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Abstract

The minimum spanning tree (MST) problem is a well-known optimization
problem of major significance in operational research. In the multi-criteria
MST (mc-MST) problem, the scalar edge weights of the MST problem are
replaced by vectors, and the aim is to find the complete set of Pareto optimal
minimum-weight spanning trees. This problem is NP-hard and so approx-
imate methods must be used if one is to tackle it efficiently. In an article
previously published in this journal, a genetic algorithm (GA) was put for-
ward for the mc-MST. To evaluate the GA, the solution sets generated by
it were compared with solution sets from a proposed (exponential time) al-
gorithm for enumerating all Pareto optimal spanning trees. However, the
proposed enumeration algorithm that was used is not correct for two reasons:
1. It does not guarantee that all Pareto optimal minimum-weight spanning
trees are returned; 2. It does not guarantee that those trees that are returned
are Pareto optimal. In this short paper we prove these two theorems.

1 Statement of the problem

The multi-criteria minimum spanning tree (mc-MST) problem can be simply stated.
Given a weighted graph G = (V, E) with vertex set V' and edge set E and edge
weight vectors w;(e) € ®",e € E,i € 1..K where K is the number of criteria, find
a spanning tree T in G such that there does not exist another spanning tree whose
total weights Pareto dominate 7'.

2 Zhou and Gen’s Proposed Enumeration Algo-
rithm

In an article by Zhou and Gen [1], an algorithm for enumerating all Pareto optimal
spanning trees was proposed. The operation of the algorithm can be summarised
as follows:

Step 1: Pick an arbitrary start-vertex v;. In turn, consider each edge adjacent to
v1. Put all edges that are nondominated into a set of subtrees S.

Step 2: For each subtree s € S consider, in turn, each adjacent edge that does not
cause a cycle to be created when added to s. For each such edge that can
be added to s to form a new subtree ¢t which is nondominated by any other
subtree sprouting from s, put ¢ into a new set T'.

Step 3: S <« T, T + 0. Compact down the set of subtrees S such that all
dominated subtrees, and all repeated subtrees, are removed.

Step 4: If the subtrees in S have V' — 1 edges then S is the required set of unique,
Pareto optimal spanning trees. Else return to Step 2.

In [1] the above algorithm was used to enumerate the set of Pareto optimal
spanning trees on some small mc-MST instances. The resulting solution sets were
then used to measure the proportion of solutions that were Pareto optimal from
those generated by the authors’ proposed genetic algorithm. In the next section we
prove that the enumerative algorithm is incorrect: it neither guarantees returning
all Pareto optimal solutions, nor that those returned are Pareto optimal.



3 Incorrectness of the Proposed Approach

Theorem: The proposed algorithm is not guaranteed to generate all Pareto optimal
spanning trees.

Proof: The proof is by example. Consider a 4-vertex weighted complete graph G
in which each edge has two weights associated with it as shown in Figure 1.

[Figure 1 goes here]

In total there are 16 spanning trees of the graph G, of which 6 are Pareto
optimal. The complete list of spanning trees of G is given in Table 1 with the 6
Pareto optimal spanning trees shown diagrammatically.

[Table 1 goes here]

Given (G; and a start-vertex of 0, the algorithm of Zhou and Gen generates the
trace given in Table 2. The trace is interpreted as follows: The left hand column
lists all the edges that can be added to v; = 0, and next to each listed edge, its
corresponding weight vector is given. Since all of these edges are nondominated each
becomes a subtree in S, to which other edges can be joined. The second column
shows each of the edges that can be added to each of the subtrees in column 1,
each forming a new subtree of two edges. Similarly, for each subsequent column,
the edges that can be added to the subtree of the previous column are listed. Next
to each subtree in the trace the total vector subtree weight is given. A double-
asterisked subtree denotes one which is dominated by other subtrees sprouting from
the same subtree at the previous level, and a single-asterisked solution denotes one
which is dominated by a subtree sprouting from a different sub-tree at the previous
level. Both single and double-asterisked solutions are discarded in Zhou and Gen’s
algorithm, and no further edges are added to them. The final solutions returned
by the algorithm are thus those in the right column with no asterisks. A repeated
tree, i.e. one with identical edges to another one, is denoted by an “R”. The trace
shows that the algorithm generates only 4 of the 6 Pareto optimal spanning trees
of the graph G;. O

[Table 2 goes here]

Theorem: The algorithm of Zhou and Gen can generate spanning trees that are
not Pareto optimal.

Proof: The proof is by example. Consider a 5-vertex weighted complete graph G4
in which each edge has two weights associated with it as shown in Figure 2.

[Figure 2 goes here]

Then given G5 and a start-vertex of 0, the algorithm of Zhou and Gen gener-
ates the trace given in Table 3. The generated spanning tree 0-3,1-4,2-3,3-4 with
total weight vector = (1987,1054) is not dominated by any other generated in the
trace, and is thus returned as an optimal solution. However, this spanning tree is
dominated by the feasible spanning tree 0-2,1-2,2-3,3-4 (shown in Figure 3) which
has a weight vector = (1898,1021). O

[Table 3 goes here]

[Figure 3 goes here]



4 Conclusion

Since the algorithm of Zhou and Gen fails both to guarantee returning all Pareto
optimal spanning trees, and that all those generated are Pareto optimal, it cannot
be said to be an enumerative procedure for finding Pareto optimal solutions to the
mc-MST problem. Therefore, it cannot be validly used as a method for measuring
the number (or proportion) of spanning trees which are Pareto optimal from any
given set. Thus it should not be used, in future, for evaluating the quality of mc-
MST solutions generated by an approximate method such as a genetic algorithm.
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Figure 1: The graph G
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Table 1: The spanning trees of G; with the Pareto optimal ones indicated in bold
and illustrated by a figure



0-1 (3,4)

0-2 (2,6)

0-3 (4,3)

0-2 (5,10)*

0-3 (7,7)*

1-2 (4,14)*

1-3 (9,6)*

0-1 (5,10)**

0-3 (6,9)**

1-2 (3,16)
0-3 (7,19)**
1-3 (9,18)%*
2-3 (5,18)

2-3 (4,8)
0-1 (7,12)
1-2 (5,18)R
1-3 (10,10)*

0-1 (7,7)**

0-2 (6,9)**

1-3 (10,5)**

2-3 (6.,5)
0-1 (9,9)
1-2 (7,15)%
1-3 (12,7)

Table 2: The trace of the algorithm of Zhou and Gen as it generates spanning trees
of the graph G, using start-vertex v; =0
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Figure 2: The edge-list of the weighted graph G4



0-1 (356,979) **
0-2 (587,285)

0-1 (943,1264) **
0-3 (1332,510) *
0-4 (613,888) *
1-2 (1513,423)
0-3 (2258,648)
0-4 (2284,1251) **
1-4 (3115,879) *
2-4 (2680,1359) **
3-4 (2268,923)
0-4 (1539,1026) *
1-3 (2339,969) **
1-4 (2370,654) **
2-3 (1888,746) *
2-4 (1935,1134) **
2-3 (962,608) *
2-4 (1009,996) **
0-3 (745,225)
0-1 (1101,1204) **
0-2 (1332,510) **
0-4 (771,828) **
1-3 (1571,771) **
2-3 (1120,548) **
3-4 (755,500)
0-1 (1111,1479) *
0-2 (1342,785)
0-1 (1698,1764) *
1-2 (2268,923) *
1-3 (2168,1331) *
1-4 (2199,1016) *
1-3 (1581,1046) **
1-4 (1612,731)
0-2 (2199,1016) *
1-2 (2538,869)
2-3 (1987,1054) R
2-4 (2034,1442)**
2-3 (1130,823)
0-1 (1486,1802)*
1-2 (2056,961)
1-3 (1956,1369)*
1-4 (1987,1054)
2-4 (1177,1211) **
0-4 (26,603)
0-1 (382,1582) **
0-2 (613,888) **
0-3 (771,828) *
1-4 (883,834) **
2-4 (448,1314) **
3-4 (36,878)

0-1 (392,1857)
-2 (979,2142)
-2 (1318,1995) *
-3 (767,2180)
-4 (814,2568) **
0-2 (623,1163)
0-1 (979,2142) R
1-2 (1549,1301)
1-3 (1449,1709) *
1-4 (1480,1394) *
1-3 (862,1424) **
1-4 (893,1109)
-2 (1480,1394) *
-2 (1819,1247)
-3 (1268,1432)
-4 (1315,1820) **
2-3 (411,1201)
-1 (767,2180) R
-2 (1337,1339)
-3 (1237,1747)
-4 (1268,1432) R
2-4 (458,1589) **

Table 3: The trace of the algorithm of Zhou and Gen as it generates spanning trees
of the graph G, using start-vertex vy =0
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Figure 3: The spanning tree 0-2,1-2,2-3,3-4 in G2



