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Abstract. This paper presents the extension of the Neural
Evolutional Strategy System (Nessy) to the multiobjective
optimization case. The neural architecture of the Nessy algorithm is
extended by using more than one output neuron, one neuron for each
objective. The learning law of Nessy is modified according to the
presence of multiple measures of performance. Each hidden neuron of
the generation layer randomly selects an objective for one cycle of the
network. From this, the multiobjective ranking of the population (or
neurons of the solutions layer) is stochastically approximated. The
modified Nessy algorithm (Monessy) is able to search for the Pareto
set of a multiobjective optimization problem. A test function from
literature with well-known Pareto and trade-off set is examined. The
newly proposed algorithm effectively searches for the Pareto set by
switching between explorational and exploitational search phases. This
was compared with random search, which did not hit the Pareto set as
nearly as often as the Monessy algorithm. Also, the replacement of a
weighted-sum matching measure with multiple matching measures in
a framework for texture filter design is considered as a second example.

1 Introduction
In real world problems, one is often faced with the problem of multiple, possibly
competing, measures of performance, which should be optimized simultaneously.
Conventional optimization techniques, such as steepest descent or simulated
annealing, are difficult to extend to the true multiobjective case. However,
evolutionary algorithms had been pointed out to be possibly well-suited to
multiobjective optimization since early in their development [1]. This is based on the
ability of evolutionary algorithms to search for multiple solutions in parallel and to
handle complicated tasks such as discontinuities, multimodality and noisy function
evaluations.
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Recently, the Nessy algorithm has been proposed [2,3]. Nessy (    N    eural     E    volutional
S    trategy     Sy   stem) is a neat integration of an evolutionary  algorithm into a neural
network architecture. The neural architecture is based on a multilayer backpropagation
neural network. The state of every neuron equals a chromosome. One iteration cycle
of the Nessy network equals one generation of the underlying evolutionary algorithm.
The three layers of Nessy are: input layer, hidden layer and output layer. Input and
hidden layer and hidden and output layer are fully connected, weights are assigned to
these connections. What Nessy makes different from Neuro-GA approaches are its
redefined genetic operators. To ensure the neuron based evaluation mode of a neural
network, genetic operators are modified in a suitable manner. The essential steps of
the Nessy algorithm are: selection, computation of error, weights modification,
transduction and mutation.

There is evidence for the Nessy algorithm to maintain memory in the evolutionary
algorithm in a unique manner [3]. Besides of keeping search space "knowledge" in the
population's schemata, the weights of Nessy can be employed as a  memory,
changing at a lower time scale than the population's schemata.

However, the current implementation of the Nessy algorithm uses only one neuron in
the output layer. This is due to the fact, that there is only one value for the fitness
function, from which the error of the selection operation is calculated. By using more
than one output neuron, the Nessy algorithm is well-suited to multi-objective
optimization in the context of multiple, possibly competing, fitness functions.

There is one essential difference between single objective optimization and
multiobjective optimization. This difference is based on the fact, that there is no
natural sort order of points of the n-dimensional Euclidian space, if n≥2. Hence, a
solution of an optimization problem can not be directly compared with some other.
There is a special subspace structure of optimal solutions in multiobjective
optimization, referred to as the Pareto set. A solution is Pareto-optimal, if this
solution is not dominated by some other solution, i.e. if no change in the
optimization problems' domain variables gains increase in all fitness values at once.
The set of all Pareto-optimal solutions is the Pareto set (or Pareto-front). The task of
multiobjective optimization is generally considered as the search for the Pareto-front.

Few evolutionary algorithms for Pareto-optimization have been designed and
proposed so far, starting with the proposal of the VEGA system [4] (see [1] for a
comprehensive overview and [5] for a new approach). The essential problem here is
that of multiobjectively ranking the individuals of a population. In [6], a study is
given on different approaches to multiobjective ranking. The main problem is the
sorting of individuals, which are on the same multiobjective ranking level. Nessy
offers a surprisingly simple approach to this complicated task, bypassing the ranking
problem, because it can be characterized as an individual evolutionary algorithm [7]
(fitness values of individuals in the input layer are never directly competed against
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each other based on their fitness values - hence, there is no need for ranking). For
doing so, Pareto-optimal is considered as a probabilistic feature. Instead of saying,
that the modification of one domain variable gains no increase for all fitness function
simultaneously, it is considered, that there will be no fitness increase for a randomly
chosen fitness function value out of the set of all fitness function values. By this
means, the weights update and transduction decision are restricted to only one of the
error measures of the output layer neurons. Which one, is randomly assigned to every
hidden neuron for every network cycle.

This paper is organized as follows. In section 2, the Nessy algorithm is recalled. The
definition of Pareto set and the extension of the Nessy algorithm to the
multiobjective case (Monessy) are given in section 3. Section 4 studies a well-known
multiobjective optimization, using the Monessy algorithm, section 5 demonstrates,
how the proposed Monessy algorithm can be employed for minimizing multiple
performance measures simultaneously within the Lucifer (    L    ook   u   p-    C    ompositional
I   n   fer   ence) framework for the automated design of 2D-Lookup texture filters. The
paper ends with the conclusions.

2 The Nessy Algorithm
The Nessy algorithm [2,3] is a neat integration of an evolutionary algorithm into a
multilayer backpropagation neural network. The Nessy architecture is shown in figure
1. In this section, the Nessy algorithm will be recalled for the single objective case.
Its extension to the multiobjective case will be given in the next section.

Nessy is composed of three layers: a solution (or input) layer, a generation (or hidden)
layer and an output layer. The state of every neuron of the solution layer is a
chromosome. Altogether, the neurons of the solution layer are the counterparts of the
individuals of a population in conventional genetic algorithms (GA). The generation
layer is of the size of the number of genes of a chromosome, as will be explained
below. Every neuron of the generation layer points to a neuron of the solution layer,
i.e. it refers to its state. The functionality of the generation layer is the counterpart to
the selection operation in conventional GA. The output layer has only one neuron
with state 0 (representing a lower bound of the fitness values of a single objective
optimization problem).

Solution layer and generation layer are fully connected, every connection has a weight
assigned to it. These weights are considered as relative selection probabilities. The
symbol pij stands for the weight of the connection from the generation layer neuron i
to the solution layer neuron j. Generation layer neurons and the only output neuron
are also connected, but no special weights are assigned.
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Once initialized with random chromosomes and weights, Nessy works autonomously.
The outline of the Nessy algorithm is as follows:

1. Each generation layer neuron i randomly chooses exactly one solution layer neuron
j with the probability:

pij

pik
k
∑

.

2. The backpropagated error of every generation layer neuron is simply the normalized
fitness value of its state, i.e.

hi =
fi

fk
k

∑
.

The training value Zero is the assumed limit of the optimization.

3. The weights of the solution-generation layer connections are updated according to
the learning law:

pij

new = pij

old − α
f j − gi

O
,

where α is the learning rate, gi is the fitness value of the state of generation layer
neuron i and O the state of the output neuron. The new weights are restricted to the
range [0,1].

4. The neuron states of the solution layer are modified by the transduction operator.
For transduction, the modification of every solution is performed fitness-
proportionately. Each solution compares its fitness with the fitness of generation
layer neuron state i. If the second one is lower than the solutions’ fitness, the
solution takes gene i of the generation layer neuron state. This operator was
introduced in [9] as implantation operation, later [10] it was referred to as transduction
operator and deduced from bacterial genetics. Transduction is a directed and
asymmetric genetic operator.

5. The solutions are mutated. Mutation is necessary if the transduction operator is
applied. The whole population would tend to premature convergence, because parts of
successful chromosomes are copied over unsuccessful ones. The mutation is
performed by adding a Gaussian distributed random number to the actual gene. Two
parameters control the mutation: mutation probability pµ and the standard deviation of
the Gaussian distribution σµ.

Altogether, Nessy uses one structural parameter (size of solution layer) and three
learning parameters (learning rate α, mutation probability pµ and mutation standard
deviation σµ).
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Essential insights into the backgrounds of this algorithm were given in [3]. On its
base, there is the interplay of weights and the so-called diagonal prototype, which is
the chromosome constructed from the diagonal of the chromosomes of the hidden
layer. Please note, that the number of hidden neurons is equal to the number of genes
of a chromosome. The weights are used as a memory for the genetic search, which
stochastically approximates the fitness ranking of the population, while the diagonal
prototype acts like an independent "explorer" of the search space. Hence, the Nessy
algorithm maintains the exploration/exploitation phases of a GA in a unique manner,
which results into faster optimization and better avoidance of local extrema.

solution layer generation layer output layer

solution i

pij

Figure 1. Nessy architecture

3 Multiobjective Nessy Algorithm (Monessy)
As pointed out in the introduction, multiobjective optimization is generally
considered as search for the Pareto set. If a multiobjective optimization problem is
given in terms of n fitness functions of m  independent domain variables x1, x2, ...,



6

xm, or a vector x  in the m-dimensional Euclidian space Rn, then a solution x u is said
to be Pareto-optimal, if it is not dominated by any other x v from Rm, i.e. there is no
x v from Rm such that

  i∈{1,...,n}
∀ ( fi (

r 
x v ) ≤ fi (

r 
x u)) ∧

i ∈{1,...,n}
∃ ( fi (

r 
x v) < fi(

r 
x u)) .

Often, there is more than one Pareto-optima. The set of all such Pareto-optima
comprises the Pareto-front or Pareto set. All function values of the Pareto set are
referred to as trade-off set. In practical applications, this notion is only a first step
towards the solution of a multiobjective optimization problem. Additional selection
criteria have to be defined in order to select one solution out of all solutions of the
Pareto set.

The use of multiple fitness functions in an evolutionary algorithm has been
intensively discussed in [1]. The basic concept is fitness sharing. The population is
divided into n subsets, each of which uses exactly one out of all n fitness functions.
This is basically the famous VEGA approach, as proposed in [4]. However, this
approach depends on the scaling of the objectives. Fourman [11] further examined the
case and proposed a version, wherein the objectives for each comparison are chosen
randomly. This approach was reported to work surprisingly well. In [1], this was
explained with the stochastic approximation of the ranking of the individuals, which
is performed by this modification.

Starting from these experiences, it was decided to use  the ranking approximation for
the extension of the Nessy algorithm to the multiobjective case, too.

Three modifications of the Nessy algorithm, which was presented in the last section,
were introduced:

1. There are n output neurons, each neuron for one objective. Now, in step 2 of the
algorithm, each output neuron determines the error value for its objective
independently.

2. Each hidden neuron randomly selects an objective for every network cycle.

3. Weights update (step 3) and transduction operation (step 4) are performed due to the
objective chosen by each hidden neuron.

From this, the Nessy algorithm is easily extended to the Monessy algorithm, which
is able to process multiple fitness functions.
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4 A Case Study for the Monessy Algorithm
In order to learn about the modified algorithm, a test function from literature [1] with
a well-known Pareto set was examined. The simple test function is

f1(x, y) =1− exp[−(x −1)2 − (y +1)2 ]

f 2(x, y) =1− exp[−(x +1)2 − (y −1)2 ]

Both functions, if considered independently, have  a minimum function value of 0 at
(1,-1) and (-1,1) for (x,y), respectively. For the Monessy run, both functions are
scaled with an exponential γ, i.e. f1(x,y)γ and f2(x,y)γ were considered for simultaneous
minimization. Figure 2 shows the trade-off sets for different values of γ.

0 f1 1

0

f2

1
1

3

5

7
9

11

Figure 2. Trade-off sets for different γ -values

Four experiments were performed, two using the Monessy algorithm and two using
"blind" random search. Reals from -4 to 4 were encoded into a bitstring of size 44 by
rescaling the binary numbers represented by the bitstrings onto this intervall. The
Monessy network was composed of 30 solution neurons, 44 generation neurons and
two output neurons. The learning rate was 3.0, the mutation used a (0, 0.5)-normal
distribution. The network run 1000 cycles. The value for γ was chosen as 9, for
which the trade-off set is nearly circular.
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In the first experiment, the (x,y)-positions examined by the network were plotted to
see how the Monessy algorithm approximates the trade-off set. In the second
experiment, the same was done for 30000 random numbers (i.e. the same number as
test points of the Monessy network during 1000 cycles). In the third experiment, it
was counted, how often the Pareto-front was hit during the run. As reference set, the
interior part of the Pareto-set for the γ  value 9 was used. Finally, in the fourth
experiment, the same was done for random numbers.

The results for the first experiment can be seen in figure 3. The Monessy algorithm
approximates the trade-off set. Moreover, the region below the trade-off set is nearly
empty. The Monessy algorithmus allocates most of its trials nearby the two single
objective optima (either f1 is 0 or f2 is 0), or nearby the Pareto set. This should be
compared with the result of the second experiment, as shown in figure 4. For x and y,
random values from [-4,4] were chosen. The figure shows the distribution of the
resulting function values in the f1,f2-plane.

Figure 3. Trade-off set approximated by Monessy algorithm

What can not be seen from the figures 3 and 4 is, how often the Pareto front was
reached by the Monessy algorithm and how this could be compared to randomly
"guessing." Experiments 3 and 4 were carried out in order to reveal this. Figure 5
shows the number of solution layer neurons for cycle 1 to 1000, which were nearby
the Pareto set. For reference, the plot of figure 2 was used with a γ  value of 9. From
figure 5, it can be seen, that the Monessy algorithms switches between explorational
and exploitational phases. During exploration, the evolving population covers the
fitness space in a manner similar to a standard genetic algorithm (SGA). Once a good
initial region is found, the algorithm switches to the exploitational phase. For a
SGA, this switch is performed due to the schemata theorem. If a SGA started
exploitation, this process can't be stopped, because the number of trials allocated to
exploitation exponentially grows in relation to the number of trials allocated to
exploration (the number of schemata decreases to one). This also holds for the
(Mo)nessy algorithm, but the algorithm may not converge at this point. Monessy
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quickly reaches the Pareto-front, but, after a while, the stability of the population
breaks down and the individuals "fall back" to the simple single objective
optimization stage. Then, the exploration phase restarts, and, after a while, the
Pareto-front is revisited. During 1000 cycles, the Pareto set was hit 1657 times by
the 30 neurons of the Monessy algorithm. The number of hits on the Pareto-front for
experiment 4, the random search, was 80 in 30000 in average! Hence, the Monessy
algorithm is able to effectively search for the Pareto-front of this multiobjective
optimization problem.

Figure 4. Trade-off set randomly approximated

The result of the experiments are surprisingly well. The Monessy algorithm is able
to approach the Pareto-front. From this, it can be used as a tool for the needed
refinement of the optimization goal in multiobjective optimization problems. After
the Pareto-front is revealed, its subregions can be qualified according to its relevance
for the (true) real optimization goal. Also, stopping criterias for a second run of the
Monessy algorithm can be designed.

Figure 5. Number of solution layer neurons within the Pareto-set vs. cycle number
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5 Texture filtering example
The Monessy algorithm was applied to the Lucifer framework [8]. This framework
generates texture filters by employing the 2D-Lookup algorithm. For 2D-Lookup, a
twodimensional matrix is given as lookup table for pairs of grayvalues. Two
grayvalued images are scanned at every position for obtaining such a pair of
grayvalues. The entry of the matrix at that position is a new grayvalue, which is the
entry at that position in the result image. In the Lucifer framework, there are only
entries for black (grayvalue 0) and white (grayvalue 255) in the matrix. Hence, the
result of the algorithm is a binary image. The two input images of the algorithm are
the results of the application of two image processing operations onto the original
image. The optimization task here is a twofold one: the image processing operations
have to be chosen out of a set of predefined image processing operators (e.g.
convolution operators, morphological operators, rescaling operations, differences-of-
gaussians, texturenumbers, statistical operators, together 256 operators), and the 2D-
Lookup matrix has to be specified.

original image with low-contrats texture fault goal image

Figure 6. Images given by the user for the Lucifer framework

For using evolutionary search for this, a fitness function has to be formulated. In the
Lucifer framework, this is done by means of a so-called goal image, which is given
by the user. Consider figure 6, where the original image and the goal image are
shown. The recognition task is to design a filter for extracting the surface faults. The
binary image, which is the result of the application of the 2D-Lookup algorithm for
some setting of the operators and the matrix, has to be compared with the binary goal
image. This is the point where multiobjective optimization comes into the play.
From the users point of view, goal and result image are similar, if most of the
reference points of the goal image are also black in the result image. To obtain a
measure for this, three quantities are considered: the amount of white pixels of the
result image, which are also white in the reference image (whiteok), the amount of
black pixels of the result image, which are also black in the goal image (blackok)
and the amount of black reference pixels, which are also black in the result image
(blackrefok). Please note, that blackrefok and blackok are not identical.



Optimization 11
For the Lucifer system, the fitness function was a weighted sum of these three
quantities. For optimization, the initial Nessy algorithm was used. For
multiobjective optimization, these three measures (whiteok, blackok,
blackrefok) can not be used directly. If so, the completely black (fitness (0,1,1))
and completely white images (fitness (1,0,0)) would belong to the Pareto-set! Instead
of this, the measures were combined in two ways. In the first version, the fitness
vector was given as (2-(blackrefok+whiteok), |blackrefok-whiteok |), in the
second version in a similar manner as (2-(blackok+whiteok), |blackok-
whiteok |). The Pareto-fronts were scanned for 300 network cycles. The results are
given in figure 7. As can be seen there, the two fitness functions behaves different. In
the first version, both measures can simultaneously reach the value (0,0). In the
second version, the first quantity can not go beyond a value of about 0.5. For the first
version, it has to be considered, that all result images with at least one black pixel in
the reference and all other pixels white has a fitness vector of (0,0)! Hence, the Pareto
set contains all framework settings leading to such a situation, and nothing more. In
the second version, the demands for zero measures can not be fulfilled. It is
impossible to generate a result image with all black pixels correctly set. Here, the
trade-off set is the vertical line with (blackok+whiteok) about 0.5. This can be used
to design a stopping criterion for further runs of the Monessy algorithm.

Figure 8 shows one result of the run and the two operation images. Altogether, the
Monessy algorithm could be used for framework adaptation as well as the Nessy
algorithm. However, the Monessy algorithm gains more insight into the way, the
best possible solution can be yielded within this framework, if the plots of the trade-
off sets are considered.

Figure 7. Trade-off sets approximated by Monessy algorithm for the
problem given with figure 6, first and second version (see text for
details)

Also, this example has demonstrated, that care has to be taken into account, if
multiple quality functions are designed for multiobjective optimization. Often, the
Pareto set contains solutions which do not comprise solutions of the real problem.
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This also shows, that much more research is necessary in order to become "familiar"
with the complicated task of Pareto-optimization.

operation 1 operation 2 result image

Figure 8. Operation images and result image for a run of Monessy, using version
2 for the fitness vector

6 Conclusions
In this paper, the Monessy algorithm for multiobjective optimization was proposed.
It is an extension of the Neural Evolutional Strategy System (Nessy) by using more
than one output neuron, one neuron for each objective. The multiobjective ranking of
the individuals of the population (or the neurons of the solution layer) is
stochastically approximated, if each hidden neuron of the generation layer chooses one
objective in every cycle at random. All internal decisions of the algorithm
(transduction decision, weights modification), which were based on one fitness
measure, are now based on the randomly selected fitness measure. By this means, the
Monessy algorithm is able to search for the Pareto set of a multiobjective
optimization problem. The search can be divided into explorational and exploitational
phases. Exploitational phases end up at the Pareto-front, but the stability of the
population breaks down after a while and the explorational phase restarts. Therefrom,
the Monessy algorithm often revisits the Pareto set during a long run. If the trade-off
sets (for the biobjective case) are plotted, insight can be gained for the refined
formulation of the optimization problem. Also, stopping conditions can be derived.
The Monessy algorithm was examined  on a test function from literature. The
effective search for the Pareto-front of the Monessy algorithm was demonstrated and
compared with the low performance of random search. Also, the replacement of
weighted-sum approaches with multiple objectives was considered, employing a real-
world application from the field of texture filtering. It comes out, that such
replacements should be performed with caution. Often, the Pareto set contains
unwanted solutions. The objectives have to be designed in a manner, which lowers
the performance of such unwanted solutions.
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