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Abstract

The bulk of research in optimization is aimed at single objective problems, where the aim is to �nd a

solution which maximises or minimises a single quality measure. However, as in nature, many problems in

telecommunications are fundamentally multi-objective, particularly where the issues involved are related to

quality of service, or cost/reliability tradeo�s, or perhaps both. The results of optimization should ideally

provide the network designer or service manager with a wide and high-quality spread of potential solutions

which are uniformly spread across the Pareto tradeo� frontier. There has been considerable research in

multi-objective optimization, but, until recently, the most prominently known multi-objective optimization

algorithms have tended to be rather slow, and there has been no universally accepted way to properly com-

pare the performance of di�erent methods. In this paper, we describe two evolutionary computation based

multi-objective optimization methods which have recently been shown to be both considerably faster than

the classical set of such methods, and to outperform existing methods on a wide range of test problems,

where performance comparisons are done using a sophisticated technique recently extended and developed

by the authors. We focus on two application areas in telecommunications: the adaptive distributed database

management problem, and the o�ine-routing problem. The new and classical evolutionary multi-objective

optimizers are compared on variants of both problems. The speed and quality of these new methods suggest

that their adoption in live applications of these and other telecommunications related problems is feasible.

1 Introduction

Evolutionary computation is well known for providing a family of naturally-inspired algorithms which can suc-

cessfully address a wide range of optimization and machine learning problems (Holland, 1975; Goldberg, 1989;

Fogel, 1995; Back, 1996). The bulk of research in evolutionary optimization (indeed all optimization techniques),

however, tends to focus on single-objective problems, in which the aim is to �nd a solution which optimises a

single scalar quantity. In contrast, many problems in both nature and the real world fundamentally multiobjec-

tive. Rather than �nding the best value for a single objective, the goal is to �nd a collection of solutions which

occupy di�erent parts of a tradeo� surface involving two or more objectives.

For some time now, the ability of evolutionary algorithms to capably address multiobjective optimization

problems has been known, thanks to seminal work by Srinivas and Deb (1994), Horn and Nafpliotis (1994) and

others. However, estimation of the relative quality of evolutionary techniques compared with classical methods

on multiobjective problems has been hampered by two issues. First, the seminal multiobjective evolutionary

algorithms (MOEAs) have tended to be considered rather slow and cumbersome compared with the classical

approaches to multiobjective optimization (local search or branch and bound techniques based on mixtures of

single-objective weighted measures). As a result, MOEAs have generally been considered a research issue, rather

than a competitive approach. Secondly, there has been little in the way of methods which are capable of providing

convincing statistical comparisons between rival multiobjective optimizers.

Both of these issues have now (arguably) been successfully addressed. In particular, recent work supported by

British Telecommunications PlC has led to the development of twoMOEAs which have been found to convincingly

outperform the classical MOEAs, and rival methods from the local search and operations research communities,

while also being suitably speedy. Also, this work has developed, extended and implemented some powerful ideas

for comparing multiobjective optimizers which were originally set out by Fonseca and Fleming (1996).

In this paper, we report on the use of these new MOEAs in the context of two distinct multiobjective problems

arising in the telecommunications arena. For each of these two problems, we compare the new MOEAs with

classical MOEAs, and/or with a rival modern MOEA developed elsewhere. In particular, we describe and use

two algorithms developed with BT support called PAES (Pareto Archived Evolution Strategy) and M-PAES

(Multiobjective PAES). These compare highly favourably with the rival techniques, and we are able to conclude

that fast, e�ective multiobjective optimisation can be feasibly used in live applications of these and other problems

in telecommunications.

In section 2 we describe the two problems addressed in this paper. The �rst is the `o�ine routing' problem.

This has previously been addressed as a single objective optimisation problem, in which the three objectives



are combined into a single scalar value. Here we treat it directly as a three objective problem and show how

a near-optimal tradeo� surface can be quickly developed with modern MOEA techniques. The second problem

is the Adaptive Distributed Database Mangement problem; agai, this is a problem that has previously been

treated as a single-objective problem in which two or more raw quality of service measures are combined into a

single value. We show here how its treatment as a multiobjective problem can be successfully pursued without

undue loss of speed, and with consequent gain in decision quality. In section 3 we brie
y review multiobjective

evolutionary search, presenting pseudocode for the modern techniques used in experiments later described. The

last part of this section brie
y describes the analysis technique we use for comparing multiobjective optimizers.

Section 4 details experiments involving PAES and M-PAES, and then summarises results on the two problems,

and we conclude in section 5.

2 Multiobjective Issues in Telecommunications

There are many optimisation issues in telecommunications which, for various reasons, are best seen as multiob-

jective. We therefore need to �nd a set of solutions which approximate an optimal Pareto tradeo� surface (see

section 3), rather than a single near-optimal solution. We also need to �nd this set of solutions quickly. We

concentrate here on two problems in particular which are sensibly viewed as multiobjective.

2.1 The O�ine Routing Problem

In a traditional telephone network, when a connection is requested the network attempts to assign a circuit

of �xed bandwidth between the source and destination. If a circuit is available it is assigned exclusively to

the connection for the duration of the call. Otherwise, the caller will receive an engaged signal and access to

the network is denied. This system, called circuit switching ensures that quality of service is guaranteed for

every call that is connected since each one is e�ectively on its own circuit. However, the disadvantage of circuit

switching is that it is potentially very wasteful of network resources because much of the time circuits may not be

transmitting any information (for instance in the pauses between words in ordinary speech). A potentially more

e�cient system, called packet switching, works by splitting a stream of information into small packets. Each

packet contains a small header indicating its destination. Now, each packet can be routed to its destination along

cables which it is sharing with many other calls. This `multiplexing' of information means that more calls can

be accepted onto the network because each call takes up less space on average than in a circuit switched scheme.

However, there are several disadvantages associated with packet switching which arise from the way in which the

packets are switched through the network. When a packet arrives at a switch its header is read and the packet

is placed on one of the output lines of the switch. The process of reading the header and moving the packet

to the correct output line takes a �nite amount of time. Thus, if two packets arrive at a switch simultaneously

one of them must be placed in a bu�er where it waits until the switch is free to process it. Bu�ering of packets

means that variable delay (jitter) is introduced in the 
ow of information from a source to its destination. It also

opens up the possibility for packets to be lost completely as the bu�ers have a �nite capacity and can become

overloaded. These problems can be minimised by routing calls in such a way as to reduce the congestion that

they encounter. Routing algorithms for packet switched networks are thus concerned with minimising the mean

delay of packets through the network, the variance in the delay (jitter), and the probability of packet loss due to

over-utilisation of links.

Routing of calls may be undertaken on di�erent timescales: Dynamic, distributed routing is concerned with

the real-time routing of connections that are requested on a moment by moment basis. In modern models of

real-time routing each node uses local congestion information to update self-contained routing tables and uses

these to select the next node with which to connect (Munetomo et al, 1997). O�-line routing works on a slower

timescale, and would be used where large amounts of data are being transferred. In this domain it has advantages

for both the network provider and the user. Because connections are booked in advance by users, the network

provider knows the tra�c pro�le and can �nd a tailored, near-optimal set of paths for the tra�c. This means

that the quality of service can be guaranteed and the network provider can maximise the pro�t it makes because

fewer calls have to be turned away. O�-line routing is currently used in the synchronous digital hierarchy (SDH)

networks (Tanenbaum, 1996) for data transfer, and it may become one means of routing in future asynchronous

transfer mode (ATM) networks (Clark, 1996).

There will always be a requirement for dynamic routing but the advantages of o�-line routing ensure that it

will also have a useful part to play in network management systems of the future. How useful it becomes may

depend on the timescale with which good routing solutions can be found. The faster that a set of near-optimal

paths can be found, the more information will be available to customers booking connections. Network providers

stand to gain from fast optimisation because they could then load up the network as much as possible, maximising

the pro�t that they make, whilst still guaranteeing quality of service.

We adopt the problem de�nition used by Mann and Smith (1996) with only minor modi�cations, as follows.

We are given a telecommunications network over which we must route multiple tra�c requests in such a manner



as to achieve a feasible routing assignment, i.e. no link is over-capacitated (hard constraint). This is the primary

objective. In addition, we impose a secondary objective that link utilisations should all be below a speci�ed, �xed

target utilisation. Finally, the routing assignment attempts to minimise the communications costs, assuming that

costs are associated with the use of each link.

Speci�cally, we are given a network G = (N;E), where N is the set of n nodes and E is the set of m edges.

Associated with each edge e 2 E is a bandwidth, b(e), and a cost, c(e). The network is always bidirectional,

there is only a single type of tra�c, n is in the range 30 to 60 and m is between 40 and 150.

The bandwidths, fb(e)je 2 Eg, lie in f16, 64g, that is there are two link types, a `backbone' type of capacity

64 units and a `local' type of capacity 16 units. For each distinct v; w 2 N , there is an amount of network tra�c,

t(v; w), which must be routed from v to w in the network. This tra�c must all be routed on the same path

P (v; w), which has to be determined. The total tra�c, f(e), on any edge e 2 E is given by

f(e) =

X

v;w2N

ft(v; w) j e 2 P (v; w)g (1)

This must not exceed the bandwidth of that edge, i.e.

for all e 2 E; f(e) � b(e) (2)

This can be achieved by minimising the deviation f(e)� b(e), so long as f(e) > b(e), i.e.

minimise

X

e2E

maxff(e)� b(e); 0g (3)

A second objective is to �nd a minimum cost allocation of tra�c through the network, satisfying constraint

(3). The cost of routing all tra�c, t(v; w), on the path, P (v; w), between v and w is given by

t(v; w)�

X

e2P (v;w)

c(e) (4)

This is summed over all possible source/destination pairs to yield the second objective

minimise

X

v;w2N

ft(v; w)�

X

e2P (v;w)

c(e)g (5)

bearing in mind the bidirectional constraint so we are summing only over n(n� 1)=2 possible pairs.

The third and �nal objective speci�ed is to minimise the deviation from a target utilisation, u , for each link

in the network, i.e.

minimise

X

e2E

max

�

f(e)�

u� b(e)

100

; 0

�

(6)

Thus, so long as f(e) > (u � b(e)=100), for at least one link e 2 E , there will exist some pressure on the

optimisation process to �nd a more balanced solution. For our experiments we set u = 50.

When approached as a single objective problem, The full and �nal objective is therefore:

minimise p�

X

e2E

maxff(e)� b(e); 0g

+ w

1

�

X

v;w2N

ft(v; w)�

X

e2P (v;w)

c(e)g

+ w

2

�

X

e2E

max

�

f(e)�

u� b(e)

100

; 0

�

(7)

where, p, w

1

and w

2

are weights applied to the various terms in the evaluation function. These can be adjusted

as necessary to prioritise any of the objectives in a single objective approach. For example, Mann and Smith

(1996) report that through extensive testing they found values of p = 10, w

1

= 1 and w

2

= 5 gave well balanced,

feasible routing strategies. By viewing the problem as multiobjective, however, we are freed from any need to

prioritise these objectives, and can demand that our optimizer deliver a broad range of solutions spanning an

optimal (or near optimal) tradeo� surface de�ned by these objectives.

2.2 The Adaptive Distributed Database Management Problem

The Adaptive Distributed Database Management problem (ADDMP) is a problem faced by distributed database

service providers (DDSPs), such as video-on-demand, genome databanks, and so forth. Oates and Corne (1998)



gives a succinct description, while Oates and Corne (2000) provides considerable detail. Also, C source code

for the evaluation function can be found via the �rst author's website

1

. Here, we provide a brief description

and some basic details of the ADDMP, aimed at furnishing the reader with an appreciation of its multiobjective

nature.

A DDSP o�ers a database service to a collection of clients. Both the database itself and the clients will

typically be globally distributed. That is, the database will be mirrored and/or distributed over a number of

servers on di�erent parts of the globe, and these servers will be accessed by a globally distributed client base.

For convenience in problem formulation, we tend to speak of this situation as a network of `nodes', where each

node may be a client, a server, or both. The typical interpretation of a node is that it represents the entry point

to a LAN (or WAN, depending on the scale of ADDMP instance concerned), which contains a server provided

by the DSSP, one or more clients, or both.

The DDSP needs to regularly ensure that database users (clients) are receiving adequate quality of service

(QoS). Indeed, clients' subscription to the database may involve guarantees from the DDSP of distinct levels of

QoS, perhaps varying with subscription cost. A key factor in QoS is the delay (or response time) experienced

by a client for a typical database query. In maximising QoS, the DDSP aims to minimize the delay for each

client. The DSSP is able to attempt to control this by from time to time redirecting particular clients accesses

to di�erent servers. Clearly, the aim of maximising QoS for all occurs in the context of load balancing. That is,

we may be able to minize the delays experienced by certain clients by routing their queries to the fastest server

which contains the required data; however, the extra load on this server will degrade the delays. So, the optimal

solution will involve a careful balancing of clients across servers.

The ADDMP is hence the problem of �nding the best client/server connection con�guration, given a particular

scenario which speci�es details of the underlying communications network, server speeds, and access rates for

each client. What counts as `best' depends on many things, but a single-objective QoS measure will typically

involve combining the worst client delay with the mean or median delays. However, such QoS measures are

growing increasingly inadequate as distributed database service provision becomes more widespread and complex

as regards the range of service gaurantees on o�er. For example, consider two potential solutions to a 5-client

ADDMP in which the vectors of client delays (in milliseconds) are, respectively: Solution 1 (155, 130, 140, 140,

140), Solution 2 (350, 80, 90, 90, 90).

In solution 1, the worst delay is 155 ms, and the mean delay is 141 ms. In solution 2, the worst delay is far

worse than in solution 1 at 350 ms, but the the mean delay is slightly better than solution 1 at 140 ms. Also,

the median delay is considerably better in solution 2 than in solution 1. In a single-objective approach, which

of solution 1 or 2 is preferred depends very much on the relative weightings given to the worst and mean (or

median) components. It is hence complex, and perhaps impossible, to derive `correct' relative weighting for these

components, especially considering the widely di�erent kinds of ADDMP scenarios which exist.

A multiobjective approach therefore seems more sensible and 
exible. Client 1, for example, may have paid

for QoS guarantee which indicates that their delay will always be below 200 ms. Client 2, on the other hand,

may have been given a guarantee that their delay would be always within 20time. With varied sets of factors like

this, the task of an optimizer addressing an ADDMP would be to quickly produce a good and diverse spread of

solution con�gurations, leaving it to a later decision process to then choose from these on the basis of the various

QoS guarantees in operation for the clients currently using the service.

The problem we address in this paper is therefore that of quickly providing a good set of diverse ADDMP

con�gurations, from which a second decision-making process can then choose the best according to prevailing

QoS issues.

3 Evolutionary Multiobjective Search

The general (unconstrained) multiobjective optimization problem can be expressed as:

\minimize" f(x) = (f

1

(x); :::; f

k

(x))

subject to x 2 X

(8)

where x is represents a solution, and X is a �nite set of feasible solutions. The objective function f(x) maps X

into <

k

, where k � 2 is the number of objectives. The term minimize appears in quotation marks because, in

general, there does not exist a single solution that is minimal on all objectives. Therefore, one may seek to �nd

a set of solutions X

�

� X , called the Pareto optimal set, with the property that :

8x

�

2 X

�

6 9 x 2 X such that x � x

�

where x � x

�

i� 8i 2 f1; :::; kg f(x

i

) � f(x

�

i

) ^ 9i 2 f1; :::; kg : f(x

i

) < f(x

�

i

)

(9)

in which x � x

�

is read as x dominates x

�

, and solutions in the Pareto optimal set are also known as e�cient

or admissible solutions. For example, as we saw above in the ADDMP, the �rst objective might be worst delay,

1

http://www.reading.ac.uk/�ssr97jdk



and the second might be mean delay. Very typically, there is no solution with objective values (x; y) such that

all other solutions are either equal or worse on both objectives. Rather, there will be a wide collection of diverse

solutions such that no one dominates another in the set. this collection is the Pareto tradeo� surface.

Many single objective combinatorial optimization problems that can be solved in polynomial time, become

NP-hard when formulated as corresponding multiobjective problems (Ulungu and Teghem, 1994). This makes

the need for good approximate methods for multiobjective optimisation especially important.

In recent years, there has already been growing interest in good approximate methods for such problems.

The approaches taken so far can be roughly split into two kinds: local search methods, including tabu search

and simulated annealing, e.g. Czy_zak and Jaszkiewicz (1998), Gandibleux et al (1996), Hansen (1996), and

evolutionary algorithm based methods, such as Srinivas and Deb (1994), Horn and Nafpliotis (1994), Horn et al

(1994), and more recently Zitzler and Thiele (1999) and Knowles and Corne (2000).

In particular, a recent clutch of algorithms developed in the evolutionary multiobjective search community

have been found both to improve signi�cantly in speed and quality over the seminal such methods, and have also

been seen to outperform recent techniques from the local search multiobjective community. These algorithms are

the Strength Pareto Evolutionary Algorithm (SPEA) developed by Zitzler and coworkers (Zitzler, 1999; Zitzler

and Thiele, 1999), the Pareto Archived Evolution Strategy (PAES), and the Memetic Pareto Archived Evolution

Strategy (M-PAES), both of the latter developed with BT support by Knowles and co-workers (Knowles and

Corne, 2000; 2000a). In the following, we describe PAES and M-PAES.

3.1 PAES

The PAES algorithm is outlined via pseudocode in Figure 1. PAES maintains a single `current' solution, and, via

essentially a straightforward hillclimbing procedure, it searches the space of solutions in an aggressive manner

by continually generating and testing mutants of the current solution. Under certain circumstances, a mutant

becomes the `new' current solution and search continues from there. In the meantime, an archive is maintained

which comprises a representative collection of all of the nondominated points so far found by the algorithm.

1 Generate initial random solution c and add it to the archive

2 Mutate c to produce m and evaluate m

3 if (c dominates m) discard m

4 else if (m dominates c)

5 replace c with m, and add m to the archive

6 else if (m is dominated by any member of the archive) discard m

7 else apply test(c,m,archive) to determine which becomes the new

current solution and whether to add m to the archive

8 until a termination criterion has been reached, return to line 2

Figure 1: Pseudocode for (1 + 1)-PAES

The archived collection of nondominated points is `representative', rather than a complete set of nondominated

points found, since we necessarily need to limit its size. Hence, this brings in complications such as how to update

the archive when it is already full, but we have a new non-dominated solution which could be included. Such

decisions are settled by considering the uniformity of spread of solutions along the current approximation to the

non-dominated Pareto surface. Basically, we prefer the archive to have a uniform spread of solutions, and hence

an archive update for a new solution tends to only occur if it would increase the uniformity of this spread. Similar

considerations apply when it comes to deciding whether or not a mutant of the current solution should become

the new current solution. The pseudocode in Figure 2, which speci�es the procedure test at line 7 of Figure 1,

details the decision processes involved.

The crowding strategy in PAES works by forming an implicit hypergrid which divides (normalised) phenotype

space into hyperboxes. In Figure 3, this is illustrated by the thick horizontal and vertical lines; the problem is

two-dimensional and hence these hyperboxes are simply squares. Each chromosome in the archive is associated

with a particular hyperbox in phenotype space. At points in the algorithm where information is needed about the

degree of crowding in di�erent regions of the space (such as lines 8 and 9 in Figure 2, this information is simply

provided by returning the number of occupants of relevant hyperboxes. For example, in Figure 3, chromosome

A is in a more crowded region of the space than chromosome B.

3.2 M-PAES

Memetic algorithms are hybridisations of evolutionary and local search which have achieved signi�cant success

recently on a wide range of important optimization problems (Moscato, 1999). M-PAES is a recently pro-



1 if the archive is not full

2 add m to the archive

3 if (m is in a less crowded region of the archive than c)

4 accept m as the new current solution

5 else maintain c as the current solution

6 else

7 if (m is in a less crowded region of the archive than x for

some member x on the archive)

8 add m to the archive, and remove a member of the archive from

the most crowded region

9 if (m is in a less crowded region of the archive than c)

10 accept m as the new current solution

11 else maintain c as the current solution

12 else

13 if (m is in a less crowded region of the archive than c)

14 accept m as the new current solution

15 else maintain c as the current solution

Figure 2: Pseudocode for test(c,m,archive)

B

A

minimizing

m
in

im
iz

in
g

Figure 3: PAES' crowding strategy

posed memetic multiobjective algorithm, which has already been found to outperform sophisticated alternative

approaches on some di�cult multi-dimensional knapsack problems (Knowles and Corne, 2000a).

The M-PAES algorithm is described by the pseudocode in Figure 4. Essentially, the idea is to run the PAES

algorithm jP j times, once for each of a population P of initial current solutions. Following this, P is updated

by replacing each chromosome in it with the �nal current solution from the PAES algorithm which `improved'

it. Then, a recombination phase occurs (lines 7{14 in Figure 4, in which crossovers of parents in P (and also

the global archive G { see below) are sampled, yielding a further updated population P . The cycle then repeats,

with PAES runs on each member of P , and so forth. Note that there are now two archives, G and H . G is

the global archive, which plays the same role as the normal archive in the simple PAES algorithm, and simply

maintains a representative record of all nondominated solutions found during the course of the algorithm. In

M-PAES, however, we also need local archives called H . When a PAES algorithm is run as part of M-PAES, the

individual PAES algorithm uses H as its archive in the normal way, but each new candidate generated during

such a PAES run is also treated as a candidate for the global archive G also.

The individual runs of PAES appear in line 5 of Figure 4, and are parameterised by c, G, and H . G and H

are the global and local archives, as explained above, while c is the member of P which is to be used to initialse

this PAES run.

3.3 A Note on Statistical Analysis of Multiobjective Optimizers

Proper comparison of the results of two multiobjective optimisers is highly non-trivial. A recent ingenious

approach was described by Fonseca and Fleming (1995), which we have adopted, implemented and extended. An



1 Generate and evaluate initial population of random solutions, P

2 Place each nondominated member of P into global archive G

3 Repeat the following until a termination criterion is met:

3 For each candidate solution c 2 P

4 Initialise local archive H to contain c, and members of G which do not dominate c

5 Apply PAES(c,G,H)

6 Place c (final current solution from step 5) into P.

7 Set intermediate population I to be empty

8 Repeat until intermediate population I is full:

9 Repeat until a suitable child is found or max trials exceeded:

10 Choose two parents randomly from P [G and recombine to produce c.

11 Update global archive G with c if necessary.

12 If c is not worthy of the archive G, select c by binary

tournament selection from G.

13 place c into I

14 Update population P by overwriting it with I.

15 Return global archive G.

Figure 4: Pseudocode for M-PAES

appreciation of the comparison method is necessary to support interpretation of the results presented in later, so

we include a concise description here.

The result of a multiobjective optimizer M is an attainment surface D

M

, as illustrated in Figure 5. If

algorithm A returned the points P

A

{ the set of nondominated and non-duplicated solutions found by A (p1, ...,

p5 in the �gure), then the attainment surface, D

A

, returned by A is the (solid) lines joining the points. Notice

that D

A

divides the phenotype space into two regions. All points in region 1 either dominate A's results or are

nondominated by them, and all points in region 2 are dominated by A's results.

P1

P2

P3

P4

P5

Improving objective1

Region 1

Region 2

Improving
objective 2

Figure 5: How a set of nondominated points divide up the phenotype space

When comparing P

A

and P

B

, we therefore compare the two surfaces D

A

and D

B

. Consider Figure 6, in which

attainment surfaces are drawn for a set of results from a single trial run of A, and a single trial run of B. The

statistical comparison process is engineered by implicitly drawing a collection of lines, perhaps originating from

the origin, which sample the Pareto frontier in di�erent regions. Line L

1

, for example, intersects D

A

at point I

1

,

and will intersect with D

B

somewhere above the �gure at a place much more distant from the origin than I

1

.

Line L

2

intersects D

A

at I

2

, and D

B

at I

3

; again, D

A

's intersection is the closer to the origin.

With such a collection of lines, we can compare the two algorithms in di�erent regions of the Pareto frontier

by comparing the intersections on these lines. As long as we use enough equally-spread lines, a comparison of

two surfaces can therefore return two numbers: the number of lines in which D

A

's intersection was closer to

the origin (and hence dominated D

B

's intersection), and the similar number for D

B

. Notice however that the

number of lines is important; in Figure 6, the regions in which B is better than A (between lines L

2

and L

3

, and

below L

5

) are not picked up by this �ve-line sample.

Next, notice that for (say) 20 trial runs of A and 20 trial runs of B, we will have generated 40 di�erent

surfaces. For each line, we can therefore �nd 40 intersections (20 from algorithm A and 20 from algorithm B).

These intersections, since they are de�ned entirely by a distance from the origin on that line (or of course we
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Figure 6: Sampling the Pareto frontier using lines of intersection

can simply take the x co-ordinate of the intersection) provide a univariate distribution. A statistical test on this

distribution of 40 intersections can then provide, in the usual way, a verdict as to which algorithm did better in

the region of space represented by that line, backed up by a con�dence measure.

We �nd that a good way to present the results of a comparison is in the form of a pair [a,b], where a gives the

percentage of the space (ie: the percentage of lines) on which algorithm A was found statistically superior to B,

and b gives the similar percentage for algorithm B. Typically, if both A and B are 'good', a+ b < 100. the result

100 � (a + b) then of course gives the percentage of the space on which results were statistically inconclusive.

We present all of our results in this form. In some cases we also present the results by plotting the median

dividing surfaces for each algorithm. This is very useful for illustrating the results, and is done by simply having

the comparison code return each algorithm's median intersection point for each line. This is what Fonseca and

Fleming do, but we note that, unlike the simple paring [a,b], plotting median surfaces cannot easily be done for

problems of 4 or more dimensions.

4 Approach and Experiments

4.1 Representations and Operators for the O�ine Routing Problem

O�-line routing involves �nding a set of routes for a given network/tra�c combination such that communications

costs and congestion are minimised. A chromosome must therefore somehow represent the complete route through

the network for each of a set of calls de�ned by the problem data. That is, if there are c calls, the chromosome

must somehow specify c paths through the network, one for each call.

As done by Mann and Smith (1996), our approach is to pre-computea number of paths for each call, so that

the chromosome only needs a single gene (an integer) to represent the choice of path for a call. The gene for call

i, for example, will be an index into a table of pre-computed paths for call i.

Mann and Smith (1996) pre-computed the K shortest paths for each call, where path-length is identi�ed with

total path cost (ie: the `length' of a link, for the purpose of the shortest-path calculations, is its cost). We do

the same, with K = 15, pre-calculating them using an algorithm due to Yen (1971). In addition, however, pre-

compute a separate sets of K-shortest path tables where cost is based on a heuristic estimate of the congestion

that would be caused by the path in question. We hence pre-compute two tables of 15 paths for each call.

Although there may be some overlap and similarity between these tables, in general they may contain very

di�erent paths.

As reported in Knowles and Corne (2000), various methods were experimented with for making use of these

pre-computed path tables. The best technique was found to be the use of a `double' chromosome for the

representation, and biased operators for crossover and mutation, which we now describe.

We use a `double' chromosome structure, in which the �rst chromosome epresents the choice of path for each

call in terms of providing an index into a path-table. The second chromosome then indicates which table is used

for the corresponding gene in the �rst chromosome. For example, the following chromosome would be valid for

a 25-call problem:

(1,1,2,3,1,3,1,3,5,1,1,2,1,1,1,1,2,4,1,3,1,1,8,1,2)

(0,0,1,1,0,1,0,0,1,1,1,0,0,1,0,1,0,0,1,0,1,1,0,1,1)

The top chromosome indicates the path index, and the bottom chromosome indicates the table index. So,

if table 0 contains paths ordered by cost, and table 1 contains paths ordered by the congestion heuristic. this



chromosome indicates that the path chosen for call 1 is the best path in its cost-cordered list, the path chosen

for call 2 is also the best path in its cost-ordered lsit, the path chosen for call 3 is the 2nd-best path in its

congestion-ordered list, and so on.

Both chromosomes are subject to random initialisation, mutation and recombination. Thereby, e�ectively

employing analogues of the concepts of dominance and multiploidy in natural genetics, a representation of sorts

will be evolved along with the solution itself. That is, over time, the genes in the second chromosome will �xate,

indicating, for example, that for certain calls it is best to choose a path from the cost-ordered list, and for others

it is best to choose from the congestion-ordered list.

It is worth noting that `good' solutions may be expected to contain many alleles with the value 1 in the

path-index chromosome, indicating in many places the choice of `local' best path, either according to cost or

congestion, for individual calls. This intuition is employed in a simple scheme for biasing the mutation and

crossover operators, as well as the population initialisation scheme. To this end, gene values are initialised

randomly according to an exponential distribution with the shape in �gure 7.
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Figure 7: The Exponential function used in the initialisation and mutation of genes in the o�ine routing problem.

The function illustrated in Figure 7 introduces a bias towards generating low allele values. In implementation,

the distribution is altered along the length of the chromosome, by linking the tuning parameter p to the position

in the chromosome, such that it is more strongly biased for the genes representing high bandwidth calls and less

so for low bandwidth calls.

Finally, Figure 8 shows our crossover technique for this problem, which also makes use of the biasing function.

The crossover operator selects two parents via binary tournament solution, and then considers their `reduced

surrogate' (ie: the collection of loci at which the parents have di�erent allele values). Then, using tournament

selection among the genes in the reduced surrogates, a locus then chosen whose allele in at least one of the parents

is relatively high. The child is then formed by replacing the lower valued allele at this locus with the higher

one, with that child otherwise being the same as the parent which contained the lower-valued allele. In this

way, recombination concentrates on propogating the `interesting' building blocks. That is, locally poor choices

of best-cost or best-congestion path which have been found to work very well in combination with locally good

choices elsewhere.

4.2 Representation and Operators for the ADDMP

In stark contrast to the case of the o�ine routingproblem, we have found a simple, direct representation and

corresponding simple, standard operators to be suitable for the ADDMP. Given an ADDMP involving n nodes

(each of which can be either a client or server or both), the chromosome is a string of n genes, where the alleles

of a gene range through the possible servers to which a client can be connected. In all the cases investigated

later, each node is considered to be both a client and a server, and each of n genes can therefore take any of n

values independently. Standard uniform crossover is used, and the mutation function picks a gene at random,

and changes it to a random new value.

We will also brie
y discuss the evaluation function for the ADDMP. This needs to take into consideration

several factors, including the basic performance of each node, the e�ect of loading a particular node with trans-

actions from several clients, the e�ect of combining both retrievals and updates from clients, the need to perform

multiple updates and the delays imposed by inter-node communications overheads. The evaluation method we

use is based on Edwards' model (Edwards, 1997), developed at British Telecom Labs. Whilst the model is by

no means exact, incorporating a number of intentional generalisations and assumptions, it appears su�ciently

re�ned to address the issues with which we are concerned, speci�cally allowing customisation of the network



Figure 8: Selection of a Gene from Parent 2 to Generate O�spring from Parent 1.
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topography, individual node performance, communications costs, contention rates and individual client loading

pro�les.

The key to this model is to make good estimates of the `e�ective transaction rate' of any particular server

based on the raw connection speed data and various aspects of the load on that server. Space restrictions make it

impossible to fully describe the evaluation function here, but full details (in particular, executables for evaluating

candidate solutions for the 10 node/10 server problem considered here) will be made available at the ectelnet

2

WWW site, or can be obtained from the authors.

4.3 Experiments: O�ine Routing

To generate test problems for o�ine routing we use a random network generator which is based on a suboptimal

degree-constrained minimum spanning tree construction algorithm due to Narula and Ho (1980). We use two

edge bandwidths, a backbone spanning tree of edges which have a bandwidth of 64 units, through which tra�c

from distal nodes can be routed, and a set of local edges of bandwidth 16 units. The algorithm begins by

generating B points in a two-dimensional space: these are the nodes in the backbone network. The Euclidean

distance between each pair is calculated and a degree 4 minimum length spanning tree is generated, each edge

being assigned a bandwidth of 64. Next, a further N � B points are generated to be the remaining network

nodes. The d-MST algorithm continues until all of these nodes are connected, using edges of bandwidth 16. At

this point, we have a tree network which is close to minimising the delay/cost of the edges and which meets the

degree constraint. Now, extra edges are added to give alternate routes between node pairs. This adds reliability

and allows the load in the network to be spread thus reducing congestion, our original aim. The extra edges are

added between pairs of nodes which currently have a connectivity of only one or two in a way which ensures that

we continue to be parsimonious as regards edge length (delay/cost).

In order to ensure that the points making up the original backbone network are spread evenly in the plane and

span the width of it, and the further points fall between fairly evenly we use a sub-random sequence generator,

usually �nding use in Monte Carlo simulation, due to Halton (see Press et al, 1988). The nodes in our `random'

networks are not placed truly randomly in the plane but by changing the initialisation conditions of the sequence

we can generate di�erent networks which `appear' random. Figure 9 shows one of the 45 Node Networks generated

using the above method. The larger circles represent nodes on the backbone, and are connected by the bold

edges, representing the 64 unit bandwidth links. The smaller circles represent the remaining nodes, and are

connected by feint edges representing the 16 unit bandwidth links.

To generate the tra�c matrix simply requires randomly choosing source-destination pairs from the n(n�1)=2

that exist, and assigning them a bandwidth requirement, also randomly. We use bandwidth requirements in the

range (1; 4).

For the multiobjective experiments, a network of size n = 45 was generated, and three di�erent tra�c

scenarios were generated for this network. The tra�c matrices were all challenging to an extent, but the �rst one

2

ectelnet is the Telecommunications subgroup of the European Network of Excellence in Evolutionary Computation, at

http://www.dcs.napier.ac.uk/evonet/ .
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Figure 9: A 45 Node Network.

PAES vs. NPEA

scenario 1 scenario 2 scenario 3

[82.7, 1.3] [23.6, 59.0] [58.2, 24.6]

Table 1: The routing problem with three tra�c scenarios

has slightly less tra�c than the second, and the third has the most tra�c, sometimes more than can be routed

without violating the bandwidth constraint of at least one link.

To investigate the performance of multiobjective optimizers on the o�ine routing problem, we compared PAES

with the Niched Pareto Evolutionary Algorithm (Horn et al, 1994; Horn and Nafpliotis, 1994). Comparison

of a wider range of methods on this problem was rather confounded by the fact that various specializations

were required to the code to achieve the pre-processing and specialised representation and operators employed.

For the o�ine routing problem, this has only been done so far for NPEA and for PAES. NPEA is a classic

evolutionary multiobjective algorithm, which is improved in our implementation by the employment of a steady-

state reproduction strategy.

Results are presented for three di�erent tra�c scenarios over the 45 node network. PAES, has only two

parameters which must be set. These are the archive size, here set to 100, and the number of divisions of the

objective dimension used in the hypergrid crowding method (ie: the number of lines per dimension in the grid

illustrated by Figure 3), set here to 32.

The NPEA algorithm uses tournament selection and a comparison set as described in Horn and Nap
iotis

(1994). It is optimized via preliminary experiments to have a population size of 150, tournament size of 20,

comparison set size of 70 and a �

share

niching parameter of 0.01, where the range of each objective is scaled to

lie between 0 and 1. It uses steady state regeneration with a replace-worst replacement strategy.

In Table 1 we show the raw results when comparing NPEA and PAES on the 45-node o�ine routing problem

with three distinct tra�c scenarios.

As can be seen, PAES conclusively outperforms NPEA on almost all of the space on scenario 1, and over

half of the space on scenario 3, however NPEA seems best on scenario 2. In further analysis of the results, we

concentrated on visualising the surfaces generated, especially for scenario 2.

We use three di�erent methods of visualising the surfaces generated by these algorithms and discuss the merits

and drawbacks of each. First, all the points from 20 runs of each algorithm separately are collected together



and all of the nondominated points are plotted. This gives us the combined nondominated surface for each

algorithm. This was done for scenario 2, and the plots are shown in Figure 10. An important lesson can be

learned here. Although, by using our statistical technique, we know that the NPEA has superior performance

overall, combining the distributions shows that it was PAES which on the combination of twenty runs found the

best solutions. This underlines the danger of blindly using either of these techniques in isolation.
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Figure 10: Best combined attainment surfaces obtained on scenario 2

The second method employed uses the twenty surfaces generated from the twenty runs of each algorithm.

As in our statistical method, j intersecting lines are then drawn through these surfaces, giving j distributions,

for each algorithm. The median of these distributions was then plotted for each algorithm. Three views of the

resultant plots are shown in Figure 11, again for scenario 2. These plots are more in agreement with the results

of the statistical tests presented in Table 1. The plotted NPEA surface lies closer to the origin than the PAES

surfaces in the majority of points, although PAES clearly covers more of the phenotype space.

Finally, the surface generated by a single run of each algorithm is shown in Figure 12. This technique is not

as powerful as the previous two described but in this case it does shed further light on the statistical test results

presented in Table 1. The plot shows that, again, PAES covers more of the phenotype space, spreading solutions

across a large range on all the objectives but that a large portion of the NPEA surface lies below the surface

generated by PAES.

From these results it is di�cult to be conclusive about which of these two algorithms is \better" on the o�-line

routing task, although the indicators generally favour PAES. Certainly, in terms of speed, PAES is far superior

to NPEA (Knowles and Corne, 2000). It seems that PAES is at least competitive on two of the tra�c scenarios

considered, while its performance when the tra�c load was lightest seems to be clearly superior.

4.4 Experiments: The ADDMP

ADDMP instances can occur in great variety. The numbers of clients and servers can range typically between 2

and 20, and the number of servers between 10 and several thousand. Database access patterns can vary equally

dramatically. Eg, access to share price and similar �nancial databases may be very frequent with constantly

changing global activity, and hence re-optimization of client/server access con�gurations may need to occur

every few minutes. In other scenarios, re-optimization may only need to occur every few hours involving a small

number of clients.

In this paper we look at ADDMP scenarios involving 10, 20, and 40 clients, and in each case we consider

5 separate problems which re
ect possible changes in access patterns over time. Therefore, our comparisons

of algorithms are in the context of a wide but representative range of potential instances. We are interested

particularly in ADDMPs which need constant, and hence fast, re-optimization. Ie, results must arrive quickly.

Hence, in increasing order of the problem sizes, the maximum allowed number of evaluations is 500, 2000 and

5000.

We consider both 2-objective and 3-objective versions of each problem. In the 2-objective version, the objec-

tives are the worst delay �gure and the median delay �gure. In the 3-objective version, the objectives are the
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Figure 11: Median attainment surfaces obtained on scenario 2

90% quartile delay �gure (ie: 90% of clients will have a better delay �gure than this), the 80% quartile delay

�gure, and the median �gure.

We also note that the �tness function can be expected to break down (and hence give inaccurate estimates of

delays) for con�gurations which highly overload certain servers. We deal with this by building in a conservative

cuto� of 1000 ms; ie: when the model estimates more than 1000ms for the worst client delay, we return the result

`1000' for all the objectives rather, forcing the point to be rejected. In this way, we avoid troubling the Pareto

frontier with inaccurate phenotypes

Or experiments on this problem used PAES and M-PAES, and compared both of these with the Strength

pareto Evolutionary Algorithm (Zitzler and Thiele, 1999), which is perhaps the most competent rival to PAES

and M-PAES yet described in the evolutionary multiobjective algorithm literature.

The following parameter settings were �xed throughout the trials: crossover type, crossover rates and the per

gene mutation rate. Other parameters settings were investigated on an ad hoc basis. With SPEA, which uses

both an `internal' and an `external' population (for details see Zitzler (1999), the size of the internal population

was altered for di�erent problems. With M-PAES, the two parameters controlling the length of the local search

phases were altered, also to give good performance on di�erent problems. With PAES, no changes in parameter

settings were necessary, with the exception that the number of hypergrid subdivisions per dimension was di�erent
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Figure 12: Nondominated surfaces obtained from a single run on scenario 3



for the 2-objective and 3-objective problems. Table 13 summarises the parameter settings.

algorithm crossover mutate internal external

p

c

type p

m

type pop. pop. l

M-PAES N/A uniform 1=L 
ip 5{20 80{95 5 / 3

SPEA 0.8 uniform 1=L 
ip 5{20 80{95 N/A

1+1-PAES N/A N/A 1=L 
ip 1 99 5 / 3

Figure 13: Parameter settings for the three algorithms. Bold indicates a �xed value in all experiments. The

ranges used for the free parameters is shown. The two values for l, the number of hypergrid divisions, refer to

the two and three objective problems, respectively.

To obtain meaningful statistical results, each algorithm is run thirty times on each problem instance consid-

ered. The full set of results obtained from the three-way comparison are provided in Table 14. The di�erent

problems are labelled by the number of nodes and the number of the scenario. E.g. The third scenario of the

twenty node problem is labelled 20-3.

ADDMP statistic 2-objective 3-objective

instance M-PAES SPEA PAES M-PAES SPEA PAES

10-1 unbeaten 93.8 83.1 99.2 98.0 81.3 100

beats all 0.8 0 5.0 0 0 2.0

10-2 unbeaten 100 99.8 94.9 68.5 98.2 100

beats all 0 0 0 0 0 1.8

10-3 unbeaten 100 98.7 95.2 77.3 78.4 100

beats all 0 0 0 0 0 8.3

10-4 unbeaten 100 98.9 100 64.3 51.8 100

beats all 0 0 0 0 0 34.1

10-5 unbeaten 99.8 49.7 100 35.3 54.9 100

beats all 0 0 0.2 0 0 16.3

20-1 unbeaten 100 48.7 100 95.8 24.1 100

beats all 0 0 0 0 0 3.0

20-2 unbeaten 65.0 67.2 100 63.7 63.7 99.8

beats all 0 0 32.8 0 0 36.3

20-3 unbeaten 100 0 100 98.9 67.0 100

beats all 0 0 0 0 0 1.1

20-4 unbeaten 52.1 0.5 100 95.2 41.0 100

beats all 0 0 47.9 0 0 4.8

20-5 unbeaten 49.9 50.0 100 23.8 24.7 100

beats all 0 0 50.0 0 0 74.1

40-1 unbeaten 92.0 15.6 99.9 77.4 31.0 70.8

beats all 0.1 0 8.0 9.9 0 22.6

40-2 unbeaten 69.3 7.9 93.4 76.4 26.2 87.6

beats all 4.6 0 30.7 0.5 0 23.6

40-3 unbeaten 68.7 10.3 93.8 71.7 15.0 77.4

beats all 4.2 0 31.3 10.9 0 28.3

40-4 unbeaten 100 11.2 99.5 78.2 0.1 93.1

beats all 0 0 0 6.9 0 21.8

40-5 unbeaten 68.2 12.9 94.7 69.1 57.7 73.0

beats all 4.9 0 31.8 0 0 30.9

Figure 14: The unbeaten and beats all statistics for the combined space inhabited by the solutions found. Two

forms of the problem were investigated: The 2-objective case, where the median response time and the worst

response time are minimized. And the 3-objective case, where the median response time, the response time

bettered by 80% of requests, and the response time bettered by 90% of requests are minimized.

In almost all cases, we can see that either M-PAES or PAES is superior to SPEA. On the smaller problems,

performance of all three algorithms tends to be similar on the two objective case, although SPEA performs rela-

tively poorly on one of the scenarios. On the three-objective case, M-PAES performance is rather disappointing,

although PAES is clearly superior to SPEA. On the moderately sizes problems, PAES is clearly superior to the

other two, and SPEA seems worst, although occasionally M-PAES performs quite poorly. Finally, on the larger

problems, M-PAES and PAES provide fairly similar performance, both being distinctly superior to SPEA.



5 Conclusion

In this paper we have looked at two distinct telecommunications optimisation problems in a multiobjective

context, and looked at the performance of advanced multiobjective optimization algorithms on examples of these

problems.

We refer to previously published work (Zitzler, 1999; Knowles and Corne, 2000 2000a) in establishing the

fact that the modern MOEAs discussed here are generally considered superior in both speed and solution quality

to seminal methods such as those pioneered by Horn and Nap
iotis (1994) and Srinivas and Deb (1994), and

also highly competitive with methods arising from the operations research and local search communities (Zitzler,

1999; Knowles and Corne, 2000a; 2000b). Meanwhile, in this paper we have shown that PAES (in one case) and

both PAES and M-PAES (in the other case) provide excellent results on two distinct multiobjective problems in

telecommunications.

Con�dence in the experiments reported, as well as the claims derived from previously published work, is

attained via use of a sophisticated procedure for statistical comparison of multiobjective optimizers. As we saw

with the results on the o�ine routing problem, it is important not to take these statistical indicators in isolation,

however the method clearly provides a strong guide when it comes to choosing an algorithm for use in live

application.

In general, PAES and M-PAES are two of a small family of algorithms which are beginning to make feasible

the fast generation of near-optimal tradeo� surfaces for complex multiobjective problems. Owing to the slow

and relatively ine�ective results from earlier work on multiobjective optimization, many complex problems are

in practice simpli�ed and treated as single objective. However, the performance of new algorithms such as PAES

and M-PAES suggests that such problems can be revisited in their more natural form, and real-world optimization

packages can be designed which quickly deliver high-quality tradeo� surfaces for further processing and decision

making.
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