Evolutionary Algorithm with Dynamic Population Size for Multi-
Objective Optimization

E. F. Khor, K. C. Tan!, M. L. Wang and T. H. Lee
Department of Electrical and Computer Engineering
National University of Singapore
10 Kent Ridge Crescent Singapore 119260
*Email: eletankc@nus.edu.sg

Abstract

This paper presents a novel 'incremental” multi-
objective  evolutionary algorithm with dynamic
population size that is adaptively computed according to
the on-line discovered trade-off surface and its desired
population distribution density. It incorporates the
method of fuzzy boundary local perturbation with
interactive local fine-tuning for broader neighborhood
exploration to achieve better convergence as well as
discovering any gaps or missing trade-off regions at
each generation. The effectiveness of the proposed
methodology is validated upon a benchmark multi-
objective optimization problem.

1. Introduction

Evolutionary techniques for multi-objective (MO)
optimization are currently gaining significant attention
from researchers in various fields [1-5]. Unlike
conventional methods that linearly combine multiple
attributes to form a composite scalar objective function, a
multi-objective  evolutionary  algorithm  (MOEA)
incorporates the concept of Pareto's optimality or
modified selection schemes to evolve a family of
solutions at multiple points along the trade-off surface.
Based on different implemented strategies in cost
assignments and selection methods, the study of
evolutionary algorithms for MO optimization can be
generally classified into five major groups, namely the
objective reduction approaches, classified population
approaches, weights randomizing approaches, preference
relationship approaches and Pareto-based approaches.

Il these evolutionary techniques for MO optimization,
however, require a large and constant population size in
order to discover the usually sophisticated trade-off
surface. As addressed by [6], evolutionary optimization
process may evolve too quickly and suffers from
premature convergence if the population size is too small.
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If the population is too large, however, undesired
computational resources maybe incurred and the waiting
time for a fitness improvement maybe too long in
practice. Therefore the selection of an appropriate
population size in evolutionary optimization is important
and could greatly affect the effectiveness and efficiency of
the optimization performance.

This paper proposes an incremental muilti-objective
evolutionary  algorithm (IMOEA) with dynamic
population size for effective MO optimization. Instead of
having a large and constant population to explore the
solution surface, IMOEA adaptively computes an
appropriate population size according to the on-line
evolved trade-offs and its desired population distribution
density. In this way, the evolution could begin with a
small population size initially, which is
increased/decreased adaptively based upon the discovered
Pareto front at each generation. This approach reduces the
overhead computational effort and avoids any possible
pre-mature convergence or incomplete trade-offs resulting
from insufficient number of individuals.

In addition, the IMOEA incorporates a fuzzy boundary
local perturbation technique to encourage and reproduce
the "incremented" individuals for better MO optimization.
While maintaining the global search capability, the
scheme enhances the local exploration and fine-tuning of
the evolution at each generation so as to fill-up any
discovered gaps or discontinuities among the non-
dominated individuals that are loosely located or far away
from each other along the trade-off surface. Details of the
IMOEA with fuzzy boundary local perturbation and other
advanced methods are described in Section 2. Validation
of the IMOEA against a benchmark problem is given in
Section 3. Conclusions are drawn in Section 4.

2. Incremented Multi-Objective
Evolutionary Algorithm
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The issue of dynamic population size in MO optimization
currently remains an open problem for researchers in the
field of evolutionary computation [7]. Extending from our
earlier work of MOEA [8], an incremental multi-objective
evolutionary algorithm is proposed to deal with this
problem by adaptively computing an appropriate
population size at each generation. The population size is
thus dynamic based upon the on-line discovered Pareto
front and its desired population distribution density along
the trade-offs.

2.1 Dynamic Population Size

Consider an m-dimensional objective space, the desired
population size, dps”’, with the desired population size per
unit volume, ppv, and the approximated trade-off hyper-
area of A, [8] discovered by the population at
generation n can be defined as,

lowbps < dps(") =ppva,0(") < upbps (1)

where lowbps and upbps is the lower and upper bound for
the desired population size dps™, respectively, which can
be treated as hard bounds that are optionally defined by
the user. Note that since ppv is defined as a finite positive
integer and 4,," is bounded if the objective space is
bounded, dps " will be bounded within the limit of
lowbps and upbps as given ineqn. 1.

The trade-offs for an m-objective optimization problem is
in the form of an (m-1) dimensional hyper-volume, which
can be approximated by the hyper-surface A4, of a
hyper-sphere as given by [8],

n,(m—l)/2 (d(n)‘)m—l

A. n)_ X
(m/2)! 2m—l

1)

(2)

For simple approximation, d™, can take the average of the
shortest and longest possible diameter represented by
- din™ and d,,,") respectively. Let F, and F, denotes the
non-dominated objective vectors that have the maximum
distance between each other in the population, the
computation of d,;," and d,,,,\" can be directly illustrated
in Fig. | where dpq" = d;'" + d,"™. Note that as 4,," is
always bounded if the space is bounded and ppv is always
defined in finite value, ubps™ will also be bounded.
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Fig.1 Computation ford,,; ", d," andd "
2.2 Fuzzy Boundary Local Perturbation

In this section, a fuzzy boundary local perturbation
(FBLP) scheme that perturbs the set of non-dominated
individuals to produce the necessary "incremented"
individuals for the desired population size as given by
eqn. 1 in IMOEA is proposed. In brief, the FBLP is
implemented for the following objectives: (1) Produce
additional “good” individuals in filling up the gaps or
discontinuities among existing non-dominated individuals
for better representation of the Pareto front as shown in
Fig. 2; (2) Perform interactive fine-learning to overcome
weakness of local exploration in an evolutionary
algorithm [9,10] and to achieve better convergence for
evolutionary MO optimization; (3) Provide the possibility
of exploration beyond the neighborhood perturbation to
avoid pre-mature convergence or local saturation.

~
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No local perturbation for parents
closed together

Fuzzy neighborhoodboundary
Parent

Perturbed child

Pareto Frontier

|oce:

Minimization

Local perturbation for parents
apart from each other

Minimization '/I

Fig. 2 FBLP for non-dominated parents with low niched cost
(apart from other parents)

A simple and effective way to achieve the above
objectives is to generate more Pareto optimum points
within the evolution itself without going through the
tedious two-stage neural network learning process. These
additional Pareto points can be effectively obtained via the
method of fuzzy boundary local perturbation at each
generation. For this, only parent individuals that are being
selected for reproduction from the tournament selection
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scheme will be perturbed with the FBLP. Note that the
selection criteria for the tournament is solely based upon
the individuals' niched cost in the objective domain [11],
instead of the cost of objective functions. Therefore
parents with lower niched cost (located apart from other
parents) will be given higher probability to be perturbed
as compared to those with a high niched cost (located
closed to other parents).

As shown in Fig. 2, the neighborhood boundary for the
parents to be perturbed is fuzzy in such a way that the
probability of perturbation is higher within the
neighborhood region than those outside the neighborhood.
Without loss of generality, consider a decimal coding
scheme [8] with only one parameter being coded in a n-
digit chromosome X = {x;:i = 1, 2..., n}, where i is the
coding index such that / = 1 represents the most
significant index and / = n is the least significant index of
the chromosome. A probability setP={p;:i =1, 2.... n}
that indicates the perturbation probability for each element
of the chromosome X, with a value of "1" represents
“always perturb”, a value of "0" implies “never perturb”
and their intermediate values, can be defined and
represented by the following sigmoid function [12], Vi =
L2, ...n;n>1,

i-1\ :
bl 2 ;—_—1 +a ,lSlSﬂ
(3)
. 2
bl:l-—Z('Anl] +a} B<isgn
n-

As given in eqn. 3, the probability values of p; have a
lower bound of ‘ab’ and an upper bound of ‘ab + b°. The
coefficients ‘a’ and ‘b’ are chosen in the range of 0 < b <
0.7 and 0 < ab £ 0.02, which are set according to the
desired perturbation probability for the upper and the
lower bounds. The value of B is defined based on the
desired boundary of the digit xg in the parameter space,
which is selected as (n/2) in this paper.
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Fig. 3 The perturbation probability for a one-parameter
chromosome in FBLP

As shown in Fig. 3, the more significant of a digit in the
parameter X, the lower its perturbation probability in
FBLP. This makes the possibility of the generated
offspring to be lied within their parents’ neighborhood
higher than that of outside the neighborhood.

2.3 Program Flowchart of IMOEA

The overall program flowchart of the proposed algorithm
including both the fixed (MOEA) [13] and the proposed
dynamic (IMOEA) population size is shown in Fig. 4. The
dynamic sharing method for niched cost estimation {8] is
applied here to provide a simple and effective
computation of Q.. at each generation, which is capable
of distributing the population uniformly along the Pareto
front without the need of any a-priori knowledge in
setting the Gare-

A switching preserved strategy (SPS) that preserves and
allows the non-dominated individuals to be evolved with
the population concurrently is proposed in this paper. As
shown in Fig. 4, SPS performs population preservation
based upon the on-line population distribution to ensure
stability and diversity of the evolution as highlighted in
the shaded region. Any non-dominated individuals
resulted from current generation that are different from the
evolved population will be added to the population at next
generation to ensure stability of the Pareto optimal set.
This combined population often exceeds the original
population size, filtering is thus necessary in SPS to
eliminate any extra individuals and maintain the desired
population size. For this, if the number of non-dominated
individuals in the combined population is less or equal to
the desired population size, filtering is performed
according to the individuals' Pareto rank values (cost in
objective functions) in order to encourage stability of the
evolution at the Pareto optimal frontier. However, if the
number of non-dominated individuals exceeds the desired
population size, filtering is done based on the shared costs
(cost in niched function) in order to spread the individuals
equally distributing along the Pareto front.

3. Validation on Benchmark Problem

The two-objective minimization problem given in [14] is
studied here. This test function is chosen since it has a
trade-off surface that is easy for visualization and
comparison. The two-objective functions, fiand f;, to be
minimized are given as:
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Fig. 4 Overall program flowchart with fixed (MOEA) and
dynamic (IMOEA) population size

The problem of determining the appropriate population
size to generate non-dominated individuals with desired
distribution density can be overcome by adapting a
dynamic population size for on-line adaptation as
proposed in IMOEA, which estimates an appropriate and
bounded population size at each generation to cover the
entire trade-offs based on the desired population
distribution density. The IMOEA was applied with a small
initial population size of 10 and a pre-defined population
size per unit volume of 200. As shown in Fig. 5a, the final
population at the end of the ‘evolution is uniformly
distributed along the entire trade-off curve. As can be seen
in Fig. 5b, the population size starts with a small initial
population size of 10 and increases the population size
adaptively based on the on-line growing Pareto front
according to the surface of 4,, in eqn. 2. The population
size of IMOEA saturates at 302 in which the hyper-
surface of 4,, cannot be further increased since the entire
trade-offs has already been discovered.

Fig. 6 illustrates performances of the IMOEA with a
smaller setting of population size per unit volume by
reducing the value of ppv from 200 to 100. The population
distribution at the end of the evolution and the trace of
population size at each generation are depicted in Fig. 6a
and 6b, respectively. The final population size is now
reduced to 146 which is smaller than that of 302, as
desired.

Subsequently, a goal setting of i, /o) = (0.9, 0.5) is
incorporated in the optimization problem. Fig. 7 shows
the distribution of non-dominated individuals at 4
different stages along the evolution. As can be seen, the
population size starts to grow from an initial population of
10, and reaches 70 at the end of the evolution based on the
limited size of the focused tradeoff curve and the desired
population distribution density in the objective domain.
Along the evolution, the population size of IMOEA varies
and increases according to the on-line discovered Pareto
front before satisfying the goal setting (stages 1-3). This
shows that the IMOEA is capable of evolving an
appropriate population size, starting from a small initial
population with less computational overhead, to
effectively represent the entire final trade-offs with or
without any goal settings.

4. Conclusion

This paper has developed an Incremented Multi-Objective
Evolutionary  Algoritbm  (IMOEA). Unlike the
conventional fixed-population-size evolutionary
technique, this IMOEA is able to practice the dynamic
population size based on the discovered trade-off hyper-
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surface by the population and the desired population
distribution density. This algorithm has solved the
difficulty to decide the appropriate population size to
sufficiently explore the tradeoffs that is often unknown
initially. Besides, the new proposed Fuzzy Boundary
Local Perturbation (FBLP) can create additional
individuals within the fuzzy neighborhood of their parents
and improve the local searching ability. The advantages of
the above methodologies have been illustrated via a
benchmark two-objective minimization problem with
extensive comparisons and investigations.
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