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Multiobjective Genetic Algorithm Partitioning for
Hierarchical Learning of High-Dimensional Pattern
Spaces: A Learning-Follows-Decomposition Strategy

Rajeev Kumar and Peter Rockett

Abstract—In this paper, we present a novel approach to and more so with high-dimensional inputs which often require
partitioning pattern spaces using a multiobjective genetic algo- very long learning times or result in unsuccessful training.

rithm for identifying (near-)optimal subspaces for hierarchical  gimpy increasing the number of hidden units is a popular
learning. Our approach of “learning-follows-decomposition” is

a generic solution to complex high-dimensional problems where solution, but it may unnecessarll_y 'ncrease_the number of
the input space is partitioned prior to the hierarchical neural free parameters of the net architecture which can lead to
domain instead of by competitive learning. In this technique, poor generalization. One major reason for this is that scaling
clusters are generated on the basis of fitness of purpose—thatconnectionist models to larger systems is difficult because

is, they are explicitly optimized for their subsequent mapping |arger networks require increasing amounts of training time
onto the hierarchical classifier. Results of partitioning pattern

spaces are presented. This strategy of preprocessing the data@nd data,_ and the complexity of the opt_imization task reaches
and explicitly optimizing the partitions for subsequent mapping Computationally unmanageable proportions.
onto a hierarchical classifier is found both to reduce the learning ~ Another major phenomenon contributing to the problem of

complexity and the classification time with no degradation in  slow/difficult training is crosstalk i.e., the presence of con-

overall classification error rate. The classification performance flicting information in the training data that retards learning
of various algorithms is compared and it is suggested that the )

neural modules are superior for learning the localized decision Crosstalks are identified aemporal[30] andspatial[23]. In
surfaces of such partitions and offer better generalization. a temporal crosstalk, a neural net receives inconsistent training

. . . information at different times in the training cycle: receiving
Index Terms—Genetic algorithms, neural-network architec- . . . . . . L .
ture, pattern classification, pattern clustering methods. |nconS|§tent information at a single mstant.ln_tlme is treated
as spatial crosstalk. By analogy, catastrophic interference [28]
results fromsequentialtraining when the disjoint blocks of
. INTRODUCTION training data are presented in sequence. We are not, however,
HE APPROXIMATION capabilities of multilayer neural concerned with addressing the problem of sequential training
networks have been investigated in the past by ma#iy the present work.
authors (see Hornick [13]). In principle, it has been shown In the context of addressing complex learning domains, two
that standard multilayer feedforward networks with a singleasic categories of approach—ensemble-based (e.g., [10] and
hidden layer and arbitrary bounded and nonconstant activatid4]) and modular systems (e.g., [14] and [21])—are emerging
functions areuniversalapproximators for arbitrary finite-input &8s possible solutions to the drawback of the poor scalability
environment measures provided that as many hidden unitsohdieural networks. The ensemble-based approaches rely on
required for internal representation are employed. This doe@mbining predictions of multiple models, each of which is
not, however, imply that it isomputationallyeasy to learn a trained on the same database: in general, the emphasis is on
functional mapping. A monolithic network learns thgobal improving the accuracy for better generalization and not on
nature of approximations by means of incremental adaptatiginplifying the function approximators (see Sharkey [27] for
of connection strengths in the direction of a decrease in er@rfeview).
function based on some learning rule. At the same time, it isThe main characteristic of modularity is that the system
believed that aglobal error surface may have extensive flagan take advantage of function decomposition. A “divide-and-
areas and significant variations in local minima. Such situgonquer” strategy splits a problem into a series of subproblems
tions are very common in most real-function approximatiorgnd then assigns a set of function approximators to each

. . , subproblem such that each module learns to specialize in a
Manuscript received March 10, 1997; revised September 24, 1997. The

work of R. Kumar was supported by a Commonwealth Scholarship Commidodomain. This strategy, however, is only beneficial if an
sion research studentship. implicit or explicit way to sensiblydecompose a complex

R. Kumar was with the Department of Electronic and Electrical Engineefgnction exists and to let the desired (sub)function mapping
ing, University of Sheffield, Sheffield S1 3JD, U.K. He is now with the

Department of Computer Science and Information System and the Center¥6H€rge from the Ieamm_g of subtasks. For those problems
Robotics and Intelligent Systems, Birla Institute of Technology and Scienaghere one has some prior knowledge of the pattern space

Pilani-333 031, India. and the decomposition into subtasks is explicit, modular

P. Rockett is with the Department of Electronic and Electrical Engineering Lo .
University of Sheffield, Sheffield S1 3JD, U.K. ystems are shown to give improved performance with reduced
Publisher Item Identifier S 1045-9227(98)06256-0. learning effort, e.g., [17] and [32].

1045-9227/98%$10.001 1998 IEEE



KUMAR AND ROCKETT: MULTIOBJECTIVE GENETIC ALGORITHM PARTITIONING 823

In the absence of any knowledge of the pattern space sgmtterns—they may also fail to converge to a local minimum
pling, decomposition-through-competition has been demd24]. Multiobjective genetic algorithms perform optimization
strated where the decomposition and learning phases area vector space of objectives—see Fonseca and Fleming [5]
combined. The basic idea of competitive learning was intréar a review—and are able to explore the NP-complete search
duced by Nowlan [21], formalized into adaptive mixtures o§pace for a set of equally viable and equivalent partitions of
experts [14], and later extended to tree-structured hierarchita pattern space.
mixtures of experts (HME’s) [15]. This architecture consists The remainder of this paper is organized as follows. In
of a set of function approximators (experts) that are combin&ection Il, the rationale behind our strategy is set out, and
by a classifier (gating network). Expert networks compete the multiobjective genetic optimization approach is briefly
learn the training patterns and the gating network mediates tiewiewed. The objectives used for (near-)optimal partition-
competition. The architecture performs task decompositioniing of feature spaces for hierarchical learning are identi-
the sense that learns to partitiona task into functionally inde- fied in Section Ill. Implementation details are briefly de-
pendent subtasks and allocates a distinct network to learn eachibed in Section IV. Results are presented for both high-
task. This way different experts learn different training patterrtimensional synthetic and real data in Section V and dis-
so as to goff) split the input space into regions where oneussed in Section VI. Finally, the conclusions are reported in
particular expert can specialize. At the same time, it was alSection VII.
inferred that function decomposition is an underconstrained
problem and different modular architectures may decompose [I. RATIONALE
a function in different ways [14] which is certainly not a
desirable situation from the point of view of generalizatio?e
by a neural network with too many degrees of freedom.

In this paper, we adopt a different line of research a

Conceptually, our approach has strong links to the recursive

ature space partitioning algorithms of Henrichon and Fu

r{(le] and Friedman [6] for classification using hyperplanes

. . " parallel to feature axes. The rationale for such hierarchical

propose withdrawing the task of decomposition from the _ ..~ . L . : . s

; . .. .. ~partitioning and their interactions and differences with artificial

regime of modular learning, and attempt partitioning in g . o :

elligence and pattern recognition have been summarized

. . t
genericmanner as a preprocessor to the neural domain. E)g Kanal [16]. In another simpler version of the algorithm,

argue that separating 'ghe taSk .c.)f decomposition ffom t ethi and Sarvarayudu [25] have shown the application of the
regime of modular learning simplifies the overall archltecturﬁ orithm to a real multifeature multiclass problem involving

and thiglstrategy. of data preprocessing before its subm_issiorh dprinted numeral recognition. Though partitioning using
a classifier conS|d_erany reduces the Ieallr.nlng complexity. Trgsset of hyperplanes is the simplest method conceivable
approach of fearning-follows-decompositidrean be handled hyperplanes effectively give rise to a decision tree classifier,

with a simple modular net architecture where each parn‘uong d a pattern is classified by following a path through the tree

data is mapped onto appropriate learning modules. I:grom the root to a leaf. Tree classifiers have the advantage

n tlertms ofdcompltgxn)? su_::hh a pgtz'tlonr:ng ptr)oblemh|s N that a global decision can be made hierarchically by a series
complete, and genetic algorithms (GA’s) have been shown &? simple and local decisions, but the main drawback is that

be powerful tools for exploring NP-complete search spac ey can be brittle: a wrong decision at a higher level of the

as ?‘ﬁ'c'e”t optimizers rglaﬂye Fo exhagsze segrch [4], [, ee leads to an error which is generally unrecoverable. Second,
partmularly where no dgnvatwe !nformatlon is available. GA Bifficult pattern recognition problems with complex decision
typically yield nearoptimal solutions rather than an exact SOhoundaries may require the formation of a very large number
lution, but have the advantage of not needing prior knowled%? hypervolumes

of the pattern space—the number of partitions that €METY€In this work, we have chosen to use hyperspheres to partition

L : rimitives (e.g., hyperellipsoids) is possible, but these require
hoc objectives and the eventual solutions have been Stronglysignificantly larger number of free parameters leading to

m_fluenced by the I_mea_r coeﬁ|_c|ents used _to combine tr?’ﬁuch longer chromosomes and, thus, greatly increased time
different (sub)objectives into a single scalar fitness value—f%r genetic search

example, [1]-[4], [9], [20], and [26].

I_n thls work, we mtrqduce a nov_e_l approach using a mu_lt'|5\_ Subfunction Approximation
objective genetic algorithm to partition the pattern space into
hyperspheres for subsequent mapping onto a hierarchical nedn this work, we aim to partition feature spaces into sub-
ral network for subspace learning. In our technique, clustegaces and their corresponding mappings on hierarchical neu-
are generated on the basis of fitness for purpose—that is, tfigly networks for efficient problem solving. If we consider
areexplicitly optimized for their subsequent mapping onto thteature partitioning as a mappirfg from an N-dimensional
hierarchical classifier—rather than emerging as some impliégature space tg subspaces of dimensionality,
property of the clustering algorithm. Most traditional clustering r .
algorithms rely on somsimilarity measure (which is usually P: R — U B, omps N
ill defined), and the resulting clusters depend directly on the o )
judgement of what are and what are not nominally identical subject toMin/Max Obj_f;(X)
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Fig. 1. Feature space partitioning. (a) Visualization of subfunction approxi- Minimise f,(X) 28
mation and (b) clustering into hyperspheres. Maximise f5(X) [ |

0 Dominated | ] w
then this formulation is afV-dimensional function decomposi- Nondominated initially, u
. . . . . . R demoted o dominated
tion into manyn ;-dimensional subfunctions subject to meeting B Nondominated 1
certain criteriaObj_f;(X). Sincen; represents (hopefully) '\5
a less complex domain, a classifier can approximate such a : — £iX)
subdomain with less effort. It is more appropriate, within a ©)

learning domain, to talk about thtrinsic dlmen5|onallty 2. Propagation of the pareto front through successive evaluations. (&)
rather than the true dimensions of a space [22]. We Shﬂﬁpopulation set. (b) Another population set. (c) Both merged together,
discuss in the next section that, in principle, we mean thesulting into a shift of the pareto front.
local intrinsic dimensions rather than the true dimensions of
a subspace fpr the_mappnﬁgfrom an.N-dimensional feature is partially less than another individual objective vectdy
space ton;-dimensional subspaces. (symbolically F; < F;) iff
Fig. 1(a) illustrates a simple case of decomposing a two-
dimensional (2-D) function into many subfunctions. Here,
the 2-D function is parameterized by a seriesrifinsically
one-dimensional (1-D) functions, and although in this illus-
trative example the dimensionality reduction is trivial, this
will not be the case in higher dimensional spaces. Alterna-In this case, the individuat’; dominates the individua¥’;.
tively—in Fig. 1(b)—the hyperspherical clusters can enclodé an individual is not dominated by any other member of
pattern “blobs,” and two situations can arise in practice: 1he population, it is said to beondominated, noninfericor a
all the patterns in each hypersphere belong to a single clasateto-optimalsolution. In a typical multiobjective optimiza-
i.e., partitioning alone demarcates the decision boundaries diath problem, there exists a family of such solutions which are
no classification stage is needed and 2) the patterns belongaasideredequivalentfrom the perspective of simultaneous
multiple classes necessitating the use of some postpartitionoplimization of multiple and possibly competing objective
classifier. functions.
Let us consider a two objective function problem where
objective f; is to be minimized and another objectiv@
is to be maximized. As a randomly initialized population is
rogressively evolved through successive generations some of
he nondominated solutions become dominated. Eventually,
the solution space consists of some dominated solutions and
other nondominated ones. The locus in objective space made
Minimize/Maximize ~ Objectivef,, (X) up of nondominated (pareto-optimal) solutions is referred as
_ the pareto front—such a situation is illustrated in Fig. 2(a).
m=12---.M , : ) ,
) ) With another independently randomized population set, the
subject to  Constraing,(X) < cx similar situation is shown in Fig. 2(b). On combining both the
k=1,2,---k solution spaces, some of the nondominated solutions of either
of the populations may become dominated (demoted to lower
pareto ranks), and this is accompanied by a shift in the pareto
front as shown in Fig. 2(c). Finally, at convergence, neither

(Fi < F}) 2 (%) (Foi < Foni) A @) (Foni <o Fong)-

B. Multiobjective Genetic Optimization

Mathematically, a general multiobjective optimization
problem containing a number of objectives to be m
imized/minimized along with (optional) constraints for
satisfaction of achievable goal vectors can be written as

whereX ={z,:n=1,2,---,N}isanN

— tuple vector of variables
andF ={f,:m=1,2,.---M}isanM
— tuple vector of objectives.

one of these objectives can be improved without degrading
the other, and all the nondominated solutions constitute the
final set of equivalent solutions.

In the present work, we perform optimization on a vector

Goldberg’s [8] condition of pareto optimality is stated asspace of objectives and explore the NP-complete search space

in a minimization problem, an individual objective vectsy

for a set of equally viable partitions of the pattern space.



KUMAR AND ROCKETT: MULTIOBJECTIVE GENETIC ALGORITHM PARTITIONING 825

We have identified a set of seven independent objectives for.
partitioning the pattern space and optimizing learning effort.

1)

2)

3)

4)

5)

6)

I1l. OBJECTIVES FORSUBSPACE LEARNING apart two hyperspheres with a rudimentary coulombic-
type repulsion model.

Minimize the surface areaattempts to produce compact
solutions. The surface content of a hypersphere [29] is
normalized by the number of patterns included within it
so that the objective is biased toward compact solutions.
This is effectively a data density measure and militates
against solutions containing hyperspheres which can
otherwise exist due to enclosing minimal quantities of
data.

ward network, is approximately of the order Of V%), All seven elements in the objective vector are dlstmc_t ar_1d
competing as well as complementary to each other. Objective

where/V is the number of weights in the network [12]'1dminimizes the number of hyperspheres whereas Objective

For a given pattern space, the number of inputs a splits training data into many simpler subspaces. Thus
outputs remain fixed therefore the number of weigh%s P 9 y P P ; ’

) . . ) oth together give an optimum number of clusters from a
is proportional to the number of hidden units. It ha earning-time complexity point of view. Objective 3 preserves
been shown that theffectivenumber of hidden units g piextty p -0l b

is (approximately) equal to thimtrinsic dimensionality the_ regularit_y qf the decision SL_lrf_ac_e and he_nce complements
[33]. Thus, our objective is to minimize the sum of th Objective 2 in its attempts to minimize learning efforts—both
cubés of t,he intrinsic dimensionality of the subspacﬁogether favor tha.t the local struqtgrelof the clusters shogld
We have taken a conservative estimate in determiniBe preserved fqr mcreasgd classmcatlpn accuracy gnd. with-
S ; . . t unnecessarily increasing the learning effort. Objective 7
the intrinsic d|men3|9nallty and included the componen %ompactness of partitioning) also supports minimized learning
up tp some proportion, say 0.95, of t.h? total. Vanant&ort with increased accuracy. At the same time, the compact
W'th'n. a hyperspherg as the determining criterion olutions should be formed with the goal of including as many
mtnrysu_: dlmen5|onal|_ty. . ) patterns of each class as possible (Objective 4). Objective 5
Maximize the regularity of the decision surfaceaims yinimizing the maximum fraction of included patterns in a
at increasing the classification accuracy. The near%%g'e hypersphere) competes with Objective 4 in that all the

neighbor classification error is used to indicate how We[.IJatterns should not be included in a single cluster. Objectives

the partitions preserve the total structure of the pattepn ;.4 7 together can result in compact solutions, but with

space as a separability measure [7]. This objectiygtiple instances of training patterns. Objective 6 competes
indirectly maximizes the correct classification probayith opjective 4 in that all the patterns should be included,
bility of a £-NN classifier within the partitions where ¢ with minimal multiple inclusion of data points in more
we assume that each hypersphere is an “independefian one cluster. Objectives 6 and 7 are complementary to
event in the statistical sense. We thus multiply theitaeh other in that compact solutions should be formed with
individual probabilities to combine the-NN results to  inimal multiple use. Objectives 1, 3, 4, and 6 may give a
form a single measure of the regularity of the decisiogingle-cluster solution, but are in competition with Objectives
surface(s). 2, 5, and 7 and so on and so forth.

Maximize the fraction of included patterns of each Al the seven objectives ensure a fair distribution of poten-
classaims to include within all the partitions as manyia| solutions. We do not scalarize the fitness of the solutions
training patterns as possible from each class. Hopefulipto a weighted sum of seven-element objectives, but compare
outliers within the pattern space can be excluded becausiethe scale of pareto-ranking/nondominance. At convergence,
the objective does not aim to incluadl patterns. any given one of these objectives cannot be improved without

Minimize the maximum fraction of included patterns degrading at least one of the others |eading tset of
in a single hypersphereaims to distribute the included equivalent solutions.

patterns over as many partitions as possible. It discour-

ages inclusion of all the patterns in only one or a few

partitions. IV. IMPLEMENTATION

Minimize the overlap of partitions aims to avoid  To represent subspace partitions, our GA implementation
repetition of learning effort on similar sets of patternsises variable length individuals where each subblock encodes
in different modules but allowsomeoverlap of hy- the hypersphere center and radius. Each unit of a chromosome
perspheres to prevent the formation of a “no-manis a real number, an@V + 1) such units form a block where
land” between the partitions. A direct calculation of theV is the dimensionality of the pattern space. Variable length
overlap between hyperspheres is possible, in principlef, individuals is necessitated by the fact that the number
but it is both cumbersome and potentially misleadingf clusters emerging from the search is unknown and so
because volumes (and possibly multiple) intersections tife number of clusters in the (near-)optimal solution is also
N-dimensional hyperspheres do not give a clear physia@lolved genetically such that the number of blocks forming a
picture of their geometry. We have used an alternativehromosome represents the number of partitions of the pattern
simpler measure of “overlap” where we aim to “push’space. A sample chromosome is illustrated in Fig. 3.

Minimize the number of hyperspheresaims to exploit
the modularity, but it should be based on minimizing
the overall training effort. Alternatively, this objective
can be withdrawn, and the number of partitioning hy-
perspheres can be specified in advance based on some
prior knowledge of the problem domain.

Minimize the learning complexity which, in a feedfor-
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needa priori knowledge of the objective space and minimizes

n Clusters the number of heuristically chosen parameters and procedures,
such as mating restrictions. From the obtained set of solu-
tions, a small subset based on subranking of objectives were
2 picked for hierarchical learning. THENCHORconnectionist
architecture [18] which we have developed for integrating
. multiple heterogeneous classifiers is particularly suitable for
. hierarchical learning of subspaces.

1 ! 2 3 +4 . . N | N+1

a . e .

~®&— N-Dimensional Centre ()nypersphere—>|Rgdius|

V. RESULTS

We have applied our partitioning strategy to a range of syn-
thetic problems as well as a real classification problem. First,
we partitioned synthetic data from two, three-dimensional
-D) Gaussian blobs embedded in a six space, and within

The constraints on decision variables are drawn from t % h ined tw ) here the two blob
bounds of the pattern space. We have investigated two Ays we have examine 0 cases. one where the two blobs

proaches for initializing the chromosomes. In one approarﬁ'{: Just stepargtelc(i)oand thel OthT:r Wthhere_ tk][ey overtlag.dE?ch
the cluster centers were randomly initialized and in the othgSS containe exampies. For the just-separated dala a

a hypersphere was centered on a randomly selected dg‘[ge r_1umber of equivalent solu_tior)s (_avolyed, ”.‘OSt of which
pattern. The second approach of seeding a chromosome pro%r&:prls_ed twlo g“:St?rS o{hthremtrln_:,lc (ljlmensmltnhs, eiCh
particularly well suited to sparsely populated pattern spac%%n ?mlng onty_ a(;a rom Ie sefpatrj?)ticlasses aF ougthsome
and thus significantly reduced the search effort. For the gene%ﬂ!u lons contained exempiars 1ro classes. rrom the

search, we employed a single-point crossover operation on ffunt of view of the GA, all nondominated solutions are

hypersphere limits and a Gaussian mutation. The crosso@QP'Valent’ but some may be more desirable in pracUce_._For
V}‘? overlapped Gaussian blobs, the GA produced partitions

Fig. 3. A variable-length chromosome representing the partitions.

point is taken on the boundaries between hypersphere descrip-

tion records to prevent the formation of illegal chromosome intrinsic dimensionality of three or four and cpntaining
P g %%—10% data from the other class, both of which would

Apart from meaningful recombination, this has the add X o
%%expected for this dataset. Positioning two hyperspheres on

advantage that good clusters can be retained, but shu K G . i d . " hausti
among solutions. The mutation stage involved adding ze e (known) Gaussian centers and carrying out an exhaustive

mean Gaussian noise to the center coordinates and the ra ﬁmh for the two *hest” hypersphere radii produced partitions
of the hyperspheres which were comparable to the typical GA results indicating

The search operations are further minimized using a be\]/at the GA was indeed finding close-to-optimal clusters for

heuristics. One heuristic acts on the upper bound of t 8\% cr?ses.l idered th titioni faf |
radii of a hypersphere where the upper bound is divided ' c ave aiSo considered Ine partitioning ot a four-class syn-

by the square root of the dimensionality of the space. TH; etic problem in 12 varia_bles—_here (_aach Gau_ssian blob was
heuristic prevents the potential inclusion of all the patter three (mutually exclusive) dimensions and just separated

into each partition of the feature space. Complementary to th'é@m the others. Again, we generated 100 random data points

another heuristic limits the minimum fraction of the pattern org eac(;h class'. l\/cliofst of lthei famlfl){hOf eqlillvallené.solutlpns
included in a hypersphere: partitions containing less than sohl€@ huce tcgmprlse o(tjjrl%gsderts ort rtee'lor\l ”nSIE |mfen5|or;s,
fraction of the total patterns—in this work, 2%—are prevente'?:l‘e‘C containing aroun ata points. A number of pareto-

from forming a separate cluster. One other heuristic acts %ﬂuivalent solutions, however, contained seven-dimensional
the maximum number of clusters forming a solution sinc -IIZD') c:lr elght—hd|men3|rt1$I (8'5) hgperﬁphe:(es. blem in land
preventing the number of partitions from becoming arbitraril inally, we have partitioned a benchmark problem in land-
large helps restrict the search among the space of maﬁ@f classification of multispectral satellite image data of thirty-
(partially or wholly overlapped) clusters six dimensions. The dataset description and classification
Another option is to look for some predetermined numbé?suIts for various alg_o.nthrns are given in Tay”"’?'- [31]'.
of clusters. This can be useful if one has prior knowled here the .b.eSt cIaSS|.f|cat.|o.n accuracy was Ob‘a'f‘e.d W't.h a
of the pattern space from, say, viewing the data with stand d\lN classifier. For simplicity, we reduced the original six
%%sses to a two-class problem (the cotton crop versus all

ordination techniques, or one can tune the computation to so d randoml b led the oriainal 6435 dat int
fixed number of partitions after becoming acquainted with i ers) and randomly subsampled the origina ata points

nature of the solutions obtained during the initial GA runs. to give a t_rgln!ng set Qf 50(.)' To |nvest|gat_e the _behawor
In spite of the constraints and heuristics, exploring an NIQI our partitioning algorithm in greater_ d?ta” we f|?<ed the
complete search space for a set of equally viable partitions'B‘f'.T‘ber of clusters .to .tWO’ four, and sxn respectlvg clys-
the pattern space is a complex optimization. We used the partﬁgng_ runs—_from viewing the data with standard ordination
converging genetic algorithm (PCGA) [19] which natun,:l”};echmgues it seemed that two clusters would be too few
performs good sampling of the solution space and ensuP&d six probably too many. Results for two hyperspheres
population advancement toward the pareto front. The addedpygjjaple from the UCI Machine Learning repository  at
advantages of PCGA strategy are that the algorithm does n@i://www.ics.uci.edu/AI/ML/MLDBRepository.html or ELENA.
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Fig. 4. Hypothetical views of land-use data partitioning—data projection on arbitrary axes in (a) and (b). Three main categories of clustersrare(gppa
all the patterns within a hypersphere belong to a single class, (i) a very few percent of patterns belong to the other class, and (iii) both the classes
are present roughly in the 25%-75% split.

produced some partitions which contained only members pdrtitioned data were essentially identical to the results from
one class and a roughly 50: 50 split in the other partition. Moseating the dataset as a monolithic block, and depending on
solutions, however, included a hypersphere containing arouthe particular partitioning chosen, some were slightly better,
ten members of the other class. This latter situation is &ot none was worse. Misclassification rates of six-cluster
unattractive partitioning sinceithin one of the hyperspheres,solutions are shown in Fig. 5(a) where the majority were
one class has a very small prior which would lead to difficultieslightly better and a few were worse. Assuming the results
in reliably training a neural network. Partitions based oare normally distributed, the 3-NN error rate is within one
four clusters produced mostly hyperspheres of a single clatandard deviatiofic = 0.0021) of the mean(;: = 0.009 71),
together with hyperspheres of roughly 50 : 50 membership. Sird, thus, we view any apparent improvement in error rate
partitions produced very similar results to the four partitioas not statistically significant. The fact that the classification
case except that the aggregate overlap measure was increasedracy was noteducedis highly significant—although the
and a few of the hyperspheres were degenerate in that tleesor rate has not changed teemputational effort for both
largely or wholly overlapped other hyperspheres. We dratraining and recall is significantly reduced
the conclusion that six clusters is indeed too many for this Obviously, the objective was not to include all training data
particular problem. A hypothetical 2-D view of data projectionvithin the clusters and so some data points were excluded from
on some arbitrary axes along with the hyperspheres is shothe solutions and these are potentially outliers. The distribution
in Fig. 4. of the fraction of excluded points is shown in Fig. 5(b).
We obtained classification results on the land use data basadliers do not tend to greatly degrade the performance of a
on the 500 training set examples and using the remaining 593BIN classifier, but they can have a serious effect in the case
examples as test data. Taking the whole, unpartitioned dataslet feedforward network. Hence, performance improvement
produced a 3-NN error rate of 1.11% and a 5-NN error rate of the absence of outliers is not particularly marked with-a
1.23%, whereas training a feedforward neural network gaiN classifier [Fig. 5(a)], but we believe it would be with the
error rates of 1.23%-1.48% dependent on architecture atetision boundaries formed with feedforward networks—this
the (random) initialization. The slightly poorer performance discussed further in subsequent paragraphs.
of multilayer perceptrons (MLP’s) relative to nearest neighbor The excluded test patterns in the distribution of Fig. 5(b)
classifiers is probably to be expected on such a dense datadietnot fall inside any of the hyperspherical clusters and there
We also measured theNN classification rates fok = 7 and are different ways of classifying such patterns. If one has
9 and found that: = 3 gives the best results on the test datasome prior knowledge of the outliers in the pattern space
both among nearest neighbor classifiers and also comparednd the equivalent number of patterns are excluded, all such
the other classification algorithms. (The misclassification rategclusions can be treated as resulting from outliers and ignored
are summarized in Fig. 6.) These observations are identigalthe classification process. Such knowledge of the presence
to those reported by Taylagt al. [31] that £-NN is the best of outliers guides the selection of solutions from the data
for this land-use data. Since-NN appears to give the bestdistribution of Fig. 5(b) which could appropriately exclude the
performance for this dataset as well as being simple (althougtitlier patterns. In another treatment, each of the excluded
laborious), we have used 3-NN classification as a benchmaktterns can be classified based on its distance to the nearest
for our partitioning approach in the rest of this paper. cluster, or, if there are sufficiently many clusters, using a k
Nearest neighbor error rates for the two- and four-clustaearest- cluster “voting” strategy. Both of these treatments will



828 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

| 100
1 k-NNj|
| |
80 — | | _
| o 80
= +
| : 3
P _ |
g I z 60
& | : S
> | =
&40 I r= E 04
20 — 20
O T T T T T T T T l T T T T l"“| T T T o[k
[ l 0 T T T l T L) T T I T T 1 T l T T T T l T T T T
0.000 0.005 0.010 00135 0.020 0.00 0.02 0.04 0.06 0.08 0.10

Error (Mis-classification) Rate Exclusion (No-classification) Rate

(@) (b)

Fig. 5. (a) Misclassification rate of unseen data (5935 patterns) computed with 3-NN classifier using 500 patterns as the training data. Thespre®gnésn r
the error-rates of the partitioned (six clusters each) solutions while the upward arrow indicates the error of the monolithic data. The Galgsiarttféte
histogram and the mean and standard deviation are also shown. (b) The distribution of excluded patterns from the obtained solutions.
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Fig. 6. A summary of misclassification rates with various models/algorithms of unseen data (5935 patterns) using 500 patterns as the training data.

militate against corruption of the decisions and also reduce tpartitions with both 3-NN and neural modules and measured
learning effort. the performance on the test data. The performance of the
In an attempt to compare the genetic algorithm partitioningeural-modules was better than that of 3-NN classifier (Fig. 7),
results with those of traditional clustering algorithms, whowever, the performance improvement is small and may
generated clusters in the range of [2]-[6] using flieneans be problem dependent. Nonetheless, this is in keeping with
clustering algorithm. For a fair comparison of the resultshe notion that on sparse datasets—and within a cluster the
we generated the cluster centers with the same training datataset is comparatively sparse—neural networks are better
and calculated the 3-NN error rates for each cluster. KRe able to generalize across the limited data available. This makes
means clustering followed by a 3-NN classification within thiierarchical neural classifiers a natural companion for the
bounding hyperspheres centered on each cluster gave epmsent partitioning approach.
rates in the range of 1.21%-1.71% dependent on the numbeFrom the standpoint of the time required for classification,
of clusters and initial cluster centers. The traditiohaineans typically three out of four or four out of six partitions contained
clustering produced error rates of 1.35%—2.48%. The erronly a single class and so once inclusion within a hypersphere
rates of various models and algorithms are summarizedvims established, labeling an unknown datum was trivial.
Fig. 6. Looking at the composition of clusters across all theven for hyperspheres with a roughly equal split in the
pareto-optimal solutions, we observed that only one or twaumbers of included classes, classification of an unknown
clusters in each solution need postpartitioning classificatigmint required far fewer nearest neighbor distance calculations
This is exactly what we are aiming for in the learningthan needed for classification based on the whole training
follows-decomposition strategy since the localized decisi@et of five hundred. Such “half-and-half’ clusters typically
surfaces should possess considerably reduced complexity av@ntained 100-140 total patterns. Thus, in nearest neighbor
the global decision surface. We trained such “split-classlassification, our partitioned dataset gave error rates which
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forms clusters on the basis dithess for purpose-namely,

0.05 trying to simultaneously maximize a set of general properties
2 ® we wish to emerge from a set of partitions. This property of
g 004 § 3NN genetic partitioning has been shown to exhibit superior results
.§ to those obtained from{-means clustering (Fig. 6). In this
_5_; 0.03 Neural Modules work, we have geared our vector of objectives to mapping
g onto an ensemble of MLP neural networks, but clearly any
é 0.02 desired set of objectives could be employed to maximize
< fithess for some other purpose. We thus believe the present
£ 001+ algorithm is a truly generic approach to clustering which could,
= if desired, incorporate traditional similarity measures as one

0.00 of the objectives.

The presence of outliers in a training set is known to

Fig. 7. Mis_(_:lassification rates of trivial partitions with a neural module anﬁose pr0b|em3, particula”y for neural |earning_ In our Strategy

3NN classifier. isolated, “eponymous” outliers may well be discarded since the

relevant objective tries only to maximize the number of pat-

were not degraded over a monolithic classifier, but the time {gns utilized, not to force the usage of all patterns. Similarly,
compute a label was reduced significantly. Hierarchical neug@{isters of outliers caused by some systematic measurement

Iearning is atan advantage for both reduced time and improvigglure are likely to generate their own hypersphere which

generalization. may well be significantly separated from other patterns with
the same class label. The treatment of outliers is the subject

VI. DisCuUsSION of further research.

From the above results, we observe that three main cateThe strategy adopted in this work also supports the concept
gories of cluster emerge: 1) all patterns within a hypersphed& ensemble-based approaches. Ensemble-based approaches
be|ong to a Sing]e class; 2) a very few percent of patterfgly on integrating multlple classifiers to improve prediction
belong to the other class; and 3) both the classes are preg&guracy by repeatedly mapping thboledata set on multiple
in approximately equally numbers (Fig. 4). The first categofjiodels. In our approach, the clusters which contain only
of clusters does not require any postpartitioning effort féne data class do not require any further processing and
classification since to label an unknown point it is sufficierreé implicitly labeled without ambiguity. In fact, we have
to determine in which cluster it is included. In the thirPartitioned the land usage data using 500 training patterns
category of clusters, mapping on to a feedforward netwoddd the test data was approximately twelve times larger.
is fairly straightforward since the roughly equal numbers dfhe effectiveness of such labeling was confirmed by the fact
exemplars from each class together with the reduced sizetigt in all the several thousand pareto-optimal clusters we
the subset to be learned both simplify training. For the secofi§amined, we did not find any case where a cluster containing
broad category of cluster, &-NN classifier could be em- @ single class of training data was subsequently found to
ployed to decide the final classification within a hypersphefaclude a single member of the other class from the test
with less computation than would be required for neared@ta. In a partitioned ensemble approach, we suggest that
neighbor classification on the whole training set althoughnly those clusters where more than one class is represented
clearly, unless at least k members of the minority claged to be multiply mapped on suitable classifiers. Thus,
are included the classification effectively degenerates to t principal advantage of our partitioning approach is that
first category. Alternatively, a feedforward network could benly those patterns which lie near decision boundaries warrant
used, but special measures are required to accommodatel@aéning effort. We also propose a way of dealing with multiple
unbalanced training which is well known to pose problenigstances of patterns (which is possible because one of the
for learning. As a further option, a small fraction of example@bjectives directly promotes some overlap): the clusters can be
within a hypersphere could be ignored at the cost of a minudgsigned priorities based on inclusion of patterns of a single
increase in error rate by treating all included patterns as fro#@ss and if a pattern is included in more than one cluster
the grossly dominant class; we have observed a numberhgving different priorities, it can be safely assigned to the
examples of clusters containing 200 members from one cl&4ass of the higher-priority cluster. These additions may well
and a single member from the other class. enhance the accuracy of ensemble-based approaches and the

This present generic approach to partitioning as a preprocé#actional simplicity of modular systems.
sor to the subsequent classifier is suited to a wide spectrum
of complex problems, particularly where there is no prior
knowledge of the pattern space which could guide clustering.
Most traditional clustering algorithms rely on sorsienilarity In this paper, we have presented a novel approach to
measure—which is usually ill defined—and the resulting clugartitioning pattern spaces using a multiobjective genetic algo-
ters depend directly on the judgement of what are and whéhm for identifying (near-)optimal subspaces for hierarchical
are not nominally identical patterns. Our multiobjective GAearning. learning-follows-decomposition is a generic solution
approach avoids any such judgement of similarity and instetd complex high-dimensional problems. The results of parti-

VIl. CONCLUSIONS
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tioning pattern spaces have been presented. This strategy2of S. J. Nowlan, “Maximum likelihood competitive learning,” Advances
preprocessing the data and explicitly optimizing the partitions
for subsequent mapping on to a hierarchical classifier is foupg,
to both reduce the learning complexity and classification
time for no statistically significant degradation in overall?®]
classification error rate. Classification performance of varioys)

algorithms have been compared and it is argued that the neural

modules are superior for learning the localized decision Sy,
faces of such partitions as well as offering better generalization

than both ak-NN classifier—the best for monolithic data =
set—and a monolithic neural network. [
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