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Abstract - Combining horizontal flow treatment wells 

(HFTWs) with in situ biodegradation is an innovative 

approach with the potential to remediate perchlorate-

contaminated groundwater.  A model has been 

developed that combines the groundwater flow induced 

by HFTWs with  biodegradation processes that result 

from using the HFTWs to mix electron donor into 

perchlorate-contaminated groundwater.  The model 

can be used to select engineering design parameters 

that optimize performance under given site conditions.  

In particular, one desires to design a system that 1) 

maximizes perchlorate destruction, 2) minimizes 

treatment expense, and 3) attains regulatory limits on 

downgradient contaminant concentrations. 

Unfortunately, for a relatively complex technology like 

in situ bioremediation, system optimization is not 

straightforward. In this study, a general multi-

objective parallel evolutionary algorithm call 

GENMOP is developed and used to stochastically 

determine design parameter values (flow rate, well 

spacing, concentration of injected electron donor, and 

injection schedule) in order to maximize perchlorate 

destruction while minimizing cost. Results indicate that 

the relationship between perchlorate mass removal and 

operating cost is positively correlated and nonlinear.  

For equivalent operating times and costs, the solutions 

show that the technology achieves higher perchlorate 

mass removals for a site having both higher hydraulic 

conductivity as well as higher initial perchlorate 

concentrations.  

1.0 Introduction 

Perchlorate is an oxyanion that the aerospace industry has 
used since the 1940�s as a constituent in solid rocket fuel 
(EPA, 1999; Herman and Frankenberger, 1998).  Due to 
the absence of legal restrictions, a lack of knowledge of 
perchlorate health effects, and a deficient understanding of 
the processes affecting perchlorate fate and transport, 
significant quantities of ammonium perchlorate were 
released into the environment over the years (Urbansky, 
1998),  resulting in perchlorate groundwater contamination 
problems that we face today.  Perchlorate contamination  
from these past practices now affects the drinking water of 
15 million U.S. citizens (EPA, 1999). 

The views expressed in this article are those of the authors and do not 
reflect the official policy of the United States Air Force, Department of 
Defense, or the U.S. Government.

The chief health problem caused by perchlorate is due to 
its potential to interfere with hormone production in  
humans.  The thyroid gland normally uptakes iodide from 
the bloodstream to make hormones; however, the presence 
of perchlorate in the bloodstream causes the thyroid gland 
to uptake perchlorate instead of iodide, thereby disrupting 
hormone production.  Animal studies also show 
perchlorate's potential to interfere with muscle movement 
(Urbansky,1998).   
 Unfortunately, perchlorate is mobile and 
persistent in the natural environment.  The perchlorate 
problem is exacerbated because remediation of 
perchlorate-contaminated water is difficult.  Conventional 
methods of remediating perchlorate-contaminated 
groundwater involve so called �pump-and-treat� 
technologies.  That is, groundwater is pumped to the 
surface for treatment.  Pumping the contaminated water to 
the surface involves additional costs, risks, and regulatory 
requirements.  In addition, many aboveground treatment 
technologies, like ion exchange and reverse osmosis, 
merely concentrate the contaminant, but do not destroy it.  
For these reasons, researchers have been investigating 
technologies that can be applied to destroy the 
contaminant in place below ground (or in situ).  One such 
technology, in situ bioremediation, makes use of 
indigenous microorganisms.  Fortunately, it has been 
shown that perchlorate can be used as an electron acceptor 
by certain microorganisms, which appear to be ubiquitous 
(Wu et al., 2001).  In situ perchlorate bioremediation 
involves mixing an electron donor (like ethanol or acetate) 
into perchlorate-contaminated water, which is then 
injected into the subsurface where these microorganisms 
biochemically reduce the perchlorate to innocuous 
byproducts.  A system to mix electron donor into 
perchlorate-contaminated groundwater, without having to 
pump contaminated water aboveground, is illustrated in 
Figure 1.  This system which is known as a horizontal 
flow treatment well (HFTW) system (Stoppel and Goltz, 
2002; Parr, 2002; Knarr, 2003), consists of two treatment 
wells, each with two screened intervals.  One well pumps 
contaminated water in an upflow direction, the other in a 
downflow direction.  After electron donor is added to the 
water, it is injected into the aquifer (through the upper 
screen of the upflow well and the lower screen of the 
downflow well) where bioactive zones form.  In the 
bioactive zones, indigenous microorganisms consume the 
electron donor, in the process destroying the perchlorate, 
which serves as an electron acceptor.  Note that a field 



demonstration of this approach is planned to begin in late 
2003.   
 In order to apply the technology in the field, 
project managers need to understand how contaminated 
site conditions and technology design parameters impact 
technology performance.  One way to gain this 
understanding is to use a technology model to select 

Figure 1.  Cross-sectional view of horizontal 

flow treatment well (HFTW) system used to induce in 

situ bioremediation of perchlorate-contaminated 

groundwater. 

engineering design parameters that optimize performance 
under given site conditions.  In particular, a project 
manager desires to design a system that 1) maximizes 
perchlorate destruction, 2) minimizes treatment expense, 
and 3) attains regulatory limits on downgradient 
contaminant concentrations.  Unfortunately, for a 
relatively complex technology like in situ bioremediation, 
with a number of engineering design parameters to 
determine, as well as multiple objectives, system 
optimization is not straightforward.     
 In this study, a multi-objective evolutionary 
algorithm (MOEA) is used to determine design parameter 
values (water flow rate through the treatment wells, 
treatment well spacing, concentration of injected electron 
donor, and injection schedule) that optimize the first two 
objectives; to maximize perchlorate destruction while 
minimizing cost.  Multi-objective optimization is briefly 
addressed in Section 2, then the HFTW problem is 
formulated in Section 3.  A generic MOEA is developed in 
Section 4 with the experimental design defined in Section 
5 and results discussed in Section 6. 

2.0 Multiple Objective Optimization 

A multi-objective optimization problem (MOP) consists of 
decision variables, two or more objective functions, and 
constraints.  These three components of an MOP are 
decision variables., objective function: and constraints. 
Standard MOP and multi-objective evolutionary algorithm 

(MOEA) definitions and nomenclature can be found in  
(Coello Coello et al., 2002).  Such symbolic formulation 
includes feasible regions in objective space, feasible 
solutions, solution dominance and non-dominance, true 
and approximate Pareto optimal solutions P*/ Pknown and 
Pareto front PF*/ PFknown, fitness sharing, niche count, 
sharing function, mating restrictions, ranking and the 
required evolutionary algorithm characteristics. The goal 
of a Pareto-based MOEA is convergence of PFknown

towards PF*.  MOEAs operate on a population of 
candidate solutions (chromosomes) as opposed to a single 
solution; therefore, the strength of an MOEA is its ability 
to uncover multiple nondominated solutions (Pknown).
 Various MOEAs have been proposed including 
the original Multi-Objective Genetic Algorithm (MOGA) 
by Fonseca and Fleming (1993) which used ranking and 
fitness sharing. Horn et al. (1994) developed the niched 
Pareto genetic algorithm (NPGA), which uses Pareto 
domination tournaments and fitness sharing chromosome 
selection.  Srinivas and Deb (1994) introduced the 
nondominated sorting genetic algorithm (NSGA), so-
named because it is based on a nondominated sorting 
procedure.  Deb et al. (2002) developed the non-
dominated sorting genetic algorithm-II (NSGA-II) to 
rectify flaws of the original NSGA. Many other variations 
also exist (Coello Coello, Van Veldhuizen, Lamont, 2002).  
For this application we develop our own parallel MOEA 
that incorporates appropriate constructs. 

3.0 Formulation of HFTW MOP 

A technology model was developed that incorporated the 
important processes that affected the fate and transport of 
perchlorate undergoing in situ bioremediation induced by 
using an HFTW system to add electron donor into 
perchlorate-contaminated groundwater (Parr, 2002).  The 
model simulated the steady-state groundwater flow field 
resulting from operation of the HFTWs, and then used this 
flow field to determine dissolved perchlorate transport, 
competing electron acceptors (oxygen and nitrate), and 
electron donor (acetate) over time.  Acetate was assumed 
to be added at the treatment wells at a specified 
concentration and schedule, and initial and boundary 
concentrations were specified for the other compounds.  
Microorganisms were assumed to be immobile, with the 
rate of microbial growth described by dual-Monod 
kinetics; that is, the growth of the microorganisms 
depended upon consumption of the electron donor in the 
presence of one or more of the electron acceptors.  
Similarly, consumption of the electron donor (acetate) and 
acceptors (oxygen, nitrate, and perchlorate) was described 
by Monod kinetics.  In particular, the rate of consumption 
of perchlorate was directly related to the concentration of 
microorganisms and electron donor, and was slowed by 
the presence of the competing electron acceptors (oxygen 
and nitrate). The model includes ten nonlinear differential 
equations with various aquifer, kinetic parameters and 
constraints (Parr, 2002; Knarr 2003).  These equations 
were numerically solved using a self-adaptive, partial 
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implicit finite difference technique coded in FORTRAN 
over a rectangular grid (Knarr, 2003).                   
 Having developed a technology model, we can 
formulate an HTFW multi-objective problem.  Over a 
given time of technology operation, we desire to 1) 
destroy as much perchlorate as possible and 
simultaneously 2) keep operating costs of the remediation 
technology low.  These objectives can be represented as f1

and f2, respectively. Decision variable characteristics must 
be identified so that a site engineer could manipulate them 
in order to pursue these objectives.  Such characteristics 
are:

Q = pump rate (m3/day) for each well in the HFTW 
d = spacing between the two treatment wells  (meters) 
Cin = injected concentration of acetate (mg/L) 
p = acetate injection pulse duration (in 32nds of a day) 

We now want to mathematically express the objectives f1

and f2 as functions of the decision variables.  However, 
objective f1 (mass perchlorate destroyed) cannot be 
explicitly written as a function of the decision variables.  
Looking at the technology model, we can see that f1 is a 
function of the decision variables, but determining f1 for a 
given set of decision variable values requires numerical 
evaluation of the set of partial differential equations that 
comprise the technology model.   Therefore, objective f1 is 
generally represented as Mass perchlorate destroyed = 
f1(Q, d, Cin, p). The relationship between f2 (total operating 
cost) and [Q, d, Cin, p] can be explicitly formulated.  To 
simplify our comparison of operating costs for different 
implementations of the remediation technology, operating 
cost differences are assumed to be due only to differences 
in a) the cost of electron donor and b) the cost of operating 
the pumps.  That is, we implicitly assume that capital 
costs, as well as other recurring costs (e.g.  maintenance) 
for different technology implementations are equal.   
 Cost of electron donor depends upon how much 
electron donor is injected over the duration of the 
remediation period t, and we can write this cost as: 
Material cost = 2* Q * t * Cin * p/32 *  
                                                            1000 L/m3*Pricedonor

 with the following parameter values: 
number of treatment wells = 2 
treatment period (days) = t 
maximum pulse duration (32 pulse units = 1 day) = 32 
conversion factor = 1000 L/m3

Pricedonor = price of electron donor injected ($/mg donor) 
The remediation technology also incurs the cost of 
operating the pumps in the two HFTWs.  Assuming 
continuous pump operation, the pump cost equation 
becomes: 
Pump cost = 2* Q * t * E * Priceelec

With the following parameter values: 
number of treatment wells = 2 
E = energy required to overcome headloss (kW-hr per m3 ) 
Priceelec = price of electricity ($/kW-hr) 
Objective f2 can explicitly be defined as a function of 
decision variables noting that Operating cost = Material 
cost + Pump cost: 

f2(Q, Cin, p)  =  2* Q * t * Cin * p/32 * 1000 L/m3

            * Pricedonor   +   2* Q * t * E * Priceelec

f2(Q, Cin, p) = 2* Q * t * (Cin * p/32            
                          * 1000 L/m3 * Pricedonor   +   E * Priceelec)
Finally, we must recognize the constraints that our 
problem domain imposes.  The technology model imposes 
lower and upper bounds on each of the decision variables 
which we can designate as Qmin, Qmax, dmin, dmax, Cin,min, Cin, 

max, pmin, and pmax.  With our objectives, decision variables, 
and constraints identified, a multi-objective problem can 
be formulated; i.e., search for all vectors x = [ Q, d, Cin, p]
that: 
         maximize f1(x) = mass perchlorate  destroyed and
         minimize f2(x) = 2* Q * t * (Cin * p/32 * Pricedonor    
                                    +    E * Priceelec)
    subject to the following constraints: 
 Qmin Q Qmax; real-valued 
 dmin d dmax; integer-valued 
 Cin,min Cin Cin, max; real-valued 
 pmin p pmax; real-valued. 
The specific objective is to find sets of engineering 

parameters [Q, d, Cin, p] that yield an optimal trade-off 

relationship between technology effectiveness (with 

respect to perchlorate mass removal) and cost.  Ideally, 
the solution set [Q, d, Cin, p] should be further constrained 
to values that yield downgradient perchlorate 
concentrations that fall below some maximum level. The 
rationale for this constraint is that regulations typically 
prescribe a maximum contaminant level downgradient 
from the source.  However, the ability of the technology to 
yield sufficiently low perchlorate levels is largely 
uncertain and thus, this additional constraint would risk 
over-constraining the problem and yielding no solutions.  
Therefore, instead of formulating downgradient  
perchlorate  concentration as an objective or constraint, we 
simply monitor downgradient perchlorate concentration to 
gain an understanding of how different technology 
implementations affect the relative magnitude of this 
important parameter. 
 There are some important considerations in 
selecting a suitable search algorithm to solve this problem: 
1) Objectives f1 and f2 have common decision variables 
[Q, Cin, p], but the mathematical relationship between f1

and f2 is unknown.  In other words there is no analytical 
expression for the theoretical Pareto Front (PF*). 2) An 
explicit relationship between f1 and [Q, d, Cin, p] is 
unavailable. 3) Because a discrete plot of the Pareto front 
is the only representation achievable, the plot must 
adequately span the extremities of the Pareto front. 4) Due 
to the relatively long computation time in evaluating a 
decision variable set with the technology model, an 
efficient stochastic search algorithm is essential.

4.0 Specific MOEA Development 

In developing an appropriate MOGA to solve the proposed 
HFTW problem, the following characteristics are 
necessary: Pareto-based, real-valued crossover and 
mutation operators, fitness sharing, and parallel 



computation.  Parallelization is a practical necessity due to 
the intensive computation requirements of the FORTRAN 
technology model. Thus, this MOEA design is an 
evolution of our parallel generational genetic algorithm 
software developed for an  aggregated-objective 
groundwater remediation problem (Garrett, 1999). It also 
uses a �framing� parallel model in this object-oriented 
software structure.  Note that Garrett�s software 
incorporated the arithmetic crossover and mutation 
operators defined by GENOCOP III (Michalewicz, 1994). 
It should be mentioned that Garrett�s work with an 
aggregated fitness function reflected results that were very 
similar to the suggestions of consulting experts. The new 
MOEA extensions include integration of ranking and 
fitness sharing into Garrett�s (1999) genetic algorithm 
computer code as well as generic Pareto-based 
computation and interfacing to the different flow and 
transport application model. The ranking selection method 
of course emphasizes favorable Pareto solutions and 
fitness sharing forms niches for the HFTW MOP. Based 
upon its structure, this new real-valued  MOEA is given 
the name GENeral Multi-Objective Program (GENMOP).

Since the GENMOP chromosome generally 
consists of genes representing the decision variable, the 
specific chromosome for our two-well HFTW system 
contains the associated engineering parameters.  
Chromosomes also have auxiliary genes devoted to 
objective function values, Pareto-ranking, and 
downgradient perchlorate concentration, but these 
auxiliary genes are not involved in crossover or mutation.   
Decision variables are real-valued except for well-spacing, 
which is integer-valued. 

The GENMOP relies on the following user-
specified parameters: 1) Initial population size (|Pop0|): 2) 
Mating pool size (|MP|): 3) Number of generations (N): 4) 

Niche radius ( share): 5) Mutation probability (pm).  
Aspects of the multi-objective groundwater remediation 
application developed by Erickson et al. (2002) which 
used the NSGA were also studied in regard to explicit 
parameter values.  Many aspects of existing MOEA 
packages [Coello, Coello et al, 2002] such NPGA2, 
NSGA-II, PAES-II, SPEA2 were also evaluated for 
possible inclusion.  

The GENMOP starts by randomly generating an 
initial chromosome population Pop0 of size |Pop0| in which 
all chromosomes comply with decision variable 
constraints.  The created chromosomes are stored in a set 
called Popcum,because it is a cumulative collection of 
chromosomes; the algorithm continually appends the new 
chromosomes to Popcum. After Popcum is created, objective 
function values are evaluated for each chromosome.  The 
objective function values are Pareto-rank for each 
chromosome in Popcum.   A particular chromosome x

receives a rank that equals the number of chromosomes 
that dominate chromosome x.  Hence, all nondominated 

solutions have rank = 0, and low rank corresponds to high 
fitness.  This Pareto-ranking method mimics the method of 
Fonseca and Fleming (1993).  

Once chromosomes are Pareto-ranked, the 
generation subroutine is initiated, which begins by 
selecting chromosomes to be copied to a reservoir called a 
mating pool (MP) where they await crossover and 
mutation.  The user-specified parameter |MP| limits the 
number of chromosomes in MP. Two properties that drive 
selection are the Pareto rank and the �crowding� in 
objective/fitness space.  As long as space in MP is 
sufficient, GENMOP copies all rank-zero chromosomes to 
MP, then all rank-1�s, then all rank-2�s, etc.  Simply put, 
when space is sufficient, Pareto rank drives selection. This 
method ensures that better, low-ranking chromosomes 
receive selection priority.

However, as low-ranking chromosomes are 
progressively copied, space in MP depletes.  Eventually 
the algorithm encounters chromosomes of some rank k

whose quantity exceeds remaining space.  Because all k-
rank chromosomes have equal rank, and therefore fitness, 
the algorithm resolves the dilemma of which 
chromosomes to select by picking chromosomes that are 
least crowded in objective space.  The purpose of this 
selection strategy is to develop chromosomes that map to 
relatively uninhabited sections of the Pareto front, which 
for the decision maker means more diverse tradeoff 
options.  The metric for assessing crowding in objective 
space is the niche count.  This technique is called 
equivalence class sharing, which was originally described 
by Horn et al. (1994).   

Let xi be some k-rank chromosome such that I = 
1, 2, 3�[number of rank k chromosomes], and assume 
that the number of k-rank chromosomes exceeds 
remaining space in the mating pool.  Also, let chromosome 
xj be any chromosome in Popcum where j = 1, 2, 3�[size 
of Popcum].  The GENMOP searches Popcum for the most 
current maximum and minimum values of both objective 
functions f1 and f2.  These maximum and minimum values 
are subsequently used to normalize objective function 

values for every xi  {rank k chromosomes} and xj

Popcum as follows: 

 f1 i = (f1i � f1min) / (f1max � f1min)

 f2 i = (f2i � f2min) / (f2max � f2min)

 f1 j = (f1j � f1min) / (f1max � f1min)

 f2 j = (f2j � f2min) / (f2max � f2min)
where 

        f1 i = dimensionless value of f1 based on xi {rank   
                          k chromosomes} 

        f2 i = dimensionless value of f2 based on xi {rank k}

        f1 j = dimensionless value of f1 based on xj Popcum

        f1 j = dimensionless value of f2 based on xj Popcum

        f1i = value of f1 based on xi {rank k chrom.}

        f2i  =  value of f2 based on xi {rank k}

        f1j  =  value of f1 based on xj Popcu

        f2j  =  value of f2 based on xj Popcum 

        f1min = minimum value of f1 within Popcum



        f1max = maximum value of f1 within Popcum

        f2min = minimum value of f2 within Popcum

        f2max = maximum value of f2 within Popcum

This normalization makes both objective function values 
dimensionless, which is helpful due to the 
incommensurable units of both objective functions (mass 

and dollars).  The distance dij between points (f1 i, f2 i) and 

(f1 j, f2 j) in dimensionless objective space is calculated as: 

 dij = [ (f1 i � f1 j)
2 + (f2 i � f2 j)

2 ]½

Distance dij and the niche radius share are then used to 
compute the sharing function: 

 Sh(dij)  = 1 � dij / share  for dij share

             = 0  for dij > share

The parameter share basically defines the radius of a circle 

around point (f1 i, f2 i); points inside the circle contribute to 
crowding, and points outside the circle do not.  Sh(dij) is a 
metric for assessing the proximity or crowding between 

point (f1 i, f2 i) and some other point (f1 j, f2 j).  If (f1 j, f2 j)

lies within the circle surrounding (f1 i, f2 i) (i.e. dij share), 

then the sharing function assumes a value such that 0 

Sh(dij)  1.  The closer the two points are to each other, the 
higher the value of the sharing function; the maximum 
value Sh(dij) = 1 indicates the two points overlap.  If point 

(f1 j, f2 j) lies outside the circle surrounding (f1 i, f2 i) (i.e. dij

> share), then crowding is negligible (Sh(dij) = 0).   

 The niche count mi for chromosome xi {rank k

chromosomes} is computed according to: 

              mi = xj Popcum Sh(dij)
Because mi is a summation of sharing function values, it 
provides an overall measure of how �crowded� 
chromosome xi is in objective space.  A high niche count 
implies a high degree of crowding, and vice versa.  After 

calculating the niche count mi for each xi {rank k

chromosomes}, the remaining slots in MP are filled with 
chromosomes having the lowest mi values. 
 GENMOP preferentially selects chromosomes 
with low niche counts to improve chances of generating 
points in less-occupied regions of the Pareto front. 
Chromosomes in MP proceed to crossover and mutation.  
The process relies on several crossover/mutation 
operators, which Garrett (1999) employed based upon 
(Michaelwicz, 1996).  Mating restriction does not appear 
to be a critical component of  any MOGA, and no sound 
theory justifies its inclusion (Veldhuizen and Lamont, 
2000).  Therefore mating restriction with  crossover was 
not incorporated. 
 All chromosomes in MP participate in crossover.  
That is, for i = 1 to |MP|, chromosome xi crosses over with 
xr, where xr is randomly chosen from MP (pool crossover 
operates differently).  The GENMOP employs the 
following crossover operators: 
Whole arithmetical crossover: linearly combines all 
corresponding genes of xi and xr, to create new 

chromosomes x 1 and x 2; crossover applies to the �whole� 
chromosome (i.e. all genes of xi and xr)).  The algorithm 

randomly retains x 1and discards x 2.

Simple crossover: randomly selects a gene and swaps it 

between xi and xr to make x 1 and x 2. The algorithm 

randomly retains x 1and discards x 2.
Heuristic crossover: uses chromosomes xi and xr to make a 

single offspring x 1 such that x 1 = R·( xr � xi) + xr.  The 
value R is a uniform random number between 0 and 1, and 
the rank of xr is the same or less than the rank of xi

Pool crossover: randomly copies alleles from 

chromosomes in MP and assembles the alleles to make x 1.
 GENMOP selects a particular crossover operator 
based upon an adaptive probability distribution.  At the 
first generation, all crossover operators have equal 
probability of selection.  For all following generations, the 
selection probability for a particular operator �adapts� or 
adjusts based upon the attributes of the new chromosome 

x 1.  If x 1 dominates xi, then the crossover operator was 
successful in increasing fitness, and its selection 
probability consequently increases in the next generation.  

Conversely, if xi dominates x 1, then crossover was 
unsuccessful, and its probability of selection decreases.  If 
neither chromosome dominates the other, the operator�s 
selection probability stays the same. 
 Crossover creates new chromosomes that are then 
susceptible to mutation.  Mutation is controlled by the 
user-specified mutation probability (pm).  For each new 
chromosome, a random number (r: 0 < r < 1) is selected 
from a uniform distribution.  If r < pm, then one of 3 
mutation operators affects the new chromosome; 
otherwise, mutation does not occur.  The process 
randomly selects which mutation operator based on the 
same adaptive probability distribution described. 
Crossover and mutation ultimately create a new 
chromosome population Popnew, whose size equals the 
mating pool size |MP|.
 GENMOP evaluates all members of Popnew and 
appends them to Popcum.  Thus, Popcum keeps all 
chromosomes from past generations and inherits new 
ones. Popcum is a set of accumulated chromosomes, and its 
cardinality is prescribed by |Popcum| = N·|MP| + |Pop0|. 
Each chromosome is ranked in Popcum, and the generation 
cycle restarts with selection. 

5.0 Design of Experiments 

A total of four runs for models of two physical-sites 
(Nevada, California) were executed  using the GENMOP 
to produce an estimated Pareto set (Pknown) and Pareto front 
(PFknown).  Note that one of the research objectives is to 
perform the optimization search under various 
contaminated-site conditions.  Key parameters that 
establish these different conditions between the two sites 
are hydraulic conductivity (ease with which water flows 
through the geologic formation), regional hydraulic 
gradient (driving force for regional groundwater flow) and 
initial contamination source concentration.  Runs 1 and 3 
simulate treatment periods of 300 days and 600 days, 
respectively, using data for Site 4, Nevada (Parr, 2002): 



Aquifer Characteristics (Nevada)

 Hydraulic Conductivity = 7.6 m/day  
 Hydraulic Gradient = 0.01 
Source Characteristics (Nevada)

 Oxygen Concentration = 2.8 mg/L   
 Nitrate Concentration = 60 mg/L 
 Perchlorate Concentration = 330 mg/L  
Runs 2 and 4 simulate treatment periods of 300 days and 
600 days, respectively, using data for Site 2, California 
(Parr, 2002): 

Aquifer Characteristics (California)

 Hydraulic Conductivity = 2.59 m/day  
 Hydraulic Gradient = 0.001 
Source Characteristics (California)

 Oxygen Concentration = 0.55 mg/L   
 Nitrate Concentration = 0.5 mg/L 
 Perchlorate Concentration = 160 mg/L  
Site 4 in Nevada has approximately triple the hydraulic 
conductivity, ten times the hydraulic gradient, and double 
the source concentration of Site 2 in California.  Site 4 
also has larger initial concentrations of competing electron 
acceptors (oxygen and nitrate) than Site 2.  
 The Parr (2002) technology model is a set of 
partial differential equations representing flow and 
transport, biological reactions, and biomass growth in a 
subsurface system with microorganisms utilizing an 
electron donor (acetate) to reduce three electron acceptors 
(ClO4

-, oxygen, and nitrate).  The flow and transport 
model involves four separate, 3-dimensional 
advection/dispersion partial differential equations that 
represent transport of the electron donor (acetate 
CH3COO-) and three electron acceptors (oxygen, nitrate, 
and ClO4

-), respectively. The biological treatment 
submodel consists of five differential equations that 
represent production/consumption rates due to microbial 
redox reactions; these terms are formulated based on a 
dual-Monod, multi-electron acceptor biodegradation 
submodel.  The biomass grow is represented by a single 
differential equation. The following lists some of the 
parameters used in solving the model equations and 
GENMOP for all four runs: 

Decision variable constraints

 Qmin = 10 m3/day  Qmax = 150 m3/day
dmin = 3 m                dmax = 165 m 

 Cin,min = 0 mg/L  Cin, max = 1,000 mg/L 
 pmin = 0 pmax = 32 
Cost coefficients

 Pricedonor = $2.666 10-6 per mg donor  
Priceelec  = $0.067 per kW-hr 

Aquifer parameters

 Porosity = 0.30  
 Retardation factor for acetate (CH3COO-) = 1.48 
GENMOP  parameters

 |Pop0| = 50 |MP| = 10 

N = 100   share = 0.4 pm = 0.01 

The Qmax is an appropriate real-world value that would not 
result in excessive groundwater drawdown due to pumping 

at the sites.  Values for dmin and dmax are based upon the 
dimensions of the site model.  The value for Pricedonor is 
based upon an estimated bulk cost of $286.20 per 55-
gallons of a 50/50 mixture of acetic acid (CH3COOH) and 
water. Realistic values for the other  parameters that 
describe the kinetics of biodegradation and microbial 
growth were chosen based on laboratory studies (Parr, 
2002; Knarr, 2003).  These values were held constant for 
all model simulations.  MOGA parameter values are based 
on our experience. 
 The GENMOP software (using Redhat LINUX 
version 7.3 and MPI version 1.2.7.1) executes the 
technology model, computes the cost formula for each 
new chromosome, and provides the Pareto computation.  
The objected-oriented C++ coded algorithm uses the 
Message-Passing Interface (MPI) to enable parallel 
computation among 32 Aspen dual-processor machines, 
each with 1-GB memory and two 1-GHz Pentium III 
processors that separately evaluate the technology model 
for each chromosome.  In addition to decision variable and 
objective function values,  the maximum perchlorate 
concentration is stored at a specified distance 
downgradient of the HFTW system. The purpose of 
including this output is to assess the ability of the 
treatment technology to meet downgradient regulatory 
requirements. 

6.0 Technology Model with GENMOP Results 

The Two perchlorate-contaminated sites in Nevada and  
California, are of course modeled using the HFTW 
technology model.   The Nevada site had relatively high 
perchlorate concentrations and large groundwater flows 
compared to the California site.  For each site, two sets of 
runs were performed; the first set of runs simulated 
treatment system operation for 300 days and the second set 
simulated 600 days of operation.  For each set of runs, 
engineered parameter values were varied over realistic 
ranges, and the GENMOP determined the Pareto optimal 
set of parameter values for the given run conditions.    

Figure 2.  Pareto fronts for Nevada (Run 3) and 

California (Run 4) sites -  (600 day simulations) 
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 Figure 2 compares the generated Pareto fronts for 
the Nevada and California sites.  Note that for the same 
cost, much more perchlorate mass can be removed at the 
Nevada site, where groundwater flows more readily (due 
to the high hydraulic conductivity at the site) and 
contaminant concentrations are higher than at the 
California site.  We also see that for both sites, the 
incremental cost of perchlorate removal increases 
nonlinearly as mass removed increases.     
 Figure 3 plots perchlorate concentration 
downgradient of the treatment wells versus perchlorate 
mass removed for both dominated and nondominated 
solutions at the Nevada site.  Recall that downgradient 
perchlorate concentration was not one of the objective 
functions or constraints, although it is an important 
parameter, as regulations typically would specify the 
allowable downgradient concentration.  Figure 3 shows 
that as might be expected, downgradient concentration 
decreases as more perchlorte mass is removed by the 
treatment system. It should also be observed that the very 
low concentrations corresponding to high cost solutions, 
that is, pumping rates and the quantities of electron donor 
that must be added are high.    

Figure 3. Maximum perchlorate concentration 

downgradient of the treatment wells versus perchlorate 

mass removed at the Nevada Site (600 day simulations)

Interestingly, Figure 4, which plots perchlorate 
concentration downgradient of the treatment wells versus 
perchlorate mass removed at the California site, behaves 
differently and presents some unexpected results.  Here we 
see that there are a number of solutions that 
simultaneously have low mass removed and low 
downgradient concentrations.  These solutions correspond 
to low cost solutions; that is, pumping rates and the 
quantities of electron donor that must be added are low.  
The reason for this apparent contradiction (low cost, low
mass removal solutions that results in low downgradient 
concentrations) is that in these solutions, the treatment 
wells are located very close to each other and due to the 
low hydraulic conductivity and gradient at the site, 
regional groundwater flow velocities are small.  Due to  

this small separation between the treatment wells and slow 
regional groundwater flow, water pumped by the HFTWs 
recycles through the bioactive zones many times and very 
low concentrations are attained, although very little mass 
is being treated.    

Figure 4.  Maximum perchlorate concentration 

downgradient of the treatment wells versus perchlorate 

mass removed at the California Site (600 day 

simulations)

         
  Otherwise, the California site and Nevada site 
results are similar, with downgradient concentrations 
decreasing as perchlorate mass removed increases, though 
due to the difficulty with which water flows at the 
California site, the magnitude of mass removed and the 
downgradient concentrations that may be attained are less 
than at the Nevada site.  

7.0 Conclusions 

The general multi-objective genetic algorithm developed 
in this study, GENMOP, is shown to be useful for 
determining technology design parameters for in situ 

bioremediation of perchlorate to minimize cost (defined as 
operating cost) and maximize technology performance 
(defined as perchlorate mass removal). As implied the 
technology model is quite complex resulting in a 
complicated computational structure. Nevertheless,  
GENMOP determined various sets of engineering design 
parameters   [Q, d, Cin, p] that provided a decision maker 
with combinations of cost and mass removal that are close 
to �Pareto optimal�, that is to say, nondominated by other 
potential solutions.  This set of solutions allows a decision 
maker to select a system design based on the weighting of 
the relative importance of performance versus cost.   
 One disadvantage of  GENMOP is the need for 
relatively extensive computer resources (time and CPU 
power) to evaluate the technology model.  Also, the 

selection of program parameters (|Pop0|, |MP|, N, share, pm)
was based on the experience and judgment of local 
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experts.  It is unclear whether selection of a different set of 
parameters would generate different results. However as 
anticipated, the Pareto fronts generated indicate that the 
incremental operating cost increases as the technology 
removes more perchlorate mass.   
 Also observed is that the bioremediation 
technology�s ability to remove perchlorate mass is not 
well correlated with its ability to achieve diminished 
downgradient perchlorate concentrations, especially for a 
contaminated site with relatively low groundwater flow.  
In other words, mass removal and diminished 
downgradient concentration are not redundant objectives.  
Therefore, decision makers must separately consider and 
weight each of these remediation goals when deciding on 
design parameters.  It appears important to include 
downgradient perchlorate concentration as either an 
additional objective or a constraint when implementing a 
multi-objective optimization scheme. 
 Using the detailed techniques discussed, 
GENMOP can be employed in other highly dimensional 
MOPs that have very complex real-world real-valued 
models. GENMOP improvements can continue to solve 
these types of MOPs. Regarding more elaborate MOEA 
parallelization efficiencies, we are considering the 
concepts in Van Veldhuizen, Zydallis, and Lamont, 2003. 
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