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Abstract. The importance of DNA sequence design for reliable DNA
computing is well recognized. In this paper, we describe a DNA sequence
optimization system NACST/Seq that is based on a multiobjective ge-
netic algorithm. It uses the concept of Pareto optimization to reflect
many realistic characteristics of DNA sequences in real bio-chemical ex-
periments flexibly. This feature allows to recommend multiple candidate
sets as well as to generate the DNA sequences, which fit better to a
specific DNA computing algorithm. We also describe DNA sequence an-
alyzer that can examine and visualize the properties of given DNA se-
quences.

1 Introduction

Using the bio-molecules as basic computing or storage media, DNA computing
wins the massive parallelism and some useful features such as the self-assembly.
However, the chemical characteristics of materials involve some drawbacks in
computing process.

Deaton and Garzon, for example, identified various types of errors those
lead to false positives in Adleman’s original techniques [12]. To overcome these
drawbacks, they also gave a theoretical bound on the size of problems that can be
solved reliably [3]. They introduced a new measure of hybridization likelihood
based on Hamming distance and proposed a theory of error-preventing codes
for DNA computing [4]. Since then, many researchers have proposed various
algorithms and methods for the reliable DNA sequence design. These methods
can be summarized into two different approaches.

One is the deterministic approach. Marathe et al. [H]. proposed a dynamic
programming approach based on Hamming distance and free energy. Frutos et
al. [6] proposed a template-map strategy to select a huge number of dissimilar
sequences. Hartemink et al. [7] implemented the program “SCAN” to generate
sequences for the programmed mutagenesis using an exhaustive search method.
Feldkamp et al. also proposed another sequence construction system “DNASe-
quenceGenerator” [§] using a directed graph.
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A second approach to sequence design is to use evolutionary algorithms. Arita
et al. [9] developed a DNA sequence design system using a genetic algorithm
and a random generate-and-test algorithm. Tanaka et al. [10] listed up some
useful sequence fitness criteria and then generated the sequence using simulated
annealing technique with these criteria. Ruben et al. developed “PUNCH” [12]
that employed a kind of genetic algorithm for the sequence optimization. And
Deaton et al. proposed DNA based evolutionary search method [13].

The review above allows us to consider DNA sequence design as a numerical
optimization problem given well-defined fitness measures. Based on the previ-
ous work [I4IT], we formulate the DNA sequence design as a multiobjective
optimization problem that is then solved by a genetic algorithm. This is im-
plemented as a component (NACST/Seq) in the DNA computing simulation
system, NACST (Nucleic Acid Computing Simulation Toolkit). NACST/Seq is
especially useful in its ability to generate reliable codes and to provide the user
with the flexibility of choosing optimal codes. The latter feature is attributed
to the Pareto optimal set of candidate solutions produced by the multiobjec-
tive evolutionary algorithm. In addition, for the analysis and visualization of
DNA sequence properties, we also developed NACST /Report, which is another
component of NACST.

Section 2 describes the algorithm of NACST/Seq. Section 3 presents the
software architecture of NACST. The sequence generation examples are shown
in Section 4. And future work is discussed in Section 5.

2 Sequence Design by Multiobjective Evolutionary
Optimization

As mentioned before, DNA sequence design can be considered as a numerical
optimization problem. Moreover, it involves simultaneous optimization of multi-
ple objectives. Most of the current sequence generation systems use the classical
multiobjective optimization method (e.g. objective weighting) or single objective
optimization method. But in many cases, there may not exist such a solution

Table 1. Objectives used by NACST/Seq.

Objective | Description

Similarity similarity between two sequences

H-measure|degree of unexpected hybridization between two sequences
3’-end “H-measure” in 3’-end of a sequence

GC Ratio degree of difference with target G, C portion

Continuity degree of successive occurrence of the same base
Hairpin likelihood of forming secondary structure

Tm degree of difference with target melting temperature
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as the best with respect to all objectives involved. Therefore, it may be useful
to recommend a set of solutions in which a solution is superior to the rest of
all in one or more objectives by a multiobjective optimization algorithm. The
fitness terms for sequence optimization are described in Table[Il These terms are
originally summarized by Tanaka [10], we refine these fitness measures as more
detailed numerical formulae for NACST /Seq [11]. With these seven objectives,
the sequence optimization can be written formally as follows:

A={AC G, T} A* denotes all possible sequences,

A (C A) means the generated sequence pool,

x e Aa fl S { fGC'ratioz mea fHaiTpin7 f3’—end;

fContinuitya fH—measuTea fSimilarity };
minimize F(7) = (f1(7), f2(T), .. , fa(T)): (1)

NACST /Seq finds the sequence pool As, which satisfy that F(A), F(A") 3i (i =
1,2,...,n) such that f;(A) < fi(A"). The set of these As in each generation
step is called the first Pareto front of that generation.

Fig.Mshows a multiobjective genetic algorithm implemented in NACST/Seq.

The optimization algorithm is based on NSGA (nondominated sorting genetic
algorithm) [15]. The original NSGA varies from simple genetic algorithms only
in the selection operator, but we customized additionally the crossover and mu-
tation operators to reflect the modified population architecture of NACST/Seq.
In simple genetic algorithms, a population represents the feasible space in which
each individual usually expressed through the bit string. But in NACST/Seq,
each individual indicates a pool of sequences and it is indispensable to apply the
evolutionary operators to each sequence for the evolution of whole population.
Therefore, the crossover and mutation operators are divided into two steps - one
is for individual level operation (step 1), the other belongs to sequence level (step
2). To improve the performance, we employ the elite strategy as shown in the
last step in Fig.[Iland remove the sharing parameter used original nondominated
sorting procedure by making the selection operator to work based on the rank
of Pareto front. More detailed explanations can be found in [I6].

3 NACST in Action

NACST consists of four independent components: NACST /Data, NACST/Seq,
NACST/Report and NACST/Sim. NACST/Data allows the user to import and
export the generated sequences and to edit functionality. NACST /Report shows
the statistical figures of the sequences and plots graphs according to these data.
NACST/Sim accomplishes DNA computing in silico.

In this paper, we focus on NACST /Seq with a brief description of NACST /Re-
port. Before introducing NACST/Seq, we illustrate its design requirements.
First, we require the fitness measures to be subdivided into fitness terms fine
enough to consider the various characteristics of DNA sequences. Second, the
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Fig. 1. Multiobjective genetic algorithm implemented in NACST/Seq.

sequence generation algorithm should be adaptable to various combinations of
fitness. Third, users should be able to choose and combine objectives flexibly.
Finally, the system should be able to show the generation result with the infor-
mation that is sufficient to help users make decisions.

3.1 NACST/Seq

The sequence generation part of NACST, namely NACST/Seq, is implemented
using C++ language in Linux platform and adopts a plug-in architecture that
makes it possible to develop each fitness plug-in separately and to assure a
future extension. In other words, we can add newly defined fitness plug-ins to
NACST/Seq causing no alteration of pre-developed program texts and apply
these plug-ins to the sequence generation process in run-time without the whole
recompilation of the system.

The sequence generation steps are shown in Fig. Pl The first step is to se-
lect the generation option. In this step, the user can choose one option among
“generate new sequences”, “generate sequences and add those to an existing se-
quence pool” and “add a sequence to a pool manually”. The first option means
the generation of new sequences and new pools, the second option in this step
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Fig. 2. Sequence generation process in NACST/Seq.

implies not a simple generation of sequence pools but a consideration of exist-
ing sequences in the generation of new sequences, and the last means that the
user can add the existing sequence to a pool. The sequence structure, normal
and hairpin, can be selected in the second option window. The option “normal”
prevents the generation of self-complementary sequences, while the “hairpin” op-
tion acts vice versa. Because some DNA computing procedure needs to form the
secondary structure intentionally [I7]. Then, the general sequence option win-
dow appears. In this window, the number of sequences and the length of each
sequence are adjusted. Next, the fitness option window provides the functional-
ity of the combining and weighting the objectives. If the selected fitness needs
additional arguments, the user can call up the sub-windows for tuning these
arguments. For example, “Melting Temperature” needs the choice of the user
between GC ratio and NN (nearest neighbor) methods. In addition, the oligo
and Na+ concentration should be offered, if the user select the NN method. In
this step, we can decide abundant properties of the generated sequences. Fi-
nally, the options for the genetic algorithm are determined. These include the
generation number, the population size, the crossover and mutation rates. After
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execution of sequence generation, the main window shows the result sequences
with their melting temperature and GC ratio.

3.2 NACST/Report

Another application of NACST is the analysis of sequence pools. Fig. [3] displays
the analysis functions of NACST /Report.
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Fig. 3. Functions in NACST/Report.

After the generation process described in the previous section, the results
are saved in a file. Then, NACST /Report loads this results (Fig. BF1). In fact,
NACST /Report can load any sequence pool saved in its format and analyzes
various aspects of the loaded sequence pools (Figs. B}2,-3,-4)). In window 2
(Fig. B-2), one can examine all sequence pools by the comparison of those fitness
value measured through each objective used in optimization procedure. Window
3 (Fig. BF3) provides the graphical representation of the superiority of fitness
value in each sequence between two selected pools. At last, one can investigate
the properties of a pool in window 4 (Fig. Bt4). For instance, it can highlight
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the position of a specific sub-sequence in a pool, find all complementary sub-
sequences of user’s input sequence, and mark all successive occurrence of the
same base running over the threshold. These features can be put into practice,
for example, predicting and analyzing the sequence properties in PCR experi-
ments.

4 Working Examples

To demonstrate the working of the algorithm, we investigate some examples.
First, We scored sequences in [I] using NACST/Seq. As we expected, ‘Good
codes’ get better (lower) scores. For more details about this test can be found
in [11].

Table 2. Fitness of the codes in Deaton’s paper.

Sequence (5" — 3') [[H-measure[3’-end[Similarity[Continuity[Hairpin[GC%] Tm
Good codes
CTTGTGACCGCTTCTGGGGA 82 21 34 16 3 60(62.83
CATTGGCGGCGCGTAGGCTT 50 49 15 0 3 65|71.06
ATAGAGTGGATAGTTCTGGG 19 14 41 0 6 45(54.90
GATGGTGCTTAGAGAAGTGG 34 9 20 0 0 50(57.50
TGTATCTCGTTTTAACATCC 46 3 5 16 11 35|50.59
GAAAAAGGACCAAAAGAGAG 19 2 2 41 0 40(54.89
TTGTAAGCCTACTGCGTGAC - - - 0 6 60|58.87
Bad codes
ATCAGCTGGATTCATCTGAA 179 95 177 0 9 40(55.94
ATCAACAGAAATCCGCGGAA 139 67 74 9 6 45(61.64
ATCAGCTGAGGTCTGGTGAG 102 10 87 0 12 55(59.78
GTCCGCTGTATTCTCGTGAT 48 11 32 0 0 50(59.24
TTCAACTGTTTTCAGCTGTG 51 14 38 16 10 40(52.69
TTCACCTTTATTGAGCCGAA 29 12 20 9 9 40|53.83
TTCAGCCGATTTGCGGAGAA - - - 9 19 50|61.06

And then, we generate the vertex sequences for the traveling salesman prob-
lem (refer to [11]) using all objectives. The genetic algorithm parameters used
are: the population size is 200, the generation number is 1000, the crossover rates
for the steps 1 and 2 are 0.97, and the mutation rate is 0.3. Fig. @] shows the
evolution of fitness values. As generation goes on, the algorithm finds the more
suitable individuals for each objective. Especially, for hairpin, melting tempera-
ture, and GC ratio objectives, the optimal individuals are found in early steps,
i.e. each fitness is zero. But, with respect to the average value of all objectives,
which is usually regarded as a measure in single objective optimization meth-
ods, NACST/Seq shows relatively weak optimizing power. As a cause of this
phenomenon, we conjecture that there exist some conflicts between objectives.
That is to say, since one objective has the trade-off with other objectives, an
individual optimized for one objective lost the fitness of other objectives reduc-
ing the influence of optimization in the average value of objectives. To confirm
this connection of objectives, we repeat the generation process with the selected
objectives considered as conflicting ones.
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Fig. B shows that there exist weak relations between continuity and H-
measure, thus the algorithm works efficiently. While Fig. [l and Fig. [ depict
other cases, the results confirm our expectation that there exist some conflicts
between objectives. Because similarity has heavy inverse relations to H-measure
and 3’-end, NACST /Seq explores multiple solutions between these two objectives
instead of needless searching global one. This fact implies that there exist some
difficulties (e.g. biased optimization) with classical approaches to the problem.

Table [B shows the result of analysis in TSP vertex generation using window
(2) in Fig. Bl NACST/Report can evaluate a sequence pool designed by other
sequence generators or human experts. The values listed in the last row of Table
Bl came from [I1], we got those values with the single objective evolutionary
algorithm using the sum of objectives. As shown in Table B, NACST/Seq can
find many alternative better sequence pools than that of the single objective
optimization method.
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Table 3. Fitness of the generated vertex sequences for T'SP.

No. [ GC% | Tm [ Continuity [ Hairpin | H-measure | Similarity | 3’-end
NACST/Seq
0 5 4.7827 86 32 2033 1982.5 291
1 35 0 45 24 2107 1903.5 255
2 35 11.6674 0 22 2081 1948.5 225
3 65 13.6196 61 0 2160 1852.5 282
4 55 24.5350 196 3 1223 2658.5 116
5 95 24.7548 131 22 2182 1683.0 304
6 70 26.2218 111 15 1435 2549.0 75
7 35 7.3607 43 3 1848 2054.0 204
8 30 0.4267 36 6 1957 1980.0 217
9 45 12.8784 18 7 1929 2021.5 182
Single-objective evolutionary algorithm with sum of fitness values
0 ][ 35]  4.6080] 61] 16] 1333  2575.0] 80

5 Discussion

In this paper, we described the evolutionary sequence generator called NACST/
Seq and NACST /Report, which were implemented as components of the DNA
computing simulator, NACST (Nucleic Acid Computing Simulation Toolkit). We
formulated sequence design as a multiobjective optimization problem and used
a nondominated sorting procedure to generate the multiple candidate sequence
pools. NACST/Seq can generate the promising DNA sequences and ensure that
the user is able to choose more suitable sequences for the specific DNA experi-
ments. NACST/Report provides the analysis and visualization of the sequence
properties. This feature allows the user to investigate sequences in silico before
real bio-chemical experiments.

The work in progress is to build a simulation system (NACST/Sim) of DNA
computing that considers the thermodynamics of DNA sequences. We also plan
to verify the practical usefulness of the sequences generated by NACST/Seq with
real bio-chemical experiments. Additionally, objectives functions will be refined
for physical model of DNA fidelity.
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