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Abstract

This paper proposes a new multiobjective fuzzy opti-
mization method. First, the unsatisfying function, which
is more useful and effective as the expression of fuzzi-
ness for optimization problems than the membership
function, is introduced. The multiobjective optimization
problem is transformed into a satisficing problem by us-
ing aspiration levels, and the fuzzy satisficing problem
is formulated. Then, the interactive design method to
minimize the maximum unsatisfaction rating by Genetic
Algorithm is proposed. The effectiveness of the proposed
method is demonstrated by the design example of an ac-
tive suspension system. The trade-off graph is used in
order to seek a satisficing solution, which reflects the de-
signer’s preference, more interactively and graphically.
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1. Introduction

In design problems, it is often required to minimize
or maximize several objectives subject to several con-
straints, and such a problem is formulated as a multi-
objective optimization problem. Since there is usual-
ly no complete optimal solution, it is important to ad-
just trade-off between conflicting objectives in order to
obtain a Pareto optimal solution. The multiobjective
optimization problem can be transformed into a satis-
ficing problem by introducing aspiration levels for the
objectives. Since the aspiration levels are usually decid-
ed according to the designer’s subjective estimation or
judgement based on some knowledge, information, expe-
rience, etc., they contain fuzziness. And the constraints
also have impreciseness or uncertainty. Thus, it is effec-
tive to introduce the fuzzy logic [1] and formulate the
problem as a fuzzy optimization (or satisficing) problem
[2]. In the conventional fuzzy logic, fuzziness is defined
by the membership function, and in fuzzy mathematical
programming methods, the membership function usually
represents the satisfaction rating (degree of satisfaction)
for the constraints. However, the problem formulation
and the calculation are more complicated than those of
other (non-fuzzy) mathematical programming methods.
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Furthermore, especially when design specifications are
severe, it seems preferred for the designer to formulate
the design problem as the minimization of unsatisfac-
tion rating rather than the maximization of satisfaction
rating. From such viewpoints, Sunaga et al. [3] have pro-
posed to express fuzziness by the unsatisfying function
and formulate the fuzzy optimization/satisficing prob-
lem by using the unsatisfaction rating.

This paper treats the multiobjective optimiza-
tion/satisficing problem with fuzziness. First, we in-
troduce the unsatisfying function and the unsatisfaction
rating. The fuzzy satisficing problem is formulated as
the minimization of the maximum unsatisfaction rating.
The effectiveness of the proposed method is demonstrat-
ed by the design example of an active suspension system,
which is the simultaneous optimization of a structure
and control system. Genetic Algorithms (GAs) are effec-
tive tools to solve multiobjective optimization problems
[4], [5]. Since they propose some solutions by one search,
the designer can select a preferred solution. Thus, we ap-
ply a GA to solve the problem, and the trade-off graph
[6] is used in order to seek the satisficing solution, which
reflects the designer’s preference, more interactively and
graphically.

2. Problem Formulation

In this section, we introduce the unsatisfying func-
tion [3] and its application to multiobjective optimiza-
tion problems.

2.1 Unsatisfying Function

The membership function u(z) used in the fuzzy logic
is of a range {0, 1], and it can be transformed into the
following function 7(z) with a range [0, oco]:

1
7(z) = @) 1, (1)
u(z) = T+—l_r@‘5 (2)

The relationship between these two functions are shown
in Fig.1. The function 7(z) is named the unsatisfying
function, and its value is called the unsatisfaction rating.
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Fig.1 Relationship between membership function p(z)
and unsatisfying function 7(z).
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The unsatisfying function is similar to the penalty func-
tion used in the mathematical programming (as shown
in Fig.2 in sub-section 2.2). The membership function
and the unsatisfying function take one-to-one correspon-
dence, and it is possible to express fuzzy set theory by
using the unsatisfying function.

In satisficing problems, as shown in the next sub-
section, it is usually bad to exceed restriction values.
Since it can be interpreted that

7(z) = 0 (p(z) = 1); can be sufficiently satisfied,

7(z) = 1 (u(z) = 0.5); can be accepted to this level,

7(z) = oo (u(z) = 0); cannot be accepted,
it is easier for a designer (decision maker) to define fuzzi-
ness by the unsatisfying function than the membership
function. Furthermore, in convex programming prob-
lems where the objective function and the constraint
functions are convex, the local optimal solution becomes
the global optimal solution. Thus, from the viewpoint
of calculation for optimization, it is convenient to treat
convex functions. In general, the membership function
is not a convex function, but the unsatisfying function
can be easily set up to the convex function. Therefore, it
can be considered that the unsatisfying function is more
useful than the membership function as the expression
of fuzziness in optimization problems.

2.2 Formulation of Fuzzy Satisficing Problem

In real world design problems, there are usually multi-
objectives and multi-constraints, and they are formulat-
ed as the following multiobjective optimization problem:

Minimize {fi(x),:--, fm(x)},
subject to g;(x) <b; i =m+1,---, M),

(3)
where « is the vector of decision variables, f;(z) is the
objective function, and g;(x) < b; is the constraint. Usu-
ally, there is no complete optimal solution for this prob-
lem, and we need to find a Pareto optimal solution. One
of such methods is to transform this problem into a sat-
isficing problem.

By using the aspiration level f?, each objective in the
problem (3) can be written as

T(x)
@=02 @=05 @a=10
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Fig.2 Unsatisfying function 7(z) and unsatisfying
coefficient a.

film) < fF (i=1,---,m). (4)

This means that the designer wants to make f;(x) s-
maller than f?. Then, the optimization problem (3) is
considered as the satisficing problem of the constraints.
That is, the multiobjective optimization problem (3) is
transformed into the following satisficing problem:

Find = which satisfies g;(z) < b; (i=1,---,M). (5)

For calculation, we need to normalize the constraints in
(5). When b; # 0, they can be normalized as follows:

oy = gi(x) = b
gi(x) = —('b—'— <0, (6)
164
and when b; = 0, by using an appropriate value b;(> 0),
we can set 9i(z)
gi(z) = T=— <0. (M
(63

Consequently, the satisficing problem (5) is transformed
into the following form:

Find z which satisfies g;(z) <0 (i=1,---,M). (8)

It is often difficult to set up an aspiration level f?

"appropriately for each objective f;(x). When b; and f?

are severe, there may be no feasible region for (8), and
the designer must re-set (relax) some of them to have
feasible region. Usually, b; and f? have fuzziness, and
the fuzzy set theory is very effective for such cases. Here,
we introduce fuzziness to b; and f?. Suppose that the
designer can accept g;(x) to a degree over 100a;% for
the restriction value b;. In other words, g;(z) can be
accepted to the extent of (1 + «;)b;. This means that
the following unsatisfying function is approximately 1:

r(e) =max{ Za(z) 0 |, (9)

where o; is called the unsatisfying coefficient, and it is
assumed that o; # 0 {a; = 0 means non-fuzzy). The re-
lationship between 7;(x) and §;(x) for some «; is shown
in Fig.2. Of course, other types of unsatisfying func-
tion can be used, but 7;(x) in (9) is simple and easy for
formulation and calculation.
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In real-world design processes, the designer usually
refers to other design cases, experiences, some informa-
tion, sense, etc., and aspiration levels are determined
based on such ones. Since he/she considers that it is
bad to violate the constraints, and wants to reduce the
excess over the restriction values as much as possible, the
use of unsatisfaction rating is more intuitive and useful
for the designer rather than satisfaction rating,.

In conventional fuzzy optimization methods using the
membership function, the fuzzy decision should be made
s0 as to unify the membership functions of the objectives
and constraints. The similar decision can be applied to
the method using the unsatisfying functions. In (1}, p-
norm of 7;(xr) is adopted. In this paper, we define 7p(x)

Tp(x) =mzax{ n(z), -, 7m(x) }, (10)

and the decision-making is the minimization of 7p(x).
That is, the problem is given by

Find = which minimizes 7p(x). (11)

There are no distinctions between objectives and con-
straints in the multiobjective satisficing problem (5).
And we sometimes need to solve a single-objective op-
timization problem whose objective is a particular con-
straint (e.g., for setting up the aspiration level for an
objective when there is no information on it). Now, sup-
pose that the problem is to solve a single-objective op-
timization with the objective gas(x). If we set up its
unsatisfying coefficient a)s sufficiently larger than oth-
er a;(i = 1,---,M — 1), it becomes equivalent to the

following problem
Minimize g (x)4,
. gm(@)+ _ (12)
subject to gi(z) <0(i=1,---,M —1),

where the subscript “+” denotes that a;y =afora >0
and ay+ = 0 for a < 0. And if we can assume that
gm(x) > 0, gu(x)+ can be replaced by gu(x) or g ().
That is, the proposed method is available for single-
objective optimization problems. (See section 4.)

3. Genetic Algorithms

3.1 Interactive Optimization Method

As the optimization method, we use Genetic Algo-
rithms. GAs do not require the condition that the search
space is differentiable and continuous. Another advan-
tage is that GAs offer several candidate solutions to the
problem. That is, most conventional optimization meth-
ods offer only one solution, but GA shows a group of
solutions to the designer by one search. This proper-
ty is favorable especially for multiobjective optimization
problems where the unique solution does not exist.

In the proposed method, if the designer is not satisfied
with any solutions obtained in the first search, he/she
seeks a preferred solution by re-setting b; and «;. In

Fig.3 Active suspension model.

that case, we use the trade-off graph [6] on which the
previous results are plotted so as to decide the new values
interactively and graphically. The same procedure will
be repeated until the designer finds a satisfying solution.

3.2 GA Optimization

In this paper, we consider the simple GA [7] which
consists of the following operations:

1) Reproduction: We adopt the roulette-wheel selection
in which the next generation is chosen at random in pro-
portion to the fitness of each individual. Furthermore,
we use the elite preserve strategy in which the individual
with maximum fitness is chosen by compulsion.

2) Crossover: For a pair coupled randomly, crossover op-
eration is performed with crossover probability P.. The
one-point crossover is used.

3) Mutation: After crossover, for each bit (binary code)
in a individual, the bit value is inverted with mutation
probability P,,.

4) Fitness function: The fitness function is defined as
follows: 3

fitness = (13)

1+ 7p(z)’
where (3 is a parameter which adjusts the range of the
fitness value.

4. Design of Active Suspension System

In this section, we apply the proposed method to the
design of the active suspension system [8]. This is the
simultaneous optimization of a structure/control system.

4.1 Active Suspension System

The active suspension system is shown in Fig.3, which
is a simple car model. Here, each notation is as follows:
m;: unsprung mass (tire), my: sprung mass (car body),
ky: tire stiffness, ko: suspension stiffness, c¢: damping
coefficient, z,: road excitation, zi: vertical displace-
ment of m;, z,: vertical displacement of ms, u: control
force by actuator.

The state equatiqn is described as follows:

&(t) = Ax(t) + bu(t) + dw(t), (14)
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and “T” denotes the transpose. As the control method,
we consider the state feedback law as follows:

u(t) = - f=(1). (15)

That is, the design parameter of the control system is
the 1 x 4 gain vector f.
4.2 Design Requirements

In this example, we consider the following objectives
and constraints for simplicity:

1. Riding comfort J;: In order for a person in a car to
feel comfortable, it is required to reduce the vertical ac-
celeration of the car body for a disturbance of the road
surface in the specific frequency domain 4 ~ 8 Hz where
a person feels most uncomfortable. Thus, we set J; as
the area of the gain curve (£;/z,,) in 4 ~ 8 Hz.

2. Running stability J;: For stable braking and corner-
ing, it is required to reduce the fluctuation of frictional
force between tire and road surface. Since a tire is mod-
eled as an elastic spring in Fig.3, the fluctuation of the
frictional force arises from one of tires. Thus, as J;, we
consider the overshoot of x; when a step displacement
is given to z,,.

3. Posture of car body J;: For stable steering, it is re-
quired to maintain a car body flat. Thus, we set J3 as
the overshoot of 2 when a step displacement is given to
Ty In general, J, and J3 are in competitive relations.

4. Constraints : It is known that the larger damper coef-
ficient can reduce the vibration in resonance domain, but
it will enlarge the vibration transmission ratio in high
frequency domain. Thus, we give the upper bound ¥ to
the damping ration . We also give the upper bound

Umax to the maximum control input Upya.x. Of course,
the feedback system must be stable.

In this example, the design variables are kg, ¢ and f.
Other parameters are
my = 50.0{kg], mz = 320.0(kg], k1 = 1.45 x 10°[N/m).
Then, the problem is formulated as follow:

Find k;, ¢, and f,

which minimizes J;, J2, and Js,

subject to vy < 7, (16)
Umax S Umax7
stability of the feedback system.
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Fig.4 Trade-off graph in Stepl.

Here, J;, J3 and Unax are calculated by the simulation.
Furthermore, if one of the four eigenvalues of (A—bf) is
positive, we set the fitness of the individual zero in GA.

4.3 Interactive Design

The system is designed interactively using the pro-
posed method. Let us assume that it is difficult for
the designer to give the aspiration level for J;. Thus,
at first, he/she needs to solve a single-objective opti-
mization problem on J; to estimate its value. Then, -
he/she shall solve a multiobjective optimization prob-
lem according to the design procedure.

Step 1: Estimation of aspiration level for Jy

In order to estimate Ji, a single-objective optimiza-
tion problem on J; is formulated. The aspiration level
for J; is set up as a small value such as &; = 50, and the
unsatisfying coefficient is set up as a large value such
as a; = 30, comparing with others. Other parameters
a; and b;(4 = 2,---,5) are shown in Table 1, and we
consider the road displacement z,, = 0.02]m)].

Table 1 Parameters in Stepl.

J1 Ja J3 Umax Y
b; 50 0.025[m] | 0.025[m] | 90[N] | 0.24
a; 30 0.08 0.08 0.11 0.08
(1 + o)b; 1550 | 0.027[m] | 0.027[m] | 100[N] [ 0.26

The result is plotted on a trade-off graph in Fig.4,
where individuals with extremely large unsatisfaction
rating are excluded. Fig.4 shows that minimum value
on J; is about 192.5 since the unsatisfaction rating 7
converges on about 0.095. As most of the unsatisfaction
ratings for both J; and Js are in excess of 1, we find that
their aspiration levels may be a little large, and they are
in competitive relations. Furthermore, it seems that the
unsatisfaction ratings for J, and J3 can be improved if
we accept deterioration of v.

Step 2: Interactive design process

Suppose that the designer wants to improve J; by
deteriorating J and <. He/she tries to make the sat-
isfaction rating on J3 smaller than 1, by setting up the
parameters as @z = 0.14 and b5 = 0.25. Furthermore,
he/she expects that J; also can be improved some more
since the conditions on J; and < are relaxed, and sets
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up b; = 180 and ay = 0.07. They are shown in Table 2
with superscript “ * ”.

The result is shown in Fig.5 and Table 3. Fig.5
shows that the unsatisfaction ratings on J; and J3 are
improved. If the designer is satisfied with this result,
he will choose one satisficing solution. If he/she is not

satisfied, same procedure will be iterated.

Table 2 Parameters in Step2.

J1 J2 J3 Umax v}

b; 180 | 0.025[m] | 0.025[m] | 90[N] | 0.25°

oy 0.07* 0.14* 0.08 0.11 0.08
(1 + a;)b; || 192.6 | 0.0285[m)] | 0.027[m] | 100[N] | 0.27

Table 3 Best fitness.

No e T2 T3 Ty Ts

1 | 0.8284 | 0.8276 | 0.8033 0 0.4306

2 || 0.8340 | 0.8055 | 0.7770 0 0.4306

3 |l 0.8198 | 0.8282 | 0.8515 0 0.1429 |

4 0.8095 | 0.8367 | 0.8629 0 0.0657

5 0.8645 | 0.7670 | 0.8398 | 0.2221 | 0.3276 |

4.4 Simulation

The simulation result is shown for z,,(t) = 0.02[m]
(t > 0) when the designer chooses the best fitness in
Table 3. Here, the design parameters are given by

ky = 1.8209 x 10*[N/m], ¢ = 1.2485 x 10°[Ns/m)],

f=[-111546 794.521 3.914 - 818.004].

Fig.6 shows the responses of z; and z2, and Fig.7 shows
the profile of control force by actuator. The transient
responses will be improved by setting other performance
indices.

5. Conclusions

In this paper, we have proposed a new interactive
fuzzy optimization method using the unsatisfying func-
tion, and it has been applied to the design problem of an
active suspension system. The unsatisfying function is
more intuitive for a designer than the membership func-
tion. The problem is formulated as the minimization of
the maximum unsatisfaction rating for each constraint.
By using GA with trade-off graphs, the proposed method
becomes more interactive and graphical.
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Fig.6 Step response.
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