
Approximating the nondominated frontusing the Pareto Archived EvolutionStrategyJoshua D. Knowles, David W. CorneSchool of Computer Science, Cybernetics and Electronic EngineeringUniversity of Reading, Reading RG6 6AY, UKJ.D.Knowles@reading.ac.uk, D.W.Corne@reading.ac.ukAbstractWe introduce a simple evolution scheme for multiobjective optimization problems,called the Pareto Archived Evolution Strategy (PAES). We argue that PAES mayrepresent the simplest possible non-trivial algorithm capable of generating diversesolutions in the Pareto optimal set. The algorithm, in its simplest form, is a (1 + 1)evolution strategy, employing local search but using a reference archive of previouslyfound solutions in order to identify the approximate dominance ranking of the currentand candidate solution vectors. (1+1)-PAES is intended as a good baseline approach,against which more involved methods may be compared, and may also serve well insome real-world applications when local search seems superior to or competitive withpopulation-based methods. We also introduce (1 + �) and (�+ �) variants of PAESas good extensions to the basic algorithm. Six variants of PAES are compared withvariants of the Niched Pareto GA and the Nondominated Sorting GA over a diversesuite of six test functions. Results are analyzed and presented using techniques whichreduce the attainment surfaces generated from several optimization runs into a setof univariate distributions, allowing standard statistical analysis to be carried outfor comparative purposes. Our results provide strong evidence that PAES performsconsistently well on a range of multiobjective optimization tasks.KeywordsGenetic algorithms, evolution strategies, multiobjective optimization, test functions,multiobjective performance assessment.1 IntroductionMultiobjective optimization using evolutionary algorithms has been investigated bymany authors in recent years (Bentley and Wake�eld, 1997; Fonseca and Fleming, 1995;Horn et al., 1994; Horn and Nafpliotis, 1994; Parks and Miller, 1998; Scha�er, 1985;Srinivas and Deb, 1994). However, in some real-world optimization problems the per-formance of the genetic algorithm is overshadowed by local search methods such assimulated annealing and tabu search, either when a single objective is sought or whenmultiple objectives have been combined by the use of a weighted sum, e.g. see Mannand Smith (1996). This suggests that multiobjective optimizers which employ localsearch strategies would be promising to investigate and compare with population-basedmethods. Good results have been obtained with such methods (Czyzak and Jaszkiewicz,1998; Gandibleux et al., 1996; Hansen, 1996, 1997; Sera�ni, 1994; Ulungu et al., 1995),and recently some theoretical work has been done which yields convergence proofs forsimple variants (Rudolph, 1998, 1998a). However, it is currently quite unclear howc
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JOSHUA KNOWLES AND DAVID CORNEwell local-search based multiobjective optimizers compare with evolutionary algorithmbased approaches. Here we introduce a novel evolutionary algorithm, called the ParetoArchived Evolution Strategy (PAES) which, in its baseline form, employs local searchfor the generation of new candidate solutions but utilizes population information to aidin the calculation of solution quality. The algorithm, as presented here, has three forms,(1 + 1)-PAES, (1 + �)-PAES and (�+ �)-PAES.Evolution Strategies (ESs) were �rst reported by Rechenberg (1965), following theseminal work of Peter Bienert, Ingo Rechenberg, and Hans-Paul Schwefel at the Techni-cal University of Berlin in 1964. A modern and comprehensive introduction is in B�ack(1996). We �nd the (�+�) model of ESs to naturally �t the general structure of PAESand the variants used in this paper, but we should note that we use neither the adap-tive step sizes for mutation nor the encoding of strategy parameters which are usuallyassociated with ESs. But there is no reason, of course, why these may not be includedin further variants of PAES, perhaps in investigations with real-valued encodings.Six test functions are used to compare PAES and two well known and respectedMOGAs, the Niched Pareto Genetic Algorithm (NPGA) of Horn and Nafpliotis (Hornet al., 1994; Horn and Nafpliotis, 1994) and a nondominated sorting GA (NSGA) (Srini-vas and Deb, 1994). Four of the test problems have been used by several researcherspreviously (Bentley and Wake�eld, 1997; Horn et al., 1994; Horn and Nafpliotis, 1994;Fonseca and Fleming, 1995; Scha�er, 1985), and the �fth is a new problem devised byus as a further hard challenge to �nd diverse Pareto optima. The aim of this compari-son is to explore and demonstrate the applicability of the PAES approach to standardmultiobjective problems. Our sixth problem, the Adaptive Distributed Database Man-agement Problem (ADDMP), is strictly a real-world application but is included as atest problem because we provide resources to allow other researchers to carry out theexact same optimization task.Analysis of all the results generated has been carried out using a compara-tive/assessment technique put forward by Fonseca and Fleming (1995a). This worksby transforming the data collected from several runs of an optimizer into a set of uni-variate distributions. Standard statistical techniques can then be used to summarize thedistributions or to compare the distributions produced by two competing optimizers.We compare pairs of optimizers using the Mann-Whitney rank sum test (for example,see Mendenhall and Beaver, 1994) as our statistical comparator.Overview of the PaperThe remainder of the paper is organized as follows. In Section 2 we introduce PAESand its components. Pseudocode describing both the basic (1 + 1) algorithm and thearchiving strategy is presented. A crowding procedure used by PAES is also described.Finally, the time complexity of PAES is estimated and a discussion of the (1+�) and (�+�) variants is provided. Section 3 then goes on to describe our set of test problems. Fourof these are well-known test problems in the multiobjective literature, and two are new.One of the new ones is a contrived problem which, when encoded with k genes whichcan each take any of k integer values, has k Pareto optima; it is a considerable challengeon this problem for a multiobjective algorithm to �nd any of these k Pareto optima,let alone �nd a good spread. The second new test problem, for which we also providethe �tness function and other details via a website, is a multiobjective version of theadaptive distributed database management problem. This is a two-objective problemin which the objectives involved relate to quality-of-service issues in the management2 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGYof a distributed database. In Section 4 we describe the algorithms we compare in laterexperiments. These are three algorithms based on NPGA, four based on NSGA, and sixversions of PAES (with di�ering � and �). Section 5 is then devoted to a discussion ofthe statistical comparison method we use, based on Fonseca and Fleming's seminal ideason this topic. Section 6 then presents the results, and we give a concluding discussionin Section 7.2 The PAES AlgorithmMotivationsPAES was initially developed as a multiobjective local search method for �nding so-lutions to the O�-line Routing problem (Mann and Smith, 1996; Knowles and Corne,1999), which is an important problem in the area of telecommunications routing op-timization. Previous work on this problem used single-objective (penalty-function)methods, and it was found that local search was generally superior to population-basedsearch. PAES was therefore developed to see if this �nding carried over into a multiob-jective version of the o�-line routing problem. A comparison of early versions of PAESwith a more classical MOGA on the o�-line routing problem is provided in Knowles andCorne (1999). The positive �ndings of this earlier work prompted the investigation ofthe performance of PAES on a broader range of problems presented here.(1 + 1)-PAESThe (1 + 1)-PAES algorithm is outlined in Figure 1. It is instructive to view PAESas comprising three parts: the candidate solution generator, the candidate solutionacceptance function, and the Nondominated-Solutions (NDS) archive. Viewed in thisway, (1+1)-PAES represents the simplest non-trivial approach to a multiobjective localsearch procedure. The candidate solution generator is akin to simple random mutationhillclimbing; it maintains a single current solution, and at each iteration produces asingle new candidate via random mutation.1 Generate initial random solution c and add it to the archive2 Mutate c to produce m and evaluate m3 if (c dominates m) discard m4 else if (m dominates c)5 replace c with m, and add m to the archive6 else if (m is dominated by any member of the archive) discard m7 else apply test(c,m,archive) to determine which becomes the newcurrent solution and whether to add m to the archive8 until a termination criterion has been reached, return to line 2Figure 1: Pseudocode for (1 + 1)-PAESSince the aim of multiobjective search is to �nd a spread of nondominated solutions,PAES necessarily needs to provide an NDS-list to explicitly maintain a limited numberof these, as and when they are found by the hillclimber. The design of the acceptancefunction is obvious in the case of the mutant dominating the current solution or viceversa, but troublesome in the nondominated case. Our approach is to learn from Horn etal.'s seminal work (Horn et al., 1994; Horn and Nafpliotis, 1994), and hence use acomparison set to help decide between the mutant and the current solution in the lattercase. The NDS-archive provides a natural and convenient source from which we canEvolutionary Computation Volume 7, Number 1 3



JOSHUA KNOWLES AND DAVID CORNE1 if the archive is not full2 add m to the archive3 if (m is in a less crowded region of the archive than c)4 accept m as the new current solution5 else maintain c as the current solution6 else7 if (m is in a less crowded region of the archive than x forsome member x on the archive)8 add m to the archive, and remove a member of the archive fromthe most crowded region9 if (m is in a less crowded region of the archive than c)10 accept m as the new current solution11 else maintain c as the current solution12 else13 if (m is in a less crowded region of the archive than c)14 accept m as the new current solution15 else maintain c as the current solutionFigure 2: Pseudocode for test(c,m,archive)obtain comparison sets. Pseudocode indicating the procedure for determining whetherto accept or reject the mutant solution, and for deciding whether it is archived or not,is given in Figure 2.Arguably, even simpler multiobjective local search procedures are possible. Onemight have a simpler acceptance function, which always accepts the mutant unless thecurrent solution dominates it. Or, it could only accept the mutant if it dominates thecurrent. We have tried both of these, however, and found the results to be very poor.Echoing Horn et al.'s �ndings (Horn et al., 1994) we �nd that the use of a non-triviallysized comparison set is crucial to reasonable results.We note that the idea of maintaining a list of nondominated solutions is not new.Parks and Miller (1998), for example, recently describe a MOGA which also maintainsan `archive' of nondominated solutions. In their case, the overall algorithm is much morecomplicated than PAES, and the archive is not just used as a repository and a sourcefor comparisons, but also plays a key role as a pool of possible parents for selection.They found the use of this archive gave improved results over a traditional MOGA,tested on a particular application. They do not provide results (but indicate this asa future direction) on the use of their MOGA+`archive' method on other or standardmultiobjective test problems, however.Adaptive grid algorithmAn integral part of PAES is the use of a new crowding procedure based on recursivelydividing up the d-dimensional objective space. This procedure is designed to have twoadvantages over the niching methods used in some multiobjective GAs: Its computa-tional cost is lower; It is adaptive so that it does not require the critical setting of aniche-size parameter.The grid divides phenotype space into hypercubes, which have width dr=2l in eachdimension, where dr is the range (maximum minus minimum) of values in objective dof the solutions currently in the archive, and l is the subdivision parameter (see below).When each solution is generated, its grid location is found using recursive subdivisionand noted using a tree encoding. The encoding simply sets the relevant bit if the4 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGYsolution lies in the larger half of the division currently being checked, in each of theobjectives. This is merely a generalization of the well-known binary tree encoding. Amap of the grid is also maintained, indicating for each grid location how many andwhich solutions in the archive currently reside there. We choose to call the number ofsolutions residing in a grid location its population. The use of the population of eachgrid location forms an important part of the selection and archiving procedure outlinedin Figure 2. Notice that with an archive size of 100, for example, and a 2-objectiveproblem with l = 5, phenotype space is divided into 1024 hypercubes. However, thearchive is naturally clustered into a small region of this space, representing the slowlyadvancing approximation to the Pareto front, and the entire archive will perhaps occupysome 30 to 50 cubes.The recursive subdivision of the space and assignment of grid locations is carriedout using an adaptive method which eliminates the need for a niche size parameter.This adaptive method works by calculating the range in objective space of the currentsolutions in the archive and adjusting the grid so that it covers this range. Grid locationsare then recalculated. This is done only when the range of the objective space of archivedsolutions changes by a threshold amount to avoid recalculating the ranges too frequently.The only parameter which must then be set is the number of divisions of the space (andhence grid locations) that are required.The time complexity of the adaptive grid algorithm, in terms of the number ofcomparisons which must be made, may be derived from the population size, n, thenumber of solutions currently in the archive, a, the number of subdivision levels beingused, l, and the number of objectives of the problem, d. Finding the grid location of asingle solution requires l � d comparisons. Thus, �nding the grid location of the wholearchive requires a� l � d (1)comparisons. Updating the quadtree ranges requires, in the worst case, that thewhole population is added to the archive and thus that the whole population must becompared with the current maximum and minimum values in each of the d dimensions.Therefore this updating can take up to2d� n+ n� l � d (2)comparisons. This gives a worst case time order of O((a + n)d) comparisons1 periteration. In practice, the grid locations of the archive only need updating infrequentlyas few solutions outside the current range of the archive will be found per generation2.Furthermore, rarely will more than one or two new points join the archive per generationand so the average case number of comparisons to update the quadtree ranges is farfewer than the worst case given in equation 2. Niching, by contrast, requires n(n � 1)comparisons per generation and signi�cant additional overhead if calculating Euclideandistances between each pair of points. In the case where niching is carried out on thepartially �lled next generation, as in Horn and Nafpliotis (1994), niching still requiresn2 (n+ 1) comparisons which is also O(n2).1Note we have removed l which will in general be small, especially if d is large. For example, in a3-objective problem we require only l = 5 to give us (25)3 = 32768 divisions of the search space.2Generation here refers to an iteration of the PAES algorithm. For example, in (1 + �)-PAES, �new solutions are generated per generation whereas in (1 + 1)-PAES only 1 solution per generation isgenerated.Evolutionary Computation Volume 7, Number 1 5



JOSHUA KNOWLES AND DAVID CORNEThe time complexity of PAES(1 + 1)-PAES is a simple, fast algorithm when compared against MOGAs of similarperformance (see Section 6). Here, we analyse its time complexity in terms of thenumber of comparisons which must be carried out per generation of the algorithm.We compare PAES with NPGA and NSGA on the two core processes of selection andacceptance.Selection is not required at all in (1 + 1)-PAES since there is only one currentsolution. Therefore, all of the complexity is involved in the acceptance/rejection ofthe mutant solution and the updating of the archive. In this process PAES requires 1comparison to compare the candidate solution with the current solution and a furthera� d comparisons (in the worst case) to compare the current solution with the archive,where a is the current archive size and d is the number of objectives in the problem.It requires l � d to �nd the candidate's grid location. A further 2d comparisons arerequired to update the quadtree ranges and another a� l� d comparisons if the archivegrid locations require updating.The best and average case complexity of PAES is signi�cantly di�erent from theworst case outlined above, however. It requires only d comparisons to ascertain thatthe candidate solution is dominated by the current solution and in this case no furthercomparisons are required in that generation. Similarly, if the candidate is dominated byanything in the archive, no updating of the quadtree ranges or grid locations is necessary.In PAES the latter case occurs frequently since the archive represents a diverse sampleof the best solutions ever found. In many cases, for example, the archive is not full, i.e.a < arcmax where arcmax is the maximum size of the archive. So as soon as one ofthe members of the archive is found to dominate the candidate, no further comparisonsare required. Thus, in the average case, the number of comparisons required to reject acandidate is much smaller than arcmax � d . These considerations show that PAES is avery aggressive search method. It wastes little time on solutions which turn out to besub-standard, instead concentrating its e�orts only on solutions which are comparableto the best ever found.The NSGA requires no comparisons in the replacement of the current populationby the next generation. Instead, the complexity of this algorithm comes from theassignment of �tness values required for selection to be carried out. The number ofcomparisons in the nondominated sorting phase is given by rn(n � 1) where r is thenumber of dominance ranks found in the population. The niche count phase thenrequires n(n � 1) further comparisons. Unlike PAES, NSGA requires this number ofcomparisons every generation regardless of the quality of the solutions generated, thusits worst case performance equals its best case performance.Similarly, the NPGA employs cn comparisons for selection, where c is the compari-son set size. If niching is then carried out on the partly �lled next generation then eachtime a tie occurs between the two or more candidate solutions in the tournament, a fur-ther nnextt comparisons must be made, where nnext is the number of solutions currentlyin the next generation and t is the number of solutions which tied. In the worst casethis means that tsize(n + 1)n2 comparisons are made per generation if, each time, thetournament is tied between all the candidate solutions in the tournament. On average,the niching process will require signi�cantly fewer comparisons than this, however.The above analysis is summarised in Table 1. Rows four and �ve of the tableindicate the number of comparisons required by each algorithm (worst case) and theiroverall time order, respectively, to evaluate n solutions. This brings (1 + 1)-PAES into6 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGYProcess Worst case number of comparisons required(1 + 1)-PAES NSGA NPGASelection | rn(n� 1) + n(n� 1) cn+ (n+ 1)n=2Replacement d(3 + l+ a(l+ 1)) | |Total per generation d(3 + l+ a(l+ 1)) rn(n� 1) + n(n� 1) cn+ (n+ 1)n=2Total for n evals nd(3 + l+ a(l+ 1)) rn(n� 1) + n(n� 1) cn+ (n+ 1)n=2Time order for n evals O(an) O(n2) O(n2)Table 1: Time complexity involved in selection and replacement phasesline with the two MOGAs which evaluate n solutions per generation. If the archive sizearcmax = n, so that PAES presents the same number of �nal solutions as the MOGAsthen all three algorithms are O(n2) in the number of comparisons which must be done toevaluate n solutions. However, because of the aggressiveness of PAES, its average casenumber of comparisons is signi�cantly less than the two MOGAs which expend the sameamount of e�ort on poor solutions as they do on solutions which turn out to be good.The authors have not carried out a full analysis of the average case time complexity ofPAES but intend to include this in later work. However, we do include computationtimes on selected problems presented in this paper which indicate the computationalsimplicity of PAES.(1 + �)-PAES and (�+ �)-PAESThe (1 + 1)-PAES serves as a good, simple baseline algorithm for multiobjective opti-mization. Its performance is strong, especially given its low computational complexity,even on demanding tasks where one might expect local search methods to be at a dis-advantage (see Section 6). However, in this paper we also investigate the performanceof (1 + �) and (�+ �) variants of it.The generation of � mutants of the current solution increases the problem of de-ciding which one to accept as the next current solution(s). This is, in fact, carried outby assigning a �tness to each mutant based upon both a comparison with the archiveand its grid location population.Each of the � + � population members is compared to the archive as it appearedafter the last iteration and is assigned a dominance score as follows: Its score is initiallyzero and is set to 1 if it �nds an archive member which it dominates. A score of 0thus indicates it is nondominated by the archive. If it is dominated by any memberof the archive its score is set to -1 and no more comparisons are necessary. All thosemutants which could potentially join the archive are used to recalculate the ranges ofthe phenotype space. If this has changed by more than a threshold amount then thegrid locations of the archive and potential archive members is recalculated. The archiveis then updated. Finally, a �tness is assigned to each population member such thatmembers with a higher dominance score are always given a higher �tness regardless oftheir grid location population. Points of the same dominance score have higher �tnessthe lower the population of their grid location.Updating of the archive occurs as in (1 + 1)-PAES, ensuring that it contains onlynondominated solutions and no copies. If it becomes full then solutions in sparse regionsof the space will be favoured. This ensures that the comparison set covers a diverse rangeof individuals so that the dominance score assigned to population members re
ects theirEvolutionary Computation Volume 7, Number 1 7



JOSHUA KNOWLES AND DAVID CORNEtrue quality.In (� + �)-PAES the � mutants are generated by mutating one of the � currentsolutions, which is selected via binary tournament selection using the �tness valuesassigned in the previous iteration.3 The Test ProblemsWe have compared PAES with the NPGA and NSGA on a suite of standard test func-tions. Each de�nes a number of objectives which are to be minimized simultaneously.The �rst four of these are the same as used by Bentley and Wake�eld (1997); i.e. Schaf-fer's functions F1, F2, and F3, and Fonseca's f1 (Fonseca and Fleming, 1995), renamedhere as F4. These functions are now commonly used by researchers to test multiobjec-tive optimization algorithms. For reasons noted next we also designed a further testfunction which we call here F5.� F1 is a single-objective minimization problem with one optimum:f1 = x12 + x22 + x32 (3)� F2 is a two-objective minimization problem with a single range of Pareto optimawhich lie in 0 � x � 2: f21 = x2f22 = (x� 2)2 (4)� F3 is two-objective minimization problem with two separate ranges of Pareto optimawhich lie in 1 � x � 2 and 4 � x � 5:f31 = �x where x � 1= �2 + x where 1 < x � 3= 4� x where 3 < x � 4= �4 + x where 4 < xf32 = (x� 5)2 (5)� F4 is a two-objective minimization problem on two variables with a single range ofPareto optima running diagonally from (�1; 1) to (1;�1):f41 = 1� e(�(x1�1)2�(x2+1)2)f42 = 1� e(�(x1+1)2�(x2�1)2) (6)The above test functions are useful in testing multiobjective optimizers becausethey implicitly set two challenges: First, the set of nondominated solutions delivered bythe optimizer should contain all of the function's Pareto optima; second, it is generallyfelt best if there is no strong bias favouring one Pareto optimum over others. In otherwords, in a MOGA, for example, the number of copies of each Pareto optimum in the�nal population should be similar. If not, this would seem to reveal a bias which maybe undesirable in practical applications.We designed F5 (described below) to provide stronger challenges in these respects;it is easily de�ned, but is a non-trivial problem. Each Pareto optimum is intrinsically8 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGYdi�cult to �nd, and there are k distinct Pareto optima for chromosomes of length k,each of which has a di�erent frequency i.e. some are far easier to �nd than others.This makes both challenges (as described above) stringent tests for any multiobjectiveoptimizer.The function F5 uses a k-ary chromosome of k genes. There are two objectives tobe minimized, de�ned by the following two functions:f51 = k � 1� k�2Xi=0 � 1 if Gi+1 �Gi = 10 otherwise (7)f52 = k � 1� k�2Xi=0 � 1 if Gi �Gi+1 = 10 otherwise (8)where Gi is the allele value of the ith gene. For example a chromosome of length k = 5with allele values `1 2 3 2 2' scores 5�1�2 = 2 for the �rst objective (because there aretwo sites where, reading the chromosome from left to right, the allele value increases byexactly 1), and 5� 1� 1 = 3 for the second objective, using similar reasoning. >Fromthis, we can see that the best score possible for either objective is 0 and the worst isk � 1, and the Pareto front is formed by solutions for which f51 + f52 = k � 1.F6: The Adaptive Distributed Database Management ProblemThe Adaptive Distributed Database Management problem (ADDMP) has been de-scribed in several places. Space constraints preclude a full description here, but adetailed description is in Oates and Corne (1998), and C source code for the evaluationfunction of the ADDMP, and data for the test problem we use here, can be found viathe �rst author's website3. In this article, we will limit our description of the ADDMPto providing its basic details, aimed at conveying an understanding of the context inwhich a multiobjective tradeo� surface arises.The ADDMP is an optimization problem from the viewpoint of a distributeddatabase provider. For example, providers of video-on-demand services, on-line mailing-list brokers, and also certain types of internet service provider, all need to regularlyaddress versions of the ADDMP. The database provider must ensure that good qualityof service is maintained for each client, and the usual quality of service measure is thedelay experienced between a database query and the response to that query.At a snapshot in time, each client will experience a typical delay, depending oncurrent tra�c levels in the underlying network, and also depending on which databaseserver the client's queries are currently routed to. The database provider is able torecon�gure the connections at intervals. For example, the database provider mightre-route client 1's queries to server 7, client 2's queries to server 3, client 3's queriesto server 7, and so on. The ADDMP is the problem of �nding an optimal choice ofclient/server connections given the current client access rates, basic server speeds, andgeneral details of the underlying communications matrix. An optimal con�guration ofsuch connections is clearly one which best distributes the access load across servers,allowing for degradation of response as the load on a server increases, and other issues.Test function F6 is an example instance of the ADDMP problem, involving tennodes (each is both a client and a server), and in which quality of service is measuredby two objectives, both of which must be minimized. The �rst objective is the worst3http://www.reading.ac.uk/�ssr97jdkEvolutionary Computation Volume 7, Number 1 9



JOSHUA KNOWLES AND DAVID CORNEresponse time (measured in milliseconds) seen by any client. This is clearly somethingwhich a database provider needs to minimize by recon�guration. However, it is insu�-cient as a quality of service measure by itself. For example, if we have just three clients,then a situation in which the response times are respectively 750ms, 680ms, and 640mswill appear better, with this quality of service measure, than if the response times were760ms, 410ms, 300ms. To achieve a more rounded consideration of quality of service, wetherefore look at the tradeo� between this objective and another: the mean responsetime of the remaining (non-worst) clients. Hence, the two scenarios in this examplewould yield the following nondominated points: (750, 660), (760, 355).4 The AlgorithmsIn the remainder of this paper we wish to establish the performance characteristicsof several di�erent forms of the PAES algorithm on a number of test functions. Inorder to do this, we use as comparison two of the most well known and respectedMOGAs, the Niched Pareto GA of Horn and Nafpliotis (1994) and a GA employingnondominated sorting (Srinivas and Deb, 1994). In order that we give each algorithman equal opportunity of generating a good set of diverse solutions we add two extensionsto the genetic algorithms:1. An archive of the nondominated solutions found is maintained (as in PAES) forpresentation at the end of a run.2. Elitism is employed.The archive is not used to aid in selection, acceptance or any other part of theGA - it is merely there to give the GA the same opportunity as PAES has to presentthe best solutions it has found. Elitism is implemented as follows: In the case ofthe NSGA this is straight-forward as �tness values are assigned and we can merelyplace into the new population the g �ttest solutions, where g is the generation gapparameter. Thus, the NSGA has four di�erent variants: the standard NSGA withoutelitism or archiving (NSGA), the NSGA with archiving (NSGA+ARC), the NSGA withelitism (NSGA+ELITE) and the NSGA with both elitism and archiving (NSGA+A+E).Elitism cannot be carried out easily in the Niched Pareto GA, however, because explicit�tness values are never assigned. Thus, we have only three variants of the Niched ParetoGA. These are the standard Niched Pareto GA (NPGA), the NPGA with archiving(NPGA+ARC) and the NPGA with archiving and elitism (NPGA+A+E). The latterworks by placing all individuals which were archived in the previous generation into thenext generation.Each of the algorithms require two or more parameter values to be set. Due tospace restrictions a complete discussion regarding these choices cannot be included here.Instead, they are summarized in Table 2.The NPGA uses the simple triangular sharing function Sh[d] = 1 � d=�share ford � �share and Sh[d] = 0 for d > �share, where d is the phenotypic Euclidean distancebetween two solutions. We �nd that the NPGA requires a fairly large comparison setsize in order for its estimate of the dominance ranking of individuals to remain fairlyaccurate. Similarly, the tournament size, cannot be set too low if accurate selection is tooccur. Values of cssize = 80 and tournament size, 10 � tdom � 4 are usually acceptable.The niche size parameter, �share, must also be set. Here, some experimentation isrequired as the Niched Pareto GA can be quite sensitive to this parameter. So, for each10 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGYNPGA NSGA PAESvariants variants variantsPopulation size n 100 100 1 or �Archive size a 100 100 100Tournament size tdom 4 � tdom � 10 { 2Crossover pcross 0.9 0.9 {Mutation pm 1=k 1=k 1=kTable 2: Summary of algorithm parametersof the problems attempted several test runs were undertaken to �nd reasonable valuesfor the niche count parameter and the tournament size.The nondominated sorting GA requires fewer parameters to be set. To set the nichesize parameter several test runs were carried out to obtain reasonable performance. Inour elitist variants of the NSGA we must also set the number of solutions, g, which areto be carried through to the next generation. In all experiments g = 5 was used.With the exception of test problem, F5, uniform crossover was used in both of theabove MOGAs. Single point crossover is more suited to �nding solutions in F5 and thiswas used, again in both MOGAs. Values of crossover probability, pcross = 0:9 wereused in both MOGAs and a bit mutation rate, pm = 1=k for a chromosome of k genes,was used in all of the algorithms including PAES. In addition, (�+ �)-PAES requires atournament size for selection. For this, a value of tdom = 2 was found to be acceptableon all problems.5 Statistical Comparison of Multiobjective OptimizersProper comparison of results from two multiobjective optimizers is a complex matter.Instead of comparing two distributions of scalar values (one from each algorithm), as inthe single objective case, we need to compare two distributions of approximations to thePareto front. Often, results from di�erent multiobjective optimizers have been comparedvia visual observation of scatter plots of the resulting point. One recent step towards amore formal and statistical approach was made and used by Zitzler et al. (1999), usinga `coverage' metric. In this method, the resulting set of nondominated points from asingle run of algorithm A and another from a single run of algorithm B are processedto yield two numbers: the percentage of points from algorithm A which are equal toor dominated by points from B, and vice versa. Statistical tests are performed on thenumbers yielded from several such pairwise comparisons. However, this method is quitesensitive to the way in which points may or may not be clustered in di�erent regions ofthe Pareto surface, as illustrated in Figure 3(left). In the �gure, one algorithm returnsthe set of points indicated by circles, and the other returns the single point indicated bya square. The coverage metric would score 0% for the �rst algorithm and 50% for thesecond, however the �rst clearly returns a better approximation to the Pareto tradeo�surface than the second, albeit further from the optimal Pareto surface than the secondalgorithm in one region.A statistical comparison method proposed by Fonseca and Fleming (1995a) ad-dresses this and other issues. It works as illustrated in Figure 3(right). The resultingapproximations to the Pareto surface from two algorithms A and B are shown by appro-priately labelled points. The lines joining the points (solid for A, dashed for B) indicateEvolutionary Computation Volume 7, Number 1 11



JOSHUA KNOWLES AND DAVID CORNEthe attainment surfaces. An attainment surface divides phenotype space into two re-gions, one containing points which dominate or are nondominated by points returnedfrom the algorithm, and another containing all points dominated by the algorithm'sresults. Fonseca and Fleming's idea was to consider a collection of sampling lines whichintersect the attainment surfaces across the full range of the Pareto frontier. Examplesof such lines are indicated by L1-L5 in the �gure. Line L1, for example, intersectsA's attainment surface at I1, and will intersect with B's attainment surface somewhereabove the �gure at a place far more distant from the origin than I1. Line L2 intersectsA's attainment surface at I2, and B's at I3; again, A's intersection is closer to the origin.
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minimizingminimizingFigure 3: Problems with the Coverage metric (left); Sampling the Pareto frontier usinglines of intersection (right)Given a collection of k attainment surfaces, some from algorithm A and some fromalgorithm B, a single sampling line yields k points of intersection, one for each sur-face. These intersections form a univariate distribution, and we can therefore performa statistical test to determine whether or not the intersections for one of the algorithmsoccurs closer to the origin with some statistical signi�cance. Such a test is performedfor each of several lines covering the Pareto tradeo� area (as de�ned by the extremepoints returned by the algorithms being compared). Insofar as the lines provide a uni-form sampling of the Pareto surface, the result of this analysis yields two numbers - apercentage of the surface in which algorithm A outperforms algorithm B with statisticalsigni�cance, and similar for algorithm B. For example, if repeated runs of the two algo-rithms of Figure 3(left) produced identical or similar results to the two runs indicated,the result of this test would be around [60,40], indicating that the �rst algorithm out-performs the second on about 60% of the Pareto surface, while the second outperformsthe �rst on around 40% of the surface. A more common result in practice is that thetwo numbers sum to rather less than 100, indicating that no signi�cant conclusion canbe made in respect of many of the sampling lines.Figure 4 indicates the comparison method in pseudocode, for a collection of attain-ment surfaces SA and SB from two algorithms A and B. The idea is �rst described inFonseca and Fleming (1995a), but we include extra details and notes next which may beof bene�t to others intending to implement it. In particular, our code for this compari-son method is freely available from the website given earlier, and capable of performingthe comparisons as described for any number of objectives. Space limitations precludea full description of the method here - for example, precisely how we de�ne the lines,12 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGY1 initialize: a = b = nlines = 02 for each sampling line L3 for each attainment surface s in SASSB4 find the intersection of L with s5 statistically analyses the distribution of intersections6 if (A outperforms B on L with required significance)then a++7 if (B outperforms A on L with required significance)then b++8 nlines++9 return the result: [100*a/nlines, 100*b/nlines]Figure 4: Pseudocode for the Comparison ProcedureNumber of linesProblem 108 507 1083 5043 10092routing1 [84.3, 1.0] [84.6, 3.0] [82.7, 2.3] [81.9, 1.5] [82.7, 1.3]routing2 [16.7, 63.9] [21.9, 60.6] [22.1, 60.3] [23.2, 59.4] [23.6, 59.0]routing3 [51.9, 25.0] [56.0, 25.0] [57.0, 25.4] [58.0, 24.6] [58.2, 24.6]Table 3: PAES vs NPGA comparisons with di�ering numbers of linesand how we �nd the intersections of multi-dimensional lines with multi-dimensional at-tainment surfaces. However, interested readers are referred to the available C code andcontact with the authors to see how this is done.As indicated, we �nd that a good way to present the results of a comparison is inthe form of a pair [a,b], where a gives the percentage of the space (i.e. the percentageof lines) on which algorithm A was found statistically superior to B, and b gives thesimilar percentage for algorithm B. Typically, if both A and B are `good', a+ b < 100.The result 100�(a+b) then of course gives the percentage of the space on which resultswere statistically inconclusive. We present all of our results in this form.For the number of lines, we �nd that 100 is adequate, although, obviously, the morelines the better. We will use as an example our experiments on three di�erent versionsof the o�-line routing problem (see note at beginning of Section 2, and also Mann &Smith (1996) and Knowles and Corne (1999)) which illustrate this. This particularchoice of problem is of interest here since it involves three objectives. The NPGA and(1+1)-PAES algorithms tailored for this problem (see Knowles and Corne (1999)) werecompared on each of three versions of it. Table 3 gives the results using variable numbersof lines.In Table 3, we can see that the general trend, as we use more lines, is that a greaterpercentage of the space is found to give statistically signi�cant results. (Note, in thesecases and all others in the paper, we use statistical signi�cance at the 95% con�dence).This trend is not perfect however. For example, on the routing1 problem, the 1083-linesample indicates that PAES was superior to the NPGA on 82.7% of the space, but thesituation is reversed on a further 2.3% of the space, with a further 15.0% of the spacegiving inconclusive results. When we sample the space in approximately �ve times asEvolutionary Computation Volume 7, Number 1 13



JOSHUA KNOWLES AND DAVID CORNEnpga+arc nsga+arc (10+50)-paesunbeaten 79.1 49.2 90.6beats all 0.5 5.4 1.8Table 4: Three MOGAs compared on Scha�er's function F3many places (5043 lines) 16.7% of the space returns inconclusive results. Such variationas we change the number of lines can be explained by the kind of situation we see inFigure 3(right), where B's attainment surface `bulges' through A's between lines L2and L3. If such a bulge was very small in relation to the distance between lines, then itmay a�ect the results (if sampled) but perhaps with more prominence than it deserves.A greater number of lines, hence sampling more in the region around the bulge, wouldreveal that it really was quite small, suitably leading to a reduction in its e�ect on theresults.The statistical comparison technique we use is the Mann-Whitney rank-sum test,e.g. see Mendenhall and Beaver (1994). This is the most appropriate among the set ofstandard statistical tests, since the data are essentially unpaired and it avoids assumingthat the distributions are Gaussian. However, it does assume that the distributions ofintersections for the two algorithms are of the same shape. We have not tested thisassumption in the cases reported here. Intuitively, we would expect the assumption tobe su�ciently true for variants of the same algorithm (such as (�+�)-PAES for di�erent� and �), but less so for, say, a comparison between (1+1)-PAES and NPGA. We areaddressing this detail in further work on extending the comparison technique.Finally, we also do comparisons on multiple (more than two) sets of points frommultiple algorithms. Results for such comparisons are presented in the form of Table 4.In such a comparison of k algorithms, the comparison code performs pairwise sta-tistical comparisons, as before, for each of the k(k � 1)=2 distinct pairs of algorithms.The results then show, for each algorithm, on what percentage of the space we can bestatistically con�dent that it was unbeaten by any of the other k�1 algorithms, and onwhat percentage of the space it beat all k � 1 algorithms. For example, in Table 4, wecan see that the archived version of NPGA was unbeaten on 79.1% of the space coveredby the three algorithms compared. That is, on 79.1% of the space, no algorithm wasfound superior at the 95% con�dence level.6 Results and DiscussionThe Test ProblemsThe single objective test problem, F1, presents no di�culty to any of the optimizersconsidered in this section. The PAES algorithms all converge to the optimal solutionand return, in their archive, the single nondominated solution only. The three GAversions which employ archiving exhibit the same behaviour, as expected. When noarchive is used, the population of both the NPGA and the NSGA converge to thissolution, subject to random mutations in the last generation. Because F1 presents nodi�culty to any of the optimizers here, and is not itself a multiobjective problem, nofurther discussion or results relating to this problem are presented.For each of the remaining �ve problems, tests were carried out in the following way:First, all of the NPGAs were compared, in pairs, one against the other (and also against14 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGY(1+1)-PAES as a baseline), each time taking the combined space of the pair as the rangeover which to test, and using the statistical techniques outlined in Section 5. Next, in thesame way, the NSGAs and the PAES algorithms were internally compared. From thesethree sets of internal tests, we chose the best NPGA, NSGA and PAES algorithm andcompared these in the same fashion. Sometimes it was not clear from the original testswhich algorithm in the initial groups should be carried forward to the `�nal'. Wherethis happens, further internal tests were performed and/or two inseparable algorithmswere both carried forward for inclusion in the �nal. The set of best algorithms were alsocompared on their total combined space in terms of the percentages on which they wereunbeaten, and beat all of the others. Finally, the combined space of all the algorithmswas used and n(n � 1) comparisons were performed on the n = 13 algorithms. Again,results were collected in terms of the percentages of the space on which each algorithmwas unbeaten and beat all. Readers are reminded that all comparisons use a Mann-Whitney rank-sum test at the 95% con�dence level.npga+arc npga+a+e (1 + 1)-paesF2 - Scha�er's function F2npga [0, 97.0] [0, 98.4] [0, 96.2]npga+arc | [7.1, 9.6] [11.0, 7.6]npga+a+e | | [10.9, 4.1]F3 - Scha�er's function F2npga [0, 99.5] [0, 99.4] [0, 99.0]npga+arc | [4.9, 1.0] [0.9, 13.0]npga+a+e | | [0.2, 19.3]F4 - Fonseca's function f1npga [0, 100] [0, 100] [0, 100]npga+arc | [12.8, 1.3] [12.8, 1.6]npga+a+e | | [2.9, 8.6]F5 - k-optima problemnpga [0, 100] [0, 100] [0, 100]npga+arc | [93.6,0] [34.7, 48.2]npga+a+e | | [0, 100]F6 - the ADDMPnpga [0, 99.8] [0, 98.0] [0, 95.7]npga+arc | [0.4, 0] [6.6, 90.0]npga+a+e | | [2.2, 89.5]Table 5: Comparison of three variants of the Niched Pareto GAFor reasons of clarity we do not present the complete set of results described above.Nonetheless, only the tests carried out to decide on the best algorithm to carry forwardto the `�nals' and the �nals themselves are absent. All of the results for the internaltests for the Niched Pareto GA are presented in Table 5. Similar sets of results for theNSGA and the PAES algorithms can be found in Tables 6 and 7, respectively. Theresults of testing all algorithms against each other on their combined phenotype spaceare given in Table 8.Evolutionary Computation Volume 7, Number 1 15



JOSHUA KNOWLES AND DAVID CORNEOn F5, the k-optima problem, the results presented warrant further analysis anddiscussion. To this end, plots of the best, worst and median distributions over thephenotype range are included. These plots help to clarify the statistical data and alsoillustrate di�erent methods of visualizing the performance of multiobjective optimizers.We �nd that the test, described above, in which all algorithms are tested againstall others, in general, accurately re
ects the results from the comparisons on pairs ofalgorithms on their own combined space. The percentage of the space on which analgorithm is unbeaten seems particularly reliable. For this reason, most of the followingdiscussion is limited to the results presented Table 8 only. In addition, a summary ofthese results is provided in Table 9, at the end.nsga+arc nsga+elite nsga+a+e (1 + 1)-paesF2 - Scha�er's function F2nsga [0, 97.8] [9.4, 6.0] [0, 99.9] [0, 97.6]nsga+arc | [100, 0] [7.6, 5.4] [10.4, 2.7]nsga+elite | | [0, 98.2] [0, 98.2]nsga+a+e | | | [11.3, 2.3]F3 - Scha�er's function F3nsga [0, 99.7] [41.6, 43.6] [0, 99.0] [0, 98.7]nsga+arc | [100, 0] [3.8, 1.7] [3.8, 2.8]nsga+elite | | [0, 100] [0, 100]nsga+a+e | | | [2.6, 3.3]F4 - Fonseca's function f1nsga [0, 97.7] [1.8, 3.7] [0, 98.8] [0, 99.0]nsga+arc | [98.8, 0] [4.0, 3.2] [9.7, .32]nsga+elite | | [0, 99.1] [0, 99.3]nsga+a+e | | | [8.5, 5.1]F5 - k-optima problemnsga [0, 38.1] [6.1, 0] [0, 28.9] [0, 100]nsga+arc [70.0, 0] [1.4, 0] [0, 77.4]nsga+elite | [0, 70.7] [0, 100]nsga+a+e | | [0, 79.0]F6 - the ADDMPnsga [0, 84.4] [1.0, 19.3] [0, 92.9] [0, 84.8]nsga+arc | [53.9, 0] [0, 69.4] [1.7, 16.6]nsga+elite | | [0, 76.2] [0, 38.6]nsga+a+e | | | [4.0, 0]Table 6: Comparison of four variants of the Nondominated Sorting GA(1 + 1)-PAESOur original baseline approach, (1+1)-PAES, is the simplest and fastest of the methodscompared in this paper. Despite this, its performance on the test functions used hereprovides considerable evidence that it is a capable multiobjective optimizer on a rangeof problem types. In fact, amongst the thirteen algorithms tested here, it is perhapsthe most reliable performer. When all algorithms are pair-wise compared against thecombined nondominated front, (1 + 1)-PAES is unbeaten on, in the worst case, 68%of the front (problem F2). On problem F5, (1 + 1)-PAES covers the largest part ofthe Pareto front and manages to �nd the most demanding solutions, not generated byany of the other algorithms tested. (Problem F5 is discussed further towards the end16 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGY(1+10)-paes 1+50 10+1 10+10 10+50F2 - Scha�er's function F2(1 + 1)-paes [5.8, 2.1] [17.1, 1.4] [12.7, 1.4] [3.9, 5.4] [5.3, 3.7]1+10 | [16.8, 1.8] [9.3, 2.8] [1.1, 6.8] [4.2, 5.7]1+50 | | [4.3, 10.4] [0.8, 24.5] [1.6, 19.9]10+1 | | | [1.1, 16.5] [1.7, 10.9]10+10 | | | | [6.1,4.7]F3 - Scha�er's function F3(1 + 1)-paes [9.5, 0.9] [10.0, 0] [11.6, 0.7] [3.3, 1.4] [5.2, 0.8]1+10 | [3.1, 1.8] [2.5, 1.2] [0.6, 6.5] [1.3, 55.3]1+50 | | [2.0, 3.3] [0.1, 8.2] [0.2, 45.3]10+1 | | | [0.7, 6.9] [0.9, 55.5]10+10 | | | | [2.5, 2.1]F4 - Fonseca's function f1(1 + 1)-paes [6.5, 5.2] [4.4, 3.9] [19.0, 1.6] [8.1, 2.9] [12.4, 1.8]1+10 | [3.1, 7.6] [18.0, 1.5] [6.1, 2.0] [9.5, 1.3]1+50 | | [19.6, 0.9] [6.8, 2.2] [7.1, 0.7]10+1 | | | [2.4, 15.3] [4.3, 8.4]10+10 | | | | [6.9, 1.8]F5 - k-optima problem(1 + 1)-paes [74.7, 0] [100, 0] [100, 0] [89.3, 0] [92.3, 0]1+10 | [38.6, 0] [100, 0] [53.5, 0] [70.0, 0]1+50 | | [100, 0] [19.6, 0] [2.2, 0]10+1 | | | [0, 82.1] [0, 100]10+10 | | | | [0, 1.9]F6 - the ADDMP(1 + 1)-paes [79.0, 0] [22.0, 0] [48.7, 0] [15.4, 0] [15.4, 0.5]1+10 | [0, 0.2] [0, 0] [0, 0] [8.0, 75.3]1+50 | | [4.3, 0] [0, 0] [0, 37.6]10+1 | | | [0, 0] [0, 12.3]10+10 | | | | [0, 3.0]Table 7: Comparison of six variants of the Pareto Archived Evolution Strategyof the results section.) It seems that (1 + 1)-PAES works well for the same reasonsthat it is computationally simple: it is an aggressive algorithm, testing each solutiongenerated in a stringent manner, and investing few resources in solutions which do notpass the test. In this sense, it is the analogue of a single-objective hillclimber. This hasdrawbacks too. (1 + 1)-PAES (or 1+�) would be stumped by any search space whichcontained local optima which could not be traversed by its small change (mutation)operator, as it has no facility for moving from the current solution to an inferior one (inthe Pareto sense). This is possibly less of a 
aw in multiobjective spaces than in singleobjective ones because with more objectives the occurrence of functions with true localoptima may be reduced. However, test function F3 is an example of a function wherea hillclimbing approach could get stuck. If an optimizer were to start in the right handrange of optima i.e. with 5 � x > 4 it would not be able to move to the left optimaby small changes to the variable x. PAES does not su�er from this problem because xis encoded as an n-bit binary string and PAES is allowed to move by changing one ormore of the n bits. Therefore, it is able to jump across the divide.Timings for six of the algorithms presented in this section are also included inTable 10. In this case, the test function (F5) takes only a small proportion of theEvolutionary Computation Volume 7, Number 1 17



JOSHUA KNOWLES AND DAVID CORNEtotal computation time, so the di�ering computation times of each algorithm are clear.(1 + 1)-PAES is 37% faster than its nearest rival, the NPGA, on this test problem.Test ProblemAlgorithm Distribution F2 F3 F4 F5 F6npga unbeaten 0.2 0 0 0 31.5beats all 0 0 0 0 0npga+arc unbeaten 75.1 66.6 88.4 51.9 37.7beats all 1.1 0.1 0.2 31.1 0npga+a+e unbeaten 77.8 17.7 67.3 0 37.4beats all 0.1 0 0 0 0nsga unbeaten 0 0 0 0 32.6beats all 0 0 0.1 0 0nsga+arc unbeaten 80.9 51.9 87.0 27.9 42.7beats all 0.1 0.3 0.2 0 0nsga+elite unbeaten 0 0 0.3 0 82.1beats all 0 0 0 0 0nsga+a+e unbeaten 78.8 90.4 83.6 26.9 99.5beats all 0 1.0 0 0 0(1 + 1)-paes unbeaten 68.0 89.8 71.7 68.9 94.9beats all 0 0 0 16.1 0(1 + 10)-paes unbeaten 65.7 35.0 65.6 31.0 32.4beats all 0 1.0 0 0 0(1 + 50)-paes unbeaten 45.1 30.4 72.4 0 32.5beats all 0 0 0 0 0(10 + 1)-paes unbeaten 51.8 30.8 47.1 0 32.3beats all 0 0 0 0 0(10 + 10)-paes unbeaten 74.8 87.7 67.8 13.3 37.8beats all 0 0 0 0 0(10 + 50)-paes unbeaten 69.0 82.5 55.0 10.7 53.7beats all 0 0 0 0 0Table 8: Pair-wise comparisons of all algorithms on the combined phenotype space forall problems(1 + �)-PAESThe (1+10) and (1+50) variants of PAES do not do nearly as well as the baseline (1+1)approach. Only on one problem, F4, does (1+50)-PAES generate better distributionsover the 20 runs than (1+1)-PAES, and (1+10)-PAES never does. The lack of compet-itiveness of (1+�)-PAES might be explained with relation to its strategy for replacingthe current solution. As in (1+1)-PAES, the current solution is �rst compared with eachmutant. In the case where exactly one member dominates the current solution, this willbe accepted as the current solution of the next iteration. However, in all other cases, theacceptance is based upon the result of comparing each mutant with the archive of theprevious iteration. Mutants are not compared one against the other. Any ties which oc-cur are broken �rst with reference to the population in the mutants' grid locations and ifthis is inconclusive, randomly. This approach can lead to acceptance of a mutant whichis dominated by one of the other mutants of its generation. In this case, some of thecharacteristic aggressiveness of (1 + 1)-PAES may be lost. The archive of the previousgeneration was used to balance the need for a static test of the current generation with18 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGYcomputational parsimony. Comparing mutants against a constantly updated archiveresults either in an inaccurate assessment of their dominance rank, or requires taggingof those mutants which dominated the archive, scoring one, but were later dominatedby another mutant, in order to correct their scores. Rather than add extra complexity,the option of using the archive of the previous generation was taken. It is unclear at thetime of writing if this issue is, in fact the only factor (or most important factor) whicha�ects the performance of (1+�)-PAES but this is under investigation.(�+ �)-PAESThe population based variants, (10+1), (10+10) and (10+50) perform comparably with(1+1)-PAES on problems F2, F3 and F4. On F2, (10+10)-PAES is superior to (1+1).However, the population based methods do not fare well on F5 or F6 and lack theconsistently high performance of (1 + 1)-PAES. The use of a population does not, ingeneral, improve the performance of the basic PAES algorithm, and adds considerablecomputational overhead (see Table 10). However, similar comments as those regardingthe acceptance strategy used in (1+�)-PAES apply equally here to (�+ �)-PAES.The NPGAsTurning now to the evolutionary algorithms, the �rst thing we notice is that withoutexception (not surprisingly), the archived versions consistently outperform the non-archived ones. Also, elitism is generally bene�cial. The elitist technique employed inthe NPGA is not so successful, however, only enhancing the results in one of the testproblems and degrading them considerably in the others.Overall, the NPGA with archiving does quite well in comparison to both (1 + 1)-PAES and the NSGA. It is superior to both of them on problem F4. On F6, the ADDMP,its performance is weak, however, and it does not perform as consistently well as eitherthe NSGA with archiving and elitism or our baseline approach (1 + 1)-PAES. It is alsothe most di�cult of the algorithms to use, requiring more parameters to be set, some ofwhich can severely degrade performance if set incorrectly. Its computational complexityis low compared to either the population based PAES algorithms or the NSGAs becauseit does not have to explicitly assign �tness values to the population. However, (1 + 1)-PAES seems both a more consistent performer (see Table 9) and a faster algorithm onthe results presented here.The NSGAsThe NSGAs recursively sort the current population into two sets, the nondominated andthe dominated. This approach gives a fairly accurate estimate of the dominance rank ofeach individual, encouraging selection to focus on the best members of the population.This is perhaps why the NSGAs, when coupled with the archiving of all nondominatedsolutions and elitism performs slightly better than the NPGAs. It also employs a moreaccurate form of niching than the NPGA which approximates the niching process usingequivalence class sharing.The NSGA with archiving and elitism is ranked �rst on three of the �ve mul-tiobjective test problems, when all algorithms are compared pair-wise on the overallcombined space. Its lowest rank is on problem F5, where its performance is quite poorin comparison to both the NPGA with archiving alone and those of some of the PAESalgorithms. In fact it is nondominated on only 26.9% of the combined space. Theseresults are summarized in Table 9.The NSGA is computationally expensive compared with either the NPGA or theEvolutionary Computation Volume 7, Number 1 19



JOSHUA KNOWLES AND DAVID CORNElocal search versions of PAES. Its average time complexity is greater than either (seeSection 2), requiring many comparisons to be made to rank the current population andto calculate the niche count so that �tness values can be assigned. When the NSGA wastimed on test problem F5 it was found to be the slowest algorithm here (see Table 10).Nonetheless, this overhead is unimportant in many applications where the evaluationof solutions is by far the most time-consuming process in the search for solutions, andreducing the number of evaluations is more important.
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Figure 5: Best, median and worst attainment surfaces found on F5Test Problem F5>From Table 8 it appears that the algorithm which is unbeaten on the largest percentageof the space does not always also beat all with the highest percentage. On F5, the k-optima problem, for instance, (1 + 1)-PAES is unbeaten on 68.9% of the combinedphenotype space but only beats all on 16.1%. The NPGA with archiving, on the otherhand, is unbeaten on less of the space but beats all on 31.1%. It would be interestingto see how these �gures vary with the use of di�erent con�dence levels. In the caseof problem F5, (1 + 1)-PAES beats all on 16% of the space because it has generatedsolutions at the edges of the range of optima, where other algorithms have failed to doso. The NPGA, by contrast, has a better distribution in the centre of the Pareto front.For the time being, we indicate the di�erence in the distributions of points generatedby the NPGA with archiving, and (1 + 1)-PAES by plotting graphs of the best, worstand median attainment surfaces of these algorithms on problem F5. The best of theNSGAs is also included in the graphs which are shown in Figure 54. The NSGA is4Note that all surfaces are orthogonal, although in the case of the median surfaces this is only20 Evolutionary Computation Volume 7, Number 1



THE PARETO ARCHIVED EVOLUTION STRATEGYnpga+a nsga+a+e (1 + 1)-paesF2 rank 4 2 7unbeaten 75.1 78.8 68.0F3 rank 5 1 2unbeaten 66.6 90.4 89.8F4 rank 1 3 4unbeaten 88.4 83.6 71.7F5 rank 2 5 1unbeaten 51.9 26.9 68.9F6 rank 7 1 2unbeaten 37.7 99.5 94.9worst rank 7 5 7overall sum of ranks 19 12 16stats worst coverage 37.7 26.9 68.0(unbeaten)Table 9: Summary statistics for best 3 optimizersRun times on SPARC Ultra 10 300MHzAlgorithm Mean (seconds) SD (seconds)(1 + 1)-paes 1:85 0:0446(10+50)-paes 4:48 0:0283nsga 8:16 0:0988nsga+a+e 8:45 0:0127npga 2:96 0:0853npga+a+e 3:03 0:0729Table 10: Algorithm run times on test problem F5also interesting because although it appears to do relatively poorly from the statisticalresults, its best distribution is rather better than that of the NPGA. The best attainmentsurfaces show that (1+1)-PAES �nds optima which extend the furthest towards the endsof the Pareto front. The NSGA is nearly as good, and the NPGA is least impressive onthis measure. This is why it is beaten on approximately 49% of the space. The median,similarly, is not favourable for the NPGA in the most part, although it beats the othertwo algorithms in a small portion of the space near the centre. Finally, the plots ofthe worst attainment surface reveal why the NPGA beats all the other algorithms onsuch a large percentage of the space. Its worst attainment surface, again in the centreof the space, is signi�cantly better than the other two algorithms. Returning to thecomparison of pairs of algorithms on problem F5, it can be seen that (1+ 1)-PAES hada better distribution than the NPGA with archiving on 48.2% of the space comparedwith 34.7% vice versa. This result seems to be borne out by the plots in Figure 5, andgives in this case a truer picture of the algorithm with the best coverage of the spacethan the `beats all' statistic discussed above.7 Conclusion and Future WorkWe have described PAES, which in its (1 + 1)-ES form can be viewed as a simplebaseline technique for multiobjective optimization. Some analysis of its time complexityapparent at high resolution.Evolutionary Computation Volume 7, Number 1 21



JOSHUA KNOWLES AND DAVID CORNEhas been provided, arguing that it requires fewer comparisons to perform selection andacceptance, in the best case, than two well known and respected MOGAs. Timings ofthe algorithm on two problems provide empirical evidence to support this claim. It is aconceptually simple algorithm too, being the multiobjective analogue of a hillclimber.Two extensions to the basic algorithm were also described, (1+�)-PAES and apopulation-based algorithm, (�+�)-PAES. All three algorithms exploit the same novelmeans of evaluating solutions. An archive of nondominated solutions is kept, updatedand used as the benchmark by which newly generated solutions are judged. The archivealso serves the purpose of recording nondominated solutions found for presentationat the end of the run. Parks and Miller (1998) employ an archive in a MOGA as arepository from which selection and breeding can occur. This use has not yet beeninvestigated by the authors but is an interesting avenue for further work.The main objective of the paper was to thoroughly test PAES on a range of testproblems and to compare its performance with two well known algorithms, the NichedPareto Genetic Algorithm and a GA employing nondominated sorting. To achieve this,six test functions were used. Four of them have been used elsewhere as benchmarks formultiobjective optimizers, and two we introduced for the �rst time in this context. Sixvariants of PAES were tested against the NPGA and NSGA. Both genetic algorithmswere modi�ed to include versions which archived their solutions to allow them to storeand present the nondominated solutions they had found. Elitist versions were alsoincluded. In all, thirteen algorithms were compared on the six test functions.Statistical techniques introduced by Fonseca and Fleming (1995) for the comparisonand assessment of multiobjective optimizers were employed in all our tests. Thesetechniques allow univariate statistical analysis to be carried out on the attainmentsurfaces generated from several runs of a multiobjective optimizer. We thus found thatPAES, particularly in its baseline (1 + 1) form, is a capable multiobjective optimizeracross a range of problems. Its worst performance in terms of the percentage of thespace on which it is unbeaten is superior to any of the other algorithms tested here.Where algorithms are ranked on this measure, on each of the test problems, and theirranks summed, (1 + 1)-PAES is bettered only by one algorithm, the nondominatedsorting GA employing archiving and elitism. The two variants of PAES introduced inthis paper for the �rst time did not fare so well on the test functions as the simplerbaseline algorithm. A possible explanation of this is that the archive in these algorithmsis not kept as strictly updated as in (1+1)-PAES so that some accuracy in determiningthe best solution(s) for acceptance is lost.There are various avenues for future work. An extension to PAES in which thearchive is additionally used as a repository from which solutions can be selected mightbe a pro�table line of research. Further investigation of the performance of (1 + 1)-PAES may also be fruitful. As yet we are unsure how it moves about in the solutionspace and are intrigued to �nd out more about its performance, particularly on testproblem F5 where it seems to do particularly well. It may be important to measure theprobability of obtaining an entire attainment surface with PAES because it is unclearfrom the statistics whether it can �nd solutions at both extremes of the optimal rangeon a single run. To do this may simply involve tracking it through a run, however, amore generally useful idea would be to extend the statistical technique of Fonseca andFleming to allow such measures to be made. One way of doing this would be to acquirethe worst, best, median and interquartile range attainment surfaces in the normal wayto use as benchmark surfaces in the solution space. Measurements from further runs22 Evolutionary Computation Volume 7, Number 1
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