0.01019

| Diversity Metric2 for DLTZ2 |

0.58509| 0.82186 | 0.75863 (0.09700(0.01992 | 0.04302
0.57993| 0.71680 | 0.81107 (0.04528|0.03629 | 0.02452
0.57993| 0.71680 | 0.81107 [0.04528|0.03629 | 0.02452
0.52335| 0.64928 | 0.73253 |0.03503|0.01423 | 0.01139
0.57082| 0.64134 | 0.75665 |0.02060(0.00327 | 0.01022

| Diversity Metricl for DLTZ3 |

0.14023| 0.17339 | 0.08846 |0.14497|0.19218 | 0.06994
0.38965| 0.62793 | 0.26244 |0.13220|0.14088 | 0.19989
0.31659( 0.58861 | 0.15869 (0.09393|0.02637 | 0.03146
0.18812| 0.08588 | 0.12068 |0.06554|0.01392| 0.01290
0.02463| 0.15186 | 0.06456 (0.00247|0.01223 | 0.01244

| Diversity Metric2 for DLTZ3 |

0.49708| 0.71668 | 0.57169 |0.14339|0.15166 | 0.15533
0.58655( 0.78540 | 0.60255 [0.09515|0.11143 | 0.18633
0.51138| 0.72007 | 0.50374 [0.07063| 0.05674 | 0.04957
0.32959| 0.36687 | 0.57644 |0.06817|0.02543 | 0.01418
0.11972| 0.55771 | 0.58456 (0.01179|0.00873| 0.01278

| Diversity Metricl for DLTZ6 |

0.20191) 0.44404 | 0.40846 |0.14198|0.25537| 0.19784
0.41962| 0.64655 | 0.66157 (0.06423|0.14591 | 0.13731
0.22558| 0.22917 | 0.12825 |0.02790|0.01438 | 0.01845
0.27631| 0.07593 | 0.07544 |0.02356|0.00710 | 0.01760
0.27801| 0.05583 | 0.04766 |0.00488|0.00991 | 0.00391

Diversity Metric2 for DLTZ6

0.55795| 0.85028 | 0.78386 [0.12064| 0.06017 | 0.08507
0.56629( 0.83748 | 0.81710 (0.14311}0.03616 | 0.06102
0.48907| 0.47386 | 0.59749 (0.03777|0.02237 | 0.02803
0.48725| 0.60226 | 0.65365 |0.02286|0.01100| 0.01746
0.44885| 0.55396 | 0.62897 (0.03112]0.02598 | 0.00585
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Table 8. Results of Running Time (averaged over 30 runs for 2, 3 and 4 objectives
and 10 runs for 6 and 8 objectives)

Mean Standard Deviation
Objectives| PESA [SPEA2|NSGA-II| PESA [SPEA2[NSGA-II
| Running Time for DLTZ1 |
2 2.53 3.70 2.90 0.51 0.47 0.55
3 9.13 17.38 4.53 1.56 0.49 0.80
4 70.53 91.45 17.00 5.53 1.04 0.39
6 4229.2 | 1839 213.9 184.11 | 251.08 4.53
8 95465.67(34735.33| 1552.72 | 4879.89 |2121.46| 51.05
| Running Time for DLTZ2 |
2 4.60 4.07 3.27 0.50 0.26 0.59
3 19.825 | 20.425 4.925 3.69 0.59 0.83
4 193.975 | 107.45 18.7 17.41 1.28 2.42
6 8082.8 | 2408 235.9 127.77 | 315.43 30.78
8 334641.5| 33722 1570.8 |4321.10 |1283.36| 61.32
Running Time for DLTZ3 |
2 5.567 | 6.633 5.733 0.74 0.49 0.79
3 11.833 | 29.333 7.972 1.50 0.63 1.13
4 80.8 131.925 29.75 8.91 1.38 2.84
6 3402.4 | 3103.1 384.4 189.63 | 357.13 44.93
8 85559.4 | 49382.2 | 2605.5 |2826.43 | 514.14 114.42
| Running Time for DLTZ6 |
2 3.77 4.23 3.20 0.51 0.44 0.56
3 22.23 32.47 7.73 4.38 0.78 0.45
4 295.15 | 178.18 31.00 22.07 7.23 0.39
6 13528.2 | 5640.1 386.9 167.72 | 681.69 2.47
8 262802.9| 53809.8 | 2741.1 |16819.82|5404.04| 176.50

algorithms were tested for their performance, on four scalable test problems,
namely - DLTZ1, DLTZ2, DITZ3 and DLTZ6. According to our study, it is clear
that conclusions drawn from experimental comparisons on 2 or 3 objectives
cannot be generalised to a higher number of objectives. More work needs to
be done to fully understand the behaviour of MOEAs on different number of
objectives.

To compare two or more sets of non-dominated solutions of an M —objective
problem require at least M performance metrics, otherwise this would result in
an inaccurate judgement caused by reduction in dimensionality [20]. However,
having M performance metrics would make the comparison practically infeasi-
ble. In this study three performance metrics were used, in terms of which the
scalability of these algorithms were assessed. First metric measures closeness of
obtained non-dominated solution to the global PO front. The second metric in-
dicates the diversity of solutions in the obtained non-dominated set. Running



time was also included as one of the metric to evaluate how an MOEA scales in
terms of time with increase in number of objectives.

As the result of the study on four test problems, PESA was found to be best
in terms of converging to the PO front, but it lacks good diversity maintenance.
Also the algorithm was found to be slow because of expensive grid based cal-
culations. Exponential increase in running time makes the algorithm infeasible
for higher number of objectives. SPEA2 and NSGA-II performed equally well
on convergence and diversity maintenance. Their convergence level was inferior
to that of PESA but diversity maintenance was better. NSGA-II was found to
be much faster than SPEA2 because of the expensive clustering of solutions.
Running times for NSGA-II were found to be an order of magnitude less than
that of SPEA2 for higher objectives.

Comparing these algorithms with some classical multi-objective optimizers
on the same test problems could lead to interesting results.
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