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Multiobjective Genetic Algorithm Partitioning for
Hierarchical Learning of High-Dimensional Pattern
Spaces: A Learning-Follows-Decomposition Strategy

Rajeev Kumar and Peter Rockett

Abstract— In this paper, we present a novel approach to
partitioning pattern spaces using a multiobjective genetic algo-
rithm for identifying (near-)optimal subspaces for hierarchical
learning. Our approach of “learning-follows-decomposition” is
a generic solution to complex high-dimensional problems where
the input space is partitioned prior to the hierarchical neural
domain instead of by competitive learning. In this technique,
clusters are generated on the basis of fitness of purpose—that
is, they are explicitly optimized for their subsequent mapping
onto the hierarchical classifier. Results of partitioning pattern
spaces are presented. This strategy of preprocessing the data
and explicitly optimizing the partitions for subsequent mapping
onto a hierarchical classifier is found both to reduce the learning
complexity and the classification time with no degradation in
overall classification error rate. The classification performance
of various algorithms is compared and it is suggested that the
neural modules are superior for learning the localized decision
surfaces of such partitions and offer better generalization.

Index Terms—Genetic algorithms, neural-network architec-
ture, pattern classification, pattern clustering methods.

I. INTRODUCTION

T HE APPROXIMATION capabilities of multilayer neural
networks have been investigated in the past by many

authors (see Hornick [13]). In principle, it has been shown
that standard multilayer feedforward networks with a single
hidden layer and arbitrary bounded and nonconstant activation
functions areuniversalapproximators for arbitrary finite-input
environment measures provided that as many hidden units as
required for internal representation are employed. This does
not, however, imply that it iscomputationallyeasy to learn a
functional mapping. A monolithic network learns theglobal
nature of approximations by means of incremental adaptation
of connection strengths in the direction of a decrease in error
function based on some learning rule. At the same time, it is
believed that aglobal error surface may have extensive flat
areas and significant variations in local minima. Such situa-
tions are very common in most real-function approximations
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and more so with high-dimensional inputs which often require
very long learning times or result in unsuccessful training.
Simply increasing the number of hidden units is a popular
solution, but it may unnecessarily increase the number of
free parameters of the net architecture which can lead to
poor generalization. One major reason for this is that scaling
connectionist models to larger systems is difficult because
larger networks require increasing amounts of training time
and data, and the complexity of the optimization task reaches
computationally unmanageable proportions.

Another major phenomenon contributing to the problem of
slow/difficult training is crosstalk, i.e., the presence of con-
flicting information in the training data that retards learning.
Crosstalks are identified as:temporal[30] andspatial [23]. In
a temporal crosstalk, a neural net receives inconsistent training
information at different times in the training cycle: receiving
inconsistent information at a single instant in time is treated
as spatial crosstalk. By analogy, catastrophic interference [28]
results fromsequentialtraining when the disjoint blocks of
training data are presented in sequence. We are not, however,
concerned with addressing the problem of sequential training
in the present work.

In the context of addressing complex learning domains, two
basic categories of approach—ensemble-based (e.g., [10] and
[34]) and modular systems (e.g., [14] and [21])—are emerging
as possible solutions to the drawback of the poor scalability
of neural networks. The ensemble-based approaches rely on
combining predictions of multiple models, each of which is
trained on the same database: in general, the emphasis is on
improving the accuracy for better generalization and not on
simplifying the function approximators (see Sharkey [27] for
a review).

The main characteristic of modularity is that the system
can take advantage of function decomposition. A “divide-and-
conquer” strategy splits a problem into a series of subproblems
and then assigns a set of function approximators to each
subproblem such that each module learns to specialize in a
subdomain. This strategy, however, is only beneficial if an
implicit or explicit way to sensibly decompose a complex
function exists and to let the desired (sub)function mapping
emerge from the learning of subtasks. For those problems
where one has some prior knowledge of the pattern space
and the decomposition into subtasks is explicit, modular
systems are shown to give improved performance with reduced
learning effort, e.g., [17] and [32].
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In the absence of any knowledge of the pattern space sam-
pling, decomposition-through-competition has been demon-
strated where the decomposition and learning phases are
combined. The basic idea of competitive learning was intro-
duced by Nowlan [21], formalized into adaptive mixtures of
experts [14], and later extended to tree-structured hierarchical
mixtures of experts (HME’s) [15]. This architecture consists
of a set of function approximators (experts) that are combined
by a classifier (gating network). Expert networks compete to
learn the training patterns and the gating network mediates the
competition. The architecture performs task decomposition in
the sense that itlearns to partitiona task into functionally inde-
pendent subtasks and allocates a distinct network to learn each
task. This way different experts learn different training patterns
so as to (soft) split the input space into regions where one
particular expert can specialize. At the same time, it was also
inferred that function decomposition is an underconstrained
problem and different modular architectures may decompose
a function in different ways [14] which is certainly not a
desirable situation from the point of view of generalization
by a neural network with too many degrees of freedom.

In this paper, we adopt a different line of research and
propose withdrawing the task of decomposition from the
regime of modular learning, and attempt partitioning in a
generic manner as a preprocessor to the neural domain. We
argue that separating the task of decomposition from the
regime of modular learning simplifies the overall architecture
and this strategy of data preprocessing before its submission to
a classifier considerably reduces the learning complexity. This
approach of “learning-follows-decomposition” can be handled
with a simple modular net architecture where each partition of
data is mapped onto appropriate learning modules.

In terms of complexity, such a partitioning problem is NP
complete, and genetic algorithms (GA’s) have been shown to
be powerful tools for exploring NP-complete search spaces
as efficient optimizers relative to exhaustive search [4], [8],
particularly where no derivative information is available. GA’s
typically yield near-optimal solutions rather than an exact so-
lution, but have the advantage of not needing prior knowledge
of the pattern space—the number of partitions that emerges
from genetic search is guided solely by the optimization
criteria and is not dictated by user-defined parameters. Pre-
vious work on GA partitioning has optimized only singlead
hoc objectives and the eventual solutions have been strongly
influenced by the linear coefficients used to combine the
different (sub)objectives into a single scalar fitness value—for
example, [1]–[4], [9], [20], and [26].

In this work, we introduce a novel approach using a multi-
objective genetic algorithm to partition the pattern space into
hyperspheres for subsequent mapping onto a hierarchical neu-
ral network for subspace learning. In our technique, clusters
are generated on the basis of fitness for purpose—that is, they
areexplicitly optimized for their subsequent mapping onto the
hierarchical classifier—rather than emerging as some implicit
property of the clustering algorithm. Most traditional clustering
algorithms rely on somesimilarity measure (which is usually
ill defined), and the resulting clusters depend directly on the
judgement of what are and what are not nominally identical

patterns—they may also fail to converge to a local minimum
[24]. Multiobjective genetic algorithms perform optimization
on a vector space of objectives—see Fonseca and Fleming [5]
for a review—and are able to explore the NP-complete search
space for a set of equally viable and equivalent partitions of
the pattern space.

The remainder of this paper is organized as follows. In
Section II, the rationale behind our strategy is set out, and
the multiobjective genetic optimization approach is briefly
reviewed. The objectives used for (near-)optimal partition-
ing of feature spaces for hierarchical learning are identi-
fied in Section III. Implementation details are briefly de-
scribed in Section IV. Results are presented for both high-
dimensional synthetic and real data in Section V and dis-
cussed in Section VI. Finally, the conclusions are reported in
Section VII.

II. RATIONALE

Conceptually, our approach has strong links to the recursive
feature space partitioning algorithms of Henrichon and Fu
[11] and Friedman [6] for classification using hyperplanes
parallel to feature axes. The rationale for such hierarchical
partitioning and their interactions and differences with artificial
intelligence and pattern recognition have been summarized
by Kanal [16]. In another simpler version of the algorithm,
Sethi and Sarvarayudu [25] have shown the application of the
algorithm to a real multifeature multiclass problem involving
handprinted numeral recognition. Though partitioning using
a set of hyperplanes is the simplest method conceivable,
hyperplanes effectively give rise to a decision tree classifier,
and a pattern is classified by following a path through the tree
from the root to a leaf. Tree classifiers have the advantage
that a global decision can be made hierarchically by a series
of simple and local decisions, but the main drawback is that
they can be brittle: a wrong decision at a higher level of the
tree leads to an error which is generally unrecoverable. Second,
difficult pattern recognition problems with complex decision
boundaries may require the formation of a very large number
of hypervolumes.

In this work, we have chosen to use hyperspheres to partition
the pattern space since their chromosomal representation is
comparatively compact. Partitioning using other geometric
primitives (e.g., hyperellipsoids) is possible, but these require
a significantly larger number of free parameters leading to
much longer chromosomes and, thus, greatly increased time
for genetic search.

A. Subfunction Approximation

In this work, we aim to partition feature spaces into sub-
spaces and their corresponding mappings on hierarchical neu-
ral networks for efficient problem solving. If we consider
feature partitioning as a mappingP from an -dimensional
feature space to subspaces of dimensionality,

subject to
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(a) (b)

Fig. 1. Feature space partitioning. (a) Visualization of subfunction approxi-
mation and (b) clustering into hyperspheres.

then this formulation is an -dimensional function decomposi-
tion into many -dimensional subfunctions subject to meeting
certain criteria Since represents (hopefully)
a less complex domain, a classifier can approximate such a
subdomain with less effort. It is more appropriate, within a
learning domain, to talk about theintrinsic dimensionality
rather than the true dimensions of a space [22]. We shall
discuss in the next section that, in principle, we mean the
local intrinsic dimensions rather than the true dimensions of
a subspace for the mappingP from an -dimensional feature
space to -dimensional subspaces.

Fig. 1(a) illustrates a simple case of decomposing a two-
dimensional (2-D) function into many subfunctions. Here,
the 2-D function is parameterized by a series ofintrinsically
one-dimensional (1-D) functions, and although in this illus-
trative example the dimensionality reduction is trivial, this
will not be the case in higher dimensional spaces. Alterna-
tively—in Fig. 1(b)—the hyperspherical clusters can enclose
pattern “blobs,” and two situations can arise in practice: 1)
all the patterns in each hypersphere belong to a single class,
i.e., partitioning alone demarcates the decision boundaries and
no classification stage is needed and 2) the patterns belong to
multiple classes necessitating the use of some postpartitioning
classifier.

B. Multiobjective Genetic Optimization

Mathematically, a general multiobjective optimization
problem containing a number of objectives to be max-
imized/minimized along with (optional) constraints for
satisfaction of achievable goal vectors can be written as

Minimize/Maximize Objective

subject to Constraint

where is an

tuple vector of variables

and is an

tuple vector of objectives.

Goldberg’s [8] condition of pareto optimality is stated as:
in a minimization problem, an individual objective vector

(a) (b)

(c)

Fig. 2. Propagation of the pareto front through successive evaluations. (a)
A population set. (b) Another population set. (c) Both merged together,
resulting into a shift of the pareto front.

is partially less than another individual objective vector
(symbolically iff

In this case, the individual dominates the individual
If an individual is not dominated by any other member of
the population, it is said to benondominated, noninferioror a
pareto-optimalsolution. In a typical multiobjective optimiza-
tion problem, there exists a family of such solutions which are
consideredequivalent from the perspective of simultaneous
optimization of multiple and possibly competing objective
functions.

Let us consider a two objective function problem where
objective is to be minimized and another objective
is to be maximized. As a randomly initialized population is
progressively evolved through successive generations some of
the nondominated solutions become dominated. Eventually,
the solution space consists of some dominated solutions and
other nondominated ones. The locus in objective space made
up of nondominated (pareto-optimal) solutions is referred as
the pareto front—such a situation is illustrated in Fig. 2(a).
With another independently randomized population set, the
similar situation is shown in Fig. 2(b). On combining both the
solution spaces, some of the nondominated solutions of either
of the populations may become dominated (demoted to lower
pareto ranks), and this is accompanied by a shift in the pareto
front as shown in Fig. 2(c). Finally, at convergence, neither
one of these objectives can be improved without degrading
the other, and all the nondominated solutions constitute the
final set of equivalent solutions.

In the present work, we perform optimization on a vector
space of objectives and explore the NP-complete search space
for a set of equally viable partitions of the pattern space.
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III. OBJECTIVES FORSUBSPACE LEARNING

We have identified a set of seven independent objectives for
partitioning the pattern space and optimizing learning effort.

1) Minimize the number of hyperspheresaims to exploit
the modularity, but it should be based on minimizing
the overall training effort. Alternatively, this objective
can be withdrawn, and the number of partitioning hy-
perspheres can be specified in advance based on some
prior knowledge of the problem domain.

2) Minimize the learning complexity which, in a feedfor-
ward network, is approximately of the order of ,
where is the number of weights in the network [12].
For a given pattern space, the number of inputs and
outputs remain fixed therefore the number of weights
is proportional to the number of hidden units. It has
been shown that theeffectivenumber of hidden units
is (approximately) equal to theintrinsic dimensionality
[33]. Thus, our objective is to minimize the sum of the
cubes of the intrinsic dimensionality of the subspaces.
We have taken a conservative estimate in determining
the intrinsic dimensionality and included the components
up to some proportion, say 0.95, of the total variance
within a hypersphere as the determining criterion of
intrinsic dimensionality.

3) Maximize the regularity of the decision surfaceaims
at increasing the classification accuracy. The nearest
neighbor classification error is used to indicate how well
the partitions preserve the total structure of the pattern
space as a separability measure [7]. This objective
indirectly maximizes the correct classification proba-
bility of a -NN classifier within the partitions where
we assume that each hypersphere is an “independent”
event in the statistical sense. We thus multiply their
individual probabilities to combine the-NN results to
form a single measure of the regularity of the decision
surface(s).

4) Maximize the fraction of included patterns of each
classaims to include within all the partitions as many
training patterns as possible from each class. Hopefully,
outliers within the pattern space can be excluded because
the objective does not aim to includeall patterns.

5) Minimize the maximum fraction of included patterns
in a single hypersphereaims to distribute the included
patterns over as many partitions as possible. It discour-
ages inclusion of all the patterns in only one or a few
partitions.

6) Minimize the overlap of partitions aims to avoid
repetition of learning effort on similar sets of patterns
in different modules but allowssomeoverlap of hy-
perspheres to prevent the formation of a “no-man’s
land” between the partitions. A direct calculation of the
overlap between hyperspheres is possible, in principle,
but it is both cumbersome and potentially misleading
because volumes (and possibly multiple) intersections of

-dimensional hyperspheres do not give a clear physical
picture of their geometry. We have used an alternative,
simpler measure of “overlap” where we aim to “push”

apart two hyperspheres with a rudimentary coulombic-
type repulsion model.

7) Minimize the surface areaattempts to produce compact
solutions. The surface content of a hypersphere [29] is
normalized by the number of patterns included within it
so that the objective is biased toward compact solutions.
This is effectively a data density measure and militates
against solutions containing hyperspheres which can
otherwise exist due to enclosing minimal quantities of
data.

All seven elements in the objective vector are distinct and
competing as well as complementary to each other. Objective
1 minimizes the number of hyperspheres whereas Objective
2 splits training data into many simpler subspaces. Thus,
both together give an optimum number of clusters from a
learning-time complexity point of view. Objective 3 preserves
the regularity of the decision surface and hence complements
Objective 2 in its attempts to minimize learning efforts—both
together favor that the local structure of the clusters should
be preserved for increased classification accuracy and with-
out unnecessarily increasing the learning effort. Objective 7
(compactness of partitioning) also supports minimized learning
effort with increased accuracy. At the same time, the compact
solutions should be formed with the goal of including as many
patterns of each class as possible (Objective 4). Objective 5
(minimizing the maximum fraction of included patterns in a
single hypersphere) competes with Objective 4 in that all the
patterns should not be included in a single cluster. Objectives
4 and 7 together can result in compact solutions, but with
multiple instances of training patterns. Objective 6 competes
with Objective 4 in that all the patterns should be included,
but with minimal multiple inclusion of data points in more
than one cluster. Objectives 6 and 7 are complementary to
each other in that compact solutions should be formed with
minimal multiple use. Objectives 1, 3, 4, and 6 may give a
single-cluster solution, but are in competition with Objectives
2, 5, and 7 and so on and so forth.

All the seven objectives ensure a fair distribution of poten-
tial solutions. We do not scalarize the fitness of the solutions
into a weighted sum of seven-element objectives, but compare
on the scale of pareto-ranking/nondominance. At convergence,
any given one of these objectives cannot be improved without
degrading at least one of the others leading to aset of
equivalent solutions.

IV. I MPLEMENTATION

To represent subspace partitions, our GA implementation
uses variable length individuals where each subblock encodes
the hypersphere center and radius. Each unit of a chromosome
is a real number, and such units form a block where

is the dimensionality of the pattern space. Variable length
of individuals is necessitated by the fact that the number
of clusters emerging from the search is unknown and so
the number of clusters in the (near-)optimal solution is also
evolved genetically such that the number of blocks forming a
chromosome represents the number of partitions of the pattern
space. A sample chromosome is illustrated in Fig. 3.
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Fig. 3. A variable-length chromosome representing the partitions.

The constraints on decision variables are drawn from the
bounds of the pattern space. We have investigated two ap-
proaches for initializing the chromosomes. In one approach,
the cluster centers were randomly initialized and in the other
a hypersphere was centered on a randomly selected data
pattern. The second approach of seeding a chromosome proved
particularly well suited to sparsely populated pattern spaces
and thus significantly reduced the search effort. For the genetic
search, we employed a single-point crossover operation on the
hypersphere limits and a Gaussian mutation. The crossover
point is taken on the boundaries between hypersphere descrip-
tion records to prevent the formation of illegal chromosomes.
Apart from meaningful recombination, this has the added
advantage that good clusters can be retained, but shuffled
among solutions. The mutation stage involved adding zero-
mean Gaussian noise to the center coordinates and the radii
of the hyperspheres.

The search operations are further minimized using a few
heuristics. One heuristic acts on the upper bound of the
radii of a hypersphere where the upper bound is divided
by the square root of the dimensionality of the space. This
heuristic prevents the potential inclusion of all the patterns
into each partition of the feature space. Complementary to this,
another heuristic limits the minimum fraction of the patterns
included in a hypersphere: partitions containing less than some
fraction of the total patterns—in this work, 2%—are prevented
from forming a separate cluster. One other heuristic acts on
the maximum number of clusters forming a solution since
preventing the number of partitions from becoming arbitrarily
large helps restrict the search among the space of many
(partially or wholly overlapped) clusters.

Another option is to look for some predetermined number
of clusters. This can be useful if one has prior knowledge
of the pattern space from, say, viewing the data with standard
ordination techniques, or one can tune the computation to some
fixed number of partitions after becoming acquainted with the
nature of the solutions obtained during the initial GA runs.

In spite of the constraints and heuristics, exploring an NP-
complete search space for a set of equally viable partitions of
the pattern space is a complex optimization. We used the pareto
converging genetic algorithm (PCGA) [19] which naturally
performs good sampling of the solution space and ensures
population advancement toward the pareto front. The added
advantages of PCGA strategy are that the algorithm does not

needa priori knowledge of the objective space and minimizes
the number of heuristically chosen parameters and procedures,
such as mating restrictions. From the obtained set of solu-
tions, a small subset based on subranking of objectives were
picked for hierarchical learning. TheANCHORconnectionist
architecture [18] which we have developed for integrating
multiple heterogeneous classifiers is particularly suitable for
hierarchical learning of subspaces.

V. RESULTS

We have applied our partitioning strategy to a range of syn-
thetic problems as well as a real classification problem. First,
we partitioned synthetic data from two, three-dimensional
(3-D) Gaussian blobs embedded in a six space, and within
this we have examined two cases: one where the two blobs
are just separated and the other where they overlap. Each
class contained 100 examples. For the just-separated data a
large number of equivalent solutions evolved, most of which
comprised two clusters of threeintrinsic dimensions, each
containing only data from the separate classes although some
solutions contained exemplars fromboth classes. From the
point of view of the GA, all nondominated solutions are
equivalent, but some may be more desirable in practice. For
the overlapped Gaussian blobs, the GA produced partitions
of intrinsic dimensionality of three or four and containing
5%–10% data from the other class, both of which would
be expected for this dataset. Positioning two hyperspheres on
the (known) Gaussian centers and carrying out an exhaustive
search for the two “best” hypersphere radii produced partitions
which were comparable to the typical GA results indicating
that the GA was indeed finding close-to-optimal clusters for
both cases.

We have also considered the partitioning of a four-class syn-
thetic problem in 12 variables—here each Gaussian blob was
of three (mutually exclusive) dimensions and just separated
from the others. Again, we generated 100 random data points
from each class. Most of the family of equivalent solutions
produced comprised four clusters of three intrinsic dimensions,
each containing around 100 data points. A number of pareto-
equivalent solutions, however, contained seven-dimensional
(7-D) or eight-dimensinal (8-D) hyperspheres.

Finally, we have partitioned a benchmark problem in land-
use classification of multispectral satellite image data of thirty-
six dimensions.1 The dataset description and classification
results for various algorithms are given in Tayloret al. [31],
where the best classification accuracy was obtained with a

-NN classifier. For simplicity, we reduced the original six
classes to a two-class problem (the cotton crop versus all
others) and randomly subsampled the original 6435 data points
to give a training set of 500. To investigate the behavior
of our partitioning algorithm in greater detail we fixed the
number of clusters to two, four, and six in respective clus-
tering runs—from viewing the data with standard ordination
techniques it seemed that two clusters would be too few
and six probably too many. Results for two hyperspheres

1Available from the UCI Machine Learning repository at
http://www.ics.uci.edu/AI/ML/MLDBRepository.html or ELENA.



KUMAR AND ROCKETT: MULTIOBJECTIVE GENETIC ALGORITHM PARTITIONING 827

(a) (b)

Fig. 4. Hypothetical views of land-use data partitioning—data projection on arbitrary axes in (a) and (b). Three main categories of clusters are apparent—(i)
all the patterns within a hypersphere belong to a single class, (ii) a very few percent of patterns belong to the other class, and (iii) both the classes
are present roughly in the 25%–75% split.

produced some partitions which contained only members of
one class and a roughly 50 : 50 split in the other partition. Most
solutions, however, included a hypersphere containing around
ten members of the other class. This latter situation is an
unattractive partitioning sincewithin one of the hyperspheres,
one class has a very small prior which would lead to difficulties
in reliably training a neural network. Partitions based on
four clusters produced mostly hyperspheres of a single class
together with hyperspheres of roughly 50 : 50 membership. Six
partitions produced very similar results to the four partition
case except that the aggregate overlap measure was increased
and a few of the hyperspheres were degenerate in that they
largely or wholly overlapped other hyperspheres. We draw
the conclusion that six clusters is indeed too many for this
particular problem. A hypothetical 2-D view of data projection
on some arbitrary axes along with the hyperspheres is shown
in Fig. 4.

We obtained classification results on the land use data based
on the 500 training set examples and using the remaining 5935
examples as test data. Taking the whole, unpartitioned dataset
produced a 3-NN error rate of 1.11% and a 5-NN error rate of
1.23%, whereas training a feedforward neural network gave
error rates of 1.23%–1.48% dependent on architecture and
the (random) initialization. The slightly poorer performance
of multilayer perceptrons (MLP’s) relative to nearest neighbor
classifiers is probably to be expected on such a dense data set.
We also measured the-NN classification rates for and

and found that gives the best results on the test data
both among nearest neighbor classifiers and also compared to
the other classification algorithms. (The misclassification rates
are summarized in Fig. 6.) These observations are identical
to those reported by Tayloret al. [31] that -NN is the best
for this land-use data. Since-NN appears to give the best
performance for this dataset as well as being simple (although
laborious), we have used 3-NN classification as a benchmark
for our partitioning approach in the rest of this paper.

Nearest neighbor error rates for the two- and four-cluster

partitioned data were essentially identical to the results from
treating the dataset as a monolithic block, and depending on
the particular partitioning chosen, some were slightly better,
but none was worse. Misclassification rates of six-cluster
solutions are shown in Fig. 5(a) where the majority were
slightly better and a few were worse. Assuming the results
are normally distributed, the 3-NN error rate is within one
standard deviation of the mean ,
and, thus, we view any apparent improvement in error rate
as not statistically significant. The fact that the classification
accuracy was notreducedis highly significant—although the
error rate has not changed thecomputational effort for both
training and recall is significantly reduced.

Obviously, the objective was not to include all training data
within the clusters and so some data points were excluded from
the solutions and these are potentially outliers. The distribution
of the fraction of excluded points is shown in Fig. 5(b).
Outliers do not tend to greatly degrade the performance of a

-NN classifier, but they can have a serious effect in the case
of a feedforward network. Hence, performance improvement
in the absence of outliers is not particularly marked with a-
NN classifier [Fig. 5(a)], but we believe it would be with the
decision boundaries formed with feedforward networks—this
is discussed further in subsequent paragraphs.

The excluded test patterns in the distribution of Fig. 5(b)
did not fall inside any of the hyperspherical clusters and there
are different ways of classifying such patterns. If one has
some prior knowledge of the outliers in the pattern space
and the equivalent number of patterns are excluded, all such
exclusions can be treated as resulting from outliers and ignored
in the classification process. Such knowledge of the presence
of outliers guides the selection of solutions from the data
distribution of Fig. 5(b) which could appropriately exclude the
outlier patterns. In another treatment, each of the excluded
patterns can be classified based on its distance to the nearest
cluster, or, if there are sufficiently many clusters, using a k
nearest- cluster “voting” strategy. Both of these treatments will
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(a) (b)

Fig. 5. (a) Misclassification rate of unseen data (5935 patterns) computed with 3-NN classifier using 500 patterns as the training data. The histogram represents
the error-rates of the partitioned (six clusters each) solutions while the upward arrow indicates the error of the monolithic data. The Gaussian fitted into the
histogram and the mean and standard deviation are also shown. (b) The distribution of excluded patterns from the obtained solutions.

Fig. 6. A summary of misclassification rates with various models/algorithms of unseen data (5935 patterns) using 500 patterns as the training data.

militate against corruption of the decisions and also reduce the
learning effort.

In an attempt to compare the genetic algorithm partitioning
results with those of traditional clustering algorithms, we
generated clusters in the range of [2]–[6] using the-means
clustering algorithm. For a fair comparison of the results,
we generated the cluster centers with the same training data,
and calculated the 3-NN error rates for each cluster. The-
means clustering followed by a 3-NN classification within the
bounding hyperspheres centered on each cluster gave error
rates in the range of 1.21%–1.71% dependent on the number
of clusters and initial cluster centers. The traditional-means
clustering produced error rates of 1.35%–2.48%. The error
rates of various models and algorithms are summarized in
Fig. 6. Looking at the composition of clusters across all the
pareto-optimal solutions, we observed that only one or two
clusters in each solution need postpartitioning classification.
This is exactly what we are aiming for in the learning-
follows-decomposition strategy since the localized decision
surfaces should possess considerably reduced complexity over
the global decision surface. We trained such “split-class”

partitions with both 3-NN and neural modules and measured
the performance on the test data. The performance of the
neural-modules was better than that of 3-NN classifier (Fig. 7),
however, the performance improvement is small and may
be problem dependent. Nonetheless, this is in keeping with
the notion that on sparse datasets—and within a cluster the
dataset is comparatively sparse—neural networks are better
able to generalize across the limited data available. This makes
hierarchical neural classifiers a natural companion for the
present partitioning approach.

From the standpoint of the time required for classification,
typically three out of four or four out of six partitions contained
only a single class and so once inclusion within a hypersphere
was established, labeling an unknown datum was trivial.
Even for hyperspheres with a roughly equal split in the
numbers of included classes, classification of an unknown
point required far fewer nearest neighbor distance calculations
than needed for classification based on the whole training
set of five hundred. Such “half-and-half” clusters typically
contained 100–140 total patterns. Thus, in nearest neighbor
classification, our partitioned dataset gave error rates which
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Fig. 7. Misclassification rates of trivial partitions with a neural module and
3-NN classifier.

were not degraded over a monolithic classifier, but the time to
compute a label was reduced significantly. Hierarchical neural
learning is at an advantage for both reduced time and improved
generalization.

VI. DISCUSSION

From the above results, we observe that three main cate-
gories of cluster emerge: 1) all patterns within a hypersphere
belong to a single class; 2) a very few percent of patterns
belong to the other class; and 3) both the classes are present
in approximately equally numbers (Fig. 4). The first category
of clusters does not require any postpartitioning effort for
classification since to label an unknown point it is sufficient
to determine in which cluster it is included. In the third
category of clusters, mapping on to a feedforward network
is fairly straightforward since the roughly equal numbers of
exemplars from each class together with the reduced size of
the subset to be learned both simplify training. For the second
broad category of cluster, a-NN classifier could be em-
ployed to decide the final classification within a hypersphere
with less computation than would be required for nearest
neighbor classification on the whole training set although
clearly, unless at least k members of the minority class
are included the classification effectively degenerates to the
first category. Alternatively, a feedforward network could be
used, but special measures are required to accommodate the
unbalanced training which is well known to pose problems
for learning. As a further option, a small fraction of examples
within a hypersphere could be ignored at the cost of a minute
increase in error rate by treating all included patterns as from
the grossly dominant class; we have observed a number of
examples of clusters containing 200 members from one class
and a single member from the other class.

This present generic approach to partitioning as a preproces-
sor to the subsequent classifier is suited to a wide spectrum
of complex problems, particularly where there is no prior
knowledge of the pattern space which could guide clustering.
Most traditional clustering algorithms rely on somesimilarity
measure—which is usually ill defined—and the resulting clus-
ters depend directly on the judgement of what are and what
are not nominally identical patterns. Our multiobjective GA
approach avoids any such judgement of similarity and instead

forms clusters on the basis offitness for purpose—namely,
trying to simultaneously maximize a set of general properties
we wish to emerge from a set of partitions. This property of
genetic partitioning has been shown to exhibit superior results
to those obtained from -means clustering (Fig. 6). In this
work, we have geared our vector of objectives to mapping
onto an ensemble of MLP neural networks, but clearly any
desired set of objectives could be employed to maximize
fitness for some other purpose. We thus believe the present
algorithm is a truly generic approach to clustering which could,
if desired, incorporate traditional similarity measures as one
of the objectives.

The presence of outliers in a training set is known to
pose problems, particularly for neural learning. In our strategy
isolated, “eponymous” outliers may well be discarded since the
relevant objective tries only to maximize the number of pat-
terns utilized, not to force the usage of all patterns. Similarly,
clusters of outliers caused by some systematic measurement
failure are likely to generate their own hypersphere which
may well be significantly separated from other patterns with
the same class label. The treatment of outliers is the subject
of further research.

The strategy adopted in this work also supports the concept
of ensemble-based approaches. Ensemble-based approaches
rely on integrating multiple classifiers to improve prediction
accuracy by repeatedly mapping thewholedata set on multiple
models. In our approach, the clusters which contain only
one data class do not require any further processing and
are implicitly labeled without ambiguity. In fact, we have
partitioned the land usage data using 500 training patterns
and the test data was approximately twelve times larger.
The effectiveness of such labeling was confirmed by the fact
that in all the several thousand pareto-optimal clusters we
examined, we did not find any case where a cluster containing
a single class of training data was subsequently found to
include a single member of the other class from the test
data. In a partitioned ensemble approach, we suggest that
only those clusters where more than one class is represented
need to be multiply mapped on suitable classifiers. Thus,
the principal advantage of our partitioning approach is that
only those patterns which lie near decision boundaries warrant
learning effort. We also propose a way of dealing with multiple
instances of patterns (which is possible because one of the
objectives directly promotes some overlap): the clusters can be
assigned priorities based on inclusion of patterns of a single
class and if a pattern is included in more than one cluster
having different priorities, it can be safely assigned to the
class of the higher-priority cluster. These additions may well
enhance the accuracy of ensemble-based approaches and the
functional simplicity of modular systems.

VII. CONCLUSIONS

In this paper, we have presented a novel approach to
partitioning pattern spaces using a multiobjective genetic algo-
rithm for identifying (near-)optimal subspaces for hierarchical
learning. learning-follows-decomposition is a generic solution
to complex high-dimensional problems. The results of parti-



830 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

tioning pattern spaces have been presented. This strategy of
preprocessing the data and explicitly optimizing the partitions
for subsequent mapping on to a hierarchical classifier is found
to both reduce the learning complexity and classification
time for no statistically significant degradation in overall
classification error rate. Classification performance of various
algorithms have been compared and it is argued that the neural
modules are superior for learning the localized decision sur-
faces of such partitions as well as offering better generalization
than both a -NN classifier—the best for monolithic data
set—and a monolithic neural network.
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