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Abstract

Generalisation is a non-trivial problem in machine learning and more so with neural
networks which have the capabilities of inducing varying degrees of freedom. It is influenced by
many factors in network design, such as network size, initial conditions, learning rate, weight
decay factor, pruning algorithms, and many more. In spite of continuous research efforts we
could not arrive at a practical solution which can offer a superior generalisation. In this paper,
we present a novel approach for handling complex problems of machine learning. A
multiobjective genetic algorithm is used for identifying (near-) optimal subspaces for
hierarchical learning. This strategy of explicitly partitioning the data for subsequent mapping
onto a hierarchical classifier is found both to reduce the learning complexity and the
classification time. The classification performance of various algorithms is compared and it is
argued that the neural modules are superior for learning the localised decision surfaces of
such partitions and offer better generalisation.

1.  Introduction

An essential attribute of an intelligent machine is its ability to learn from examples and make
effective decisions when presented with unseen data. Among the many domains of machine
learning the connectionist intelligence is the most commonly used paradigm of learning. During
the process of learning from examples, the network approximates the functional relationship of
the restricted domain covered by the training set but it is also expected to understand the wider
sampling it has not seen of the parent function under both situations of interpolation and
extrapolation. Optimising such a neural network architecture for supervised learning tasks is a
crucial issue for improving generalisation capability.

Viewed in terms of bias and variance [1], we can say that for a good generalisation we need
to control the effective complexity of the network for an optimum mix of both bias and
variance. Analogously several methods have been proposed for controlling the network
complexity: there are approaches where one starts with a relatively large network and prune out
the least significant connections or derives them to insignificance. Similarly one can start with a
small network and add units during the learning process with the goal of arriving at an optimal
network. There are other dependencies as well e.g., initial network conditions, learning rate,
cross-validation, stopping criterion and curse of dimensionality [2].



There exists another dimension to the problem of generalisation, and that relates to scaling of
connectionist models for solving arbitrarily complex problems. Scaling connectionist models to
larger systems is a difficult problem because larger networks require increasing amounts of
training time and data, and eventually the complexity of the optimisation task reaches
computationally unmanageable proportions. One possible reason for this is that a global error-
surface may have extensive constant regions and significant variations in local minima. Such
situations are common in most real-function approximations - more so with high-dimensional
pattern spaces - which often require very long learning times or result in unsuccessful training.
Simply increasing the number of hidden units is a popular solution but may unjustifiably
increase the number of free-parameters of the net architecture, which can lead to poor
generalisation.

In the context of addressing complex learning domains, two basic approaches are emerging
as possible solutions to the poor scalability of neural networks: ensemble based and modular
systems. The family of ensemble-based approaches relies on combing predictions of multiple
models, each of which is trained on the same database; in general, the emphasis is on improving
the accuracy for a better generalisation and not on simplifying the function approximators [3].

On the other hand, the main characteristic of modularity is that the system can take advantage
of function decomposition. The direct advantages of partitioning are that the scale of the
computation at each stage is much less than a single unpartitioned computation, the problem is
better constrained and solvable, and can be computed in parallel. Nonetheless decomposition
has its own difficulties - partitions in the absence of a priori knowledge of the pattern space are
not unique. This implies that the modularity can only be meaningful if an implicit or explicit
way to sensibly decompose a complex function exists, and to allow the desired (sub-)function
mapping to emerge from the learning of subtasks. For those problems where one has some prior
knowledge of the pattern space and the decomposition into subtasks is explicit; this is a trivial
task. In the absence of any prior knowledge of the pattern space, decomposition-through-
competition has been demonstrated where the decomposition and the learning phases are
combined [3].

In this work, we adopt a different line of research and partition the task in a generic manner
using genetic algorithms as a pre-processor to neural domain. We argue that separating the task
of decomposition from the regime of modular learning simplifies the overall architecture and
this strategy of data-processing before its submission to a classifier considerably reduces the
learning complexity. Additionally only those patterns which lie close to the decision boundaries
possibly warrant multiple learning effort in order to improve the prediction accuracy, and the
clusters which contain only one data class are implicitly labelled without ambiguity.

2.  Generalisation: An Overview

A rule of thumb for obtaining good generalisation is to use the smallest network that fits the
data. Unfortunately, it is not obvious what size is the best: a network that is not sufficiently
complex is very sensitive to initial conditions and learning parameters, such a small network
learns extremely fast but has a high probability in getting trapped in local minima and thus may
fail to train, leading to underfitting. On the other hand, larger networks have more functional
flexibility than small networks so are better able to fit the data. A network that is too large may
fit the noise not just the signal and this leads to overfitting [1, 4]. Overfitting produces excessive
variance whereas underfitting produces excessive bias in the output [1].

One major contributor to network complexity is the network-size and it is always desired to
minimise the number of free parameters. Many studies have been carried out on selecting a
proper size, nonetheless it remains an unresolved problem. Some theoretical studies have



established the upper-bounds on the number of hidden nodes; but a priori knowledge of the
upper-bounds can neither provide a practical guess on the number of hidden-nodes required for
mapping a training set involving a large number of samples nor minimise the free parameters.
Some researchers also defined the theoretical lower-bounds based on the Vapnik-Chervonenkis
(VC) Dimension assuming that the future test samples are drawn from the distribution of
training-samples. Weigend [4] avoided overfitting if the net-size was guided by the eigen-value
spectra. But there remains the heuristic how to decide the effective dimensionality or the
number of parameters.

Another promising approach to avoiding under-/over-fitting and increasing flexibility of
network learning is to start with a large, fully-connected network and through regularisation or
pruning improve generalisation [2]. Other type of approaches are based on pruning out the least
significant connections either by removing individual weights or by removing complete units,
e.g. optimal brain damage/surgeon. Many researchers have also proposed correlation or some
heuristic(s) based pruning/merging methods for model simplification. These approaches are
found to be effective on some problem set or the other.

Early stopping monitors the errors on a validation set and halts learning when the error on
validation set starts increasing. The objective of this approach is to stop training before the
network starts fitting noise. The results of many researchers have provided strong evidence for
the efficiency of stopped training. At the same time, it has shown that for finite validation set
there is a dispersion of stopping points around the best stopping point, and this increases the
expected generalisation error. Other obvious problems are: there is no guarantee that the
validation curve passes through the optimal point, it may go up and down many times during
training. The validation set is again a limited sampling and may/can not represent the universe.
It also requires crucial decisions regarding selection and ratio of examples to be divided into
training and validation set, and selection of what strategy to be followed: leave-one-out, cross-
validation, bootstrapping, or bagging.

Nonetheless better generalisation is indispensable to the growth of non-parametric non-linear
systems. In this connection, "no free-lunch" theorems have been proposed, e.g., [5] which
establish that for any algorithms, any elevated performance over one class of problems is offset
by performance over another class. However, it is unarguably accepted that the simpler the
network the superior is the generalisation. This work facilitates data partitioning and network
modularity in an effort to minimising the network and learning complexity which yield
improved prediction accuracy and thus offer better generalisation.

3.  Partitioning of Pattern Spaces

In the present work we have achieved this partitioning by dividing the pattern space into a set
of hyperspherical regions, the data within each hypersphere being learned by individual
networks which are then combined. We have employed hyperspheres since these are geometric
primitives which require comparatively few defining parameters; the technique is general,
however, and any closed geometric primitive can be used. We have solved the highly problem-
dependent partitioning task using a multiobjective genetic algorithm to optimise: the number of
hyperspherical partitions, and their location and their radii.

If we consider feature-partitioning as a mapping 3 from an N dimensional feature space to j
subspaces of dimensionality nj, then this formulation is an N dimensional function
decomposition into many nj - dimensional sub-functions subject to meeting certain criteria,
Obj_fi(X). Since nj represents (hopefully) a less complex domain, a classifier can approximate
such a sub-domain with less effort; one of the measures of complexity we employ is the local
intrinsic dimensionality within a hyperspherical partition.



4. Genetic Optimisation of Partitioning

In terms of complexity, the above partitioning problem is NP-complete and genetic
algorithms have been shown to be highly effective for exploring NP-complete search spaces
compared to exhaustive search. GAs yield near-optimal solutions rather than an exact solution
but have the advantage of not needing prior knowledge of the pattern space; the number of
partitions that emerges from genetic search can be guided solely by the optimisation criterion
and does not need to be pre-determined by the user.

In this work we introduce the approach of using a multiobjective genetic algorithm to
partition the pattern space into hyperspheres for subsequent mapping onto a hierarchical neural
networks for subspace learning. In our technique, clusters are generated on the basis of ‘fitness
of purpose’ - that is, they are explicitly optimised for their subsequent mapping onto the
hierarchical classifier - rather than emerging as some implicit property of the clustering
algorithm. Multiobjective genetic algorithm perform optimisation on a vector space of
objectives - see [6] for a review - and are able to explore the NP-complete search space for a set
of equivalent partitions for pattern space.

We have identified a set of seven independent objectives for pattern space and optimising
learning effort - for details see [6]. All seven elements in the objective vector are distinct and
competing as well as complementary to each other and ensure a fair distribution of potential
solutions. Rather than using an ad hoc linear combination of seven objectives we have
employed the notion of Pareto optimality in which the superiority of one solution over another
is measured in terms of ‘dominance’ resulting in a Pareto-optimal set which lies on a surface in
the objective 7-space. To represent sub-space partitions, our GA implementation uses variable
length individuals where each sub-block encodes the hypersphere centre and radii.

5.  Hierarchical Neural Learning

From the obtained set of (near-) optimal Pareto solutions, a small subset based on sub-
ranking of objectives was picked for hierarchical learning. The ANCHOR connectionist
architecture [7], which we have developed for integrating multiple heterogeneous classifiers, is
particularly suitable for hierarchical learning of subspaces. In terms of modularity, ANCHOR is
designed to integrate arbitrarily heterogeneous neural nets in hierarchical nesting or cascade
along with non-neural processing modules. ANCHOR supports multiple instantiations of a
network; the notion of modularity demands that different networks learn similar training
patterns differently and thus different mappings. This property has implications for learning and
to the situations where multiple instantiations acquire different net-topologies and connection-
strengths, which is crucial for generalisation.

6.  Results

We have partitioned a benchmark problem in land-use classification of multi-spectral
satellite image data of thirty-six dimensions. The dataset description and classification results
for various algorithms are given in Taylor et al [8] where the best classification accuracy was
obtained with a k-NN classifier. Results for two hyperspheres produced some partitions which
contained only members of one class and a roughly 50:50 split in the other partition. Most
solutions however included a hypersphere containing around ten members of the other class.
This latter situation is an unattractive partitioning since within one of the hyperspheres, one
class has a very small prior, which would lead to difficulties in reliably training a neural
network. Partitions based on four clusters produced mostly hyperspheres of a single class



together with hyperspheres of roughly 50:50 membership. Six partitions produced very similar
results to the four partition case except that the aggregate overlap measure was increased and a
few of the hyperspheres were degenerate in that they largely or wholly overlapped other
hyperspheres. We draw the conclusion that six clusters is indeed too many for this particular
problem.

7.  Discussion & Conclusions

Looking at the composition of clusters across all the Pareto-optimal solutions, we observed
that only one or two clusters in each solution need post-partitioning classification. This is
exactly what we are aiming with this evolutionary-neural approach since the localised decision
surfaces should possess considerably reduced complexity over the global decision surface. In
this work we have attempted solutions of complex problems of high dimensionality, in a generic
manner where there is no prior knowledge of pattern space which could guide clustering, using
multiobjective genetic algorithms with hierarchical neural learning. In this work, we have
geared our vector of objectives to mapping onto an ensemble of multi-layer feedforward neural
networks but clearly any desired set of objectives could be employed to maximise the fitness for
some other purpose.

The strategy adopted in this work also supports the concept of ensemble-based approaches.
Ensemble based approaches rely on integrating multiple classifiers to improve prediction
accuracy by repeatedly mapping the whole data set on multiple models. In our approach the
clusters, which contain only one data class, do not require any further processing and are
implicitly labelled without ambiguity. In a partitioned ensemble approach, we suggest that only
those clusters where more than one class is represented need to be multiply mapped on suitable
classifiers. Thus the principal advantage of our partitioning approach is that only those patterns,
which lie near decision boundaries, warrant learning effort, possibly multiple efforts for
enhanced accuracy. Thus this evolutionary-neural approach simplifies the functional mapping,
enhances the accuracy and offers better generalisation.
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