Dynamic rule graph drawing by genetic search

Pascale Kuntz, Rémi Lehn, Henri Briand

Abstract— The recent importance given to the integration
of the user in a KDD process, which gives him the oppor-
tunity to direct his mining towards his specific own needs,
requires the development of new highly interactive visual-
ization tools. For graph based representation of discovered
knowledge this means that layout algorithms must dynam-
ically take modifications into account. In this paper, we
present a genetic approach to draw a series of layered di-
rected graphs which model relationships between associa-
tion rules. We develop new problem-specific genetic oper-
ators and show that genetic algorithms are well-adapted to
solve a multiobjective problem : meeting static aesthetic
requirements such as minimizing arc crosses and preserving
the “user’s mental map” when a transformation is interac-
tively performed on the graph. Experimental results are
presented on several randomly generated series of graphs.

Keywords— Computational Cybernetics, Data Mining and
Knowledge Discovery

I. INTRODUCTION

OGETHER with chart graphics and maps, network

diagrams or graphs are one of the most popular graph-
ical forms used for information presentation. They can be
used at the same time as theoretical models and as vi-
sualization supports. They often allow access to complex
abstract structures without getting bogged down in the
mathematical detail [1]. For such reasons, graphs are well
adapted to visually represent relationships between rules
extracted from large datasets.

Since open problems on visualization set in the last
decade have been identified [2], great efforts have been
made in graphical database query interfaces and represen-
tations of multidimensional data, and today several tools
integrate graph models (e.g. [3]; [4]) . However, with the
development of more and more efficient knowledge extrac-
tion algorithms and of human-centered approaches [5] new
needs are coming to light in the mining and post-treatment
phases of a KDD process [6].

We here restrict ourselves to non-supervised approach-
es of rule extraction for which different graph models have
been proposed in the literature. Let O be the set of objects
of a database described by a finite set I of items. For pure-
ly logical rules, i.e. without any counter-examples, Galois
lattices {7] have known a renewed interest in combinatorial
data analysis for the search of implications in binary data
[8]. In this case, each node is a particular pair composed
of a subset of O and a subset of I and the set of pairs is
partially ordered by the standard set inclusion relation ap-
plied to O and I. It can be represented by a Hasse diagram
where arcs represent the inclusion relation. Unfortunately,
determining a Galois lattice along with its Hasse diagram is
a computationally difficult problem, and the visual repre-
sentation become inextricable for numerous items. An ex-

IRIN, Université de Nantes, Rue Christian Pauc, 44300 Nantes,
France, Remi.Lehn@irin.univ-nantes.fr

0-7803-6583-6/00/$10.00 © 2000 IEEE

tension of this model to the search of “quasi-implications”
where the strict inclusion is replaced by a statistical mea-
sure has been recently proposed [9] but experiments only
deal with small size data sets at the moment. In other
common rule representation models, the graph’s nodes are
just itemsets which correspond to premises and conclusions
of the rules, and an arc directly represents an implication
relation whose validity is assessed by a quality measure
[10]. More sophisticated approaches are inspired by hier-
archical classification algorithms and represent implication
relationships by hierarchical trees [11].

Whatever the selected model is, in the vast majority of
the applications, a layout of the rule graph is a kind of
final synthesis obtained after a complex data processing
line. It is considered as an appropriate vizualisation sup-
port to give an insight into results that would be more
difficult to get from looking at long lists of alpha-numerical
characters. From the algorithmical point of view for the
layout problem, the vertex and arc sets are given as input.
in accordance with the model, and a drawing satisfying
some intelligibility criteria is furnished as output. This is
refered to as a static drawing problem. However, the re-
cent importance given to the integration of the user in a
KDD process, which gives him the opportunity to direct his
mining towards his own needs, requires the development of
new highly interactive visualization tools. For graphs, this
means that layout algorithms must take into account mod-
ifications (e.g. insertions or deletions of nodes and arcs)
dynamically at different time scales.

Generally speaking, numerous efficient graph drawing al-
gorithms have been proposed for many criteria [12] but,
few of them take the interactivity with the user into
account [13]. If a modification is performed, the algo-
rithm runs again and produces a new drawing which may
be thoroughly different from the previous one. As noticed
by Papakostas et al [14] “this is a waste of human re-
sources to continually re-analyse the entire drawing and
also of computational resources to re-computed the entire
layout after each modification”. And, in the context of da-
ta mining, these limitations may become a real obstacle:
important changes between two consecutive layouts in a
dynamical rule extraction process, where nodes and arcs
can be added depending on user requests, highly disturb
the interpretation task. This is the reason why such a pro-
cess must be associated with a drawing method which pre-
serves the “user’s mental map” as much as possible. More
formally, this problem can be set as a multi-objective prob-
lem: produce at each step t a layout L(G;) of the graph
G; that satisfies common readability requirements, as for
instance arc crossings minimization, and so that L(G;) re-
mains “similar” to the layout L(G;_;) of the graph G;_,
proposed at the previous step.
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In this paper, we develop a genetic algorithm (GA) based
approach for dynamically drawing a directed graph mod-
el of association rules, simpler than a Galois lattice. GAs
are stochastic global search methods that have proven to
be efficient for many combinatorial optimization problems.
In particular, several authors have reported promising ap-
plications of GAs or Evolutionary Algorithms for different
static drawing problems of directed graphs ([15], [16], [17]
. [18], [19]). Here, we develop new problem-specific genetic
operators for the layered drawing of our rule graph model
and show that GAs are particularly well-adapted for the
dynamic layout problem. Due to their intrinsic parallelism
they compute a set of potentially good solutions and indi-
rectly allow to solve our multi-objective problem: the set
of potential solutions is generated with GA operators ac-
cording to fitness function which measure aesthetics, and a
layout is chosen among them according to its resemblance
to a previous layout.

II. MODELING OF THE PROBLEM

Each subset X; -often called itemset- of I is
associated with a unique subset & of O: &; is the set of
objects for which every item of X; is present.

For instance, X; = {i1,1%4,%5} associated with the subset
& = {012,042, 0791, 03244} means that o12, 042, 0791 and
03244 are the only objects of O for which i, i4 and i5 are
all present. Although our model may be generalized to
more complex data, we here restrict ourselves to binary
1Lems.

A. The rule graph model

Here, a rule graph is an acyclic directional graph G =
(V,.4) where each vertex of V' is an potentially interesting
itemset, and each arc of A represents a significant implica-
tion between two itemsets. Formally, a vertex is a subset of
I and there exists an arc between two vertices X and X' if
the rule X — X'\ X is valid according to statistical mea-
sures. For instance, if X = {i4,i7} and X' = {i4,97,%9},
an arc between X and X' corresponds to the association
rule [’124 A ’i7] — ig.

We have developed a user-driven algorithm for the asso-
ciation rule extraction where a series of graph (G¢);—o r is
generated dynamically by the requests of the user. Rough-
v speaking, at each step t, the user selects a vertex
associated with an itemset he is focusing on, and the in-
teresting associated rules are automatically generated by a
modified local version of the well-known A Priori algorithm
|20] (the precise description of the process and its cognitive
fondations are far beyond the scope of this paper and we
refer to [21] for details). Then, a new graph Gy, is drawn
to update the knowledge. The process starts with a dis-
crete graph Go which only contains vertices representing
itemsets of cardinality one often present in the database
-in other words, items common to numerous objects-, and
stops at a step T fixed by the user with a graph Gt which
contains all the rules discovered during the process.
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Fig. 1. Layered drawing of the rule graph

B. Intelligibility requirements for the graph layout

A property always required for drawing graphs which
model abstract concepts is intelligibility. This covers phys-
ical constraints of the drawing support and aesthetic crite-
ria. Aesthetics are closely linked to the application; they
specify graphic properties that should help the reader to
understand and remember the information represented in
the graph.

In our case, polyline drawings with vertices arranged in
vertical layers are well adapted. The vertex set V is par-
titioned into h subsets associated with h layers Ly, ..., Ly
so that for any arc (X, X') € A where X is placed on L;
and X' on L; then 7 > j. In the model, each layer is as-
sociated with a degree of precision in the knowledge state:
layers on the left correspond to general descriptions made
by small itemsets, whereas layers on the right correspond
to more specific descriptions (Fig. 1). Thus, vertices are
here supposed to be pre-assigned to the layers, and graphs
are supposed to be acyclic.

In addition to this drawing convention, readability cri-
teria, often defined by combinatorial optimization goals,
must be specified. One of the most sensitive criterion for
the interpretation is the number of arc crossings [22]. Note
that the general problem of minimizing arc crossings is NP-
complete and remains so even for the layered digraph draw-
ing where the crossing number depends on the ordering of
the vertices within each layer only [23].

In order to avoid long lines which can create confusion
we also consider the minimization of the sum of the arc
lengths. These two constraints are here treated separately:
a GA generates a vertex ordering on each layer which tends
to minimize arc crossings and a classical hill-climbing local-
ly adjusts the vertex coordinates to minimize arc lenghts.

C. Dynamic integration

One major difficulty is to propose a pragmatic definition
of the intuitive concept of “mental map’s stability” when
interpreting a layout. In the general case, let us denote
by P the set of points of a geometric space S which repre-
sents the vertices of a graph G on a layout L(G), and let
T be a function which transforms P into another represen-
tation P' of the same graph. Eades et al., [24] propose a
definition of the stability which depends on the choice of
an equivalence relation = on the set of the finite S sub-
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sets: the transformation T preserves the representation P
if P = P' = T(P). They give different pragmatic defini-
tions of = one of which is based on order equivalences: P
and P’ have the same “orthogonal ordering” if the relative
positions of each each pair of points are the same in given
directions (e.g. up, down, left, right).

In this paper we adapt this notion to the comparison
of the layouts of different graphs G; and G, obtained at
consecutive steps. We only take into account the number of
vertex permutations between two layouts as this criterion is
the most sensitive for the interpretation. Let € (resp. cg)
be the number of vertex couples on layer k whose order has
changed (resp. not changed) between L(G:) and L(G¢41).
The two layouts are compared via a dissimilarity coefficient
A: A(L(Gt),L(G¢+1)) =1- %Zk=1,h %t‘ Al’ld, P =
Pt+1 if A(L(Gt), L(GH.] )) =40.

III. A GENETIC BASED APPROACH

GAs work with a population of potential solutions which
stochastically evolves by means of three basic operators:
selection, recombination and mutation. And, when de-
signing a GA, the proper choice of the solution coding and
the genetic operators is of the utmost importance as it can
have a significant influence on the optimization process. In
the following, we therefore discuss coding and associated
operators in more details.

A. Solution coding and selection

To simplify the drawing problem, a classical representa—
tion is previously made so that the graph is “proper” i.e.
each arc is incident to vertices placed on two adjacent layers
only. This is easily achieved by inserting so-called dummy
vertices: an arc incident to vertices X and X', respectively
placed on layers k and k' so that {k — &'| > 1 is transformed
into a path of |k — k'| arcs using |k — k'|—1 dummy vertices
(circles on figure 1). Moreover, a set of possible positions
numbered downwards is associated with each layer. Hence,
the problem consists in defining a permutation o on each
Ly, where o (X) is the rank of X on L, so that the total
arc crossing number is minimized.

Although for most graph drawing applications, the po-
tential solutions are coded by a string of the real coordi-
nates of the vertex positions, an ordinal representation is
more appropriate here. A genotype codes the vertex ranks
for each layer one after the other: the ranks of the ny ver-
tices of L, are placed on the left in the genotype, then the
ranks of the ngy vertices of Ly are added to it and so on.

In the classical GA scheme (e.g. [25]), the initial pop-
ulation is randomly chosen, and every subsequent genera-
tion is built from the current one with the genetic opera-
tors. An alternative consists in initializing the process by a
small population which increases by insertion of new solu-
tions created by a reproduction mechanism and whose evo-
lution is controled by an “aging” threshold: only solutions
recent enough can be selected for reproduction. Experi-
mental comparisons have led us to prefer this alternative
and to select an initial population with genotypes whose
vertex ordering fits different depth first searchs of the graph

(a directed one starting with vertices having a null inferior
half-degree, a backward one starting with vertices with a
null superior half-degree, ...). This tends to initilialize the
exploration with potentially suitable solutions.

The selection is determined by a classical roulette wheel
based on the fitness function. In order to compare the
crossing numbers of different layouts without knowledge of
a maximal bound, the fitness is here defined by 2-/(£4(G)
where f(L(G)) is the number of arc crossings in the layout
L(G).

B. Mutation

Four mutation operators are applied according to a prob-
ability, and to ensure that the genotype codes a valid solu-
tion, each mutation operator is local and can modify genes
of a unique layer -randomly chosen- at each time. Two
of them are common local search operators in permuta-
tion problems: the random local permutation and the 2-
opt. The two other are problem-specific and are inspired
by drawing heuristics [26].

Permutation based on vertex degrees. As a permu-
tation with few neighbors disturbs the drawing usually less
than a permutation with highly connected vertices, local
permutations for vertices with small degrees are favored.
The choice of two vertices to be exchanged depends on a
probability inversely proportional to their degrees.

Permutation based on median. This permutation
stemmed from one of the most common heuristic applied to
the 2-layer drawing problem which aims at placing a vertex
on one layer L; ;—; 2 in front of the “middle” (which can be
a median’ or a barycenter) of its neighbors on L; ;. This
attemps to minimize arc length locally and contributes to
a better drawing. The transposition of this idea to the per-
mutation scheme consists in selecting a vertex X randomly
on a layer Ly and exchanging its rank with the rank of the
vertex of Ly which is the closest to the middle of the me-
dian of the successors of X on Lgy; and of the median of
its precedessors on Lg_;. More formally, the classical def-
inition of the median must be adapted here. The median
of a vertex X on Ly is the vertex of Ly whose rank in the
order defined by oy, is the closest to

Ng Z:Ypredeceusor of X ox-1(Y)
k-1 deg™ (X) (1)

_Nk_ ¥ successor of x k1 (Y)
LIRS deg™(X)

B =

where deg™ (X) (resp. deg™ (X)) is the number of X pre-
decessors (resp. successors) and ny is the vertex number
on L;. For instance let us consider a vertex X at rank 1 on
Ly with 5 predecessors on Ly_, at respective ranks 1, 3, 5,
6, 8 and 3 successors on L. at respective ranks 3, 5 and
6 (Fig. 2). If ng_, = 8, nx = 4 and nx4; = 6 then formula
(1) equals 2.7 and consequently the vertex X is swapped
with the vertex at rank 3 on L.

IFor real coordinates on each vertical layer, the median of the pre-
decessors of a vertex is the y-coordinate s.t. half of the y-coordinates
of the predecessor are greater and the other half are smaller.
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b. Permutation of u with the
vertex on its median position.
(-> 12 arc crossings)

a. Original layout.

(27 arc crossings)

Fig. 2. Permutation based on median

Generally speaking, the impact of each of these muta-
tion operators depends on the graph properties. In case of
few dummy vertices, the local permutation combined with
2-opt gives good results whereas in the opposite case -i.e.
when arcs are greater and vertex degrees are heterogeneous-
more specific operators noticeably improve the results. As
for dynamic drawing these properties are not known a pri-
ori and may evolve during the mining process, we here
keep all of the operators with a fixed activating probabili-
ty at each step (0.02 for local permutation, 0.01 for 2-opt,
0.04 for permutation based on vertex degrees and 0.08 for
permutation based on median).

C. Crossover

It is well-known that the main difficulty for ordinal cod-
ings is to define a crossover which guarantees a feasible so-
lution. Here, two genotypes are selected and the crossover
is applied on one layer Ly randomly chosen. We have com-
pared two specialized crossover operators which have been
previously applied to problems encoded as permutation -
refered to as “ordering GA” - (we refer to [27] for a de-
scription): Order Crossover 1 (OC1) and Partially Mapped
Crossover (PMX). And to avoid side effects as for instance
the recombination of two identical genotypes which leads to
a new different one, we have included the variants proposed
in [28]. Figure 3 shows the evolution of the fitness with
each operator for the same computational time. The time
required by the PMX compared to OC1 acts as a brake
upon the search space exploration here. The number of
generations obtained with OC1 is about three time superi-
or to PMX and profits of PMX in the optimization process
are quickly overtaken. Let us remark that PMX has been
developed for Traveling Salesman Problems of large sizes
in particular whereas, in our case, the complexity lies in
the relationships between layers, and each layer is limited
to about 70 vertices for readability requirements.

fitness (Log,)

R S S
constant time = 60 s. (wallclock time) ——

i

Fig. 3. Comparison with OC1 and PMX crossover operators (evolu-
tion of average fitness for 100 drawings of a random 50 edges/40
vertices/10 layers digraph).

Due to these results we here retain the following defi-
nition of OC1. An interval I of random size is selected
on the layer Ly of the first genotype and I is duplicated
in the offspring’s genotype at the same place. This one
is completed by genes of the second genotype which are
not in I by starting at the end of I and by following the
second genotype’s order. For instance, let us suppose that
the first (resp. the second) genotype contains the sequence
i4—’i1 —iz—-is—i:;—-ie (respx. i1 —’ig—’i4~i6—~i5 —ig)
for the layer Ly. If I = i3 —i5 — i3 then the layer L of the
offspring contains ¢4 — i — iz—15—iz—%;. The other layers
are either the same as the first genotype or the same as the
second genotype according to a random choice.

D. Dynamic constraint

The stability constraint between two consecutive layouts
is not introduced right from the start but from a certain
size n, of the graph. Up to n, (fixed here at 20 vertices)
only fitness f is taken into account in the optimization
process. Indeed, when graphs are small, the user can record
the whole of the information and cope with changes easily.
Moreover, at the begininning of the mining process, there
are few extracted rules and the “shapes” of the associated
graphs are not well defined.

Let t be the step of the drawing L(G;) of the graph with
ns vertices. At t + 1 new vertices are added. The GA de-
scribed above runs during a fixed number of generations in
order to maximize f and we denote by P, the last popu-
lation obtained. The dissimilarity A is computed between
each layout of Py, and L(G;), and among the k (fixed
here at 20) closest layouts, the one with the largest fitness
is selected.

In the coding, when a vertex is added, a new place is
allocated on each genotype and a rank is added for the
new vertex. For arc addition the only change is concerned
with the fitness whose value is calculated again.
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Fig. 4. Comparison with a graph drawing algorithm based on classi-
cal GA operators (average values of 20 drawings of a random 45
edges/31 vertices/6 layers digraph).

IV. EXPERIMENTAL RESULTS

In order to prove the interest of our new problem-specific
GA operators, we first compare results obtained on “static”
graphs to those obtained with basic GA operators applied
to a real coding of vertex positions on each layer [29]. Fig-
ure 4 shows the fitness values obtained for the same com-
putation time (60 seconds wallclock time) on 20 drawings
of a random graph.

Figure 6 illustrates the integration of the dynamic con-
straint. Two consecutive layouts L(G:—) and L(G;) are
presented: one vertex and six arcs are added on G;. And
figure 7 describes a typical situation of the multi-objective
optimization. At each step t, vertex and arcs are randomly
added to the previous graph G;_1. The initial graph Go is
reduced to a single random arc. At each t, the GA tends
to maintain a layout L(G;) very close to the previous one
L(G;_1) as long as possible. But, at a certain step t* too
many changes in the graph have been performed and the
layouts close to the previous one L(Gy¢»—1) become unac-
ceptable according to the fitness; they disappear and leave
their places with other potential solutions. The evolution
of the dissimilarities A(L(Gi—1), L(G:)) between selected
Jayouts higlights “peaks” and “holes” which are explained
by this double optimization process. Let us notice that
this phenomenon is closely linked to the parameter values
which govern the evolution; in particular, it softens when
the size of the population decreases.

When we compare the evolutions of the fitness of the
selected layout L*(G:) (i.e. the layout which minimizes
A(L*(Gi-1),L*(Gy))) and of the best layout L¢(Gy) ac-
cording to the fitness (i.e. the layout which maximizes
f), we see that both curves follow a similar evolution with
the Ls(G,) fitness obviously better than -or equal to- the
L*(Gt) one. )

V. CONCLUSION

In this paper we presented a graph model well-adapted
to interactive association rule visualization and we devel-
oped a genetic algorithm for the dynamical drawing of

T T T

GA with no dynamic constraint

|
s
1

oA

1)
i

: : " GA with dynamic
i i i constraint |

0 20 30 40 50 60 70 80
graph evolution ————> number of arcs

Fig. 5. Comparison of the fitness values at each step for the selected
layouts and the best ones according to the fitness (average value
on 10 runs on the same serie of graphs).

layered directed graphs. We showed that ordering coding
and problem-specific operators inspired by classical draw-
ing heuristics and permutation problems significantly im-
prove previous results obtained with a classical scheme.
Numerical tests allow us to think that GAs are very strong
candidate to solve this class of drawing problems. Our al-
gorithm is now included in a rule mining software [30] and
first experiments on real databases from marketing and hu-
man resources highlight the information gain obtained in
the extraction process with such a visualization support.

Future work includes further evaluations that need to de-
termine which dissimilarities are most appropriate for mod-
eling the user mental map’s stability. Additional experi-
ments are also necessary to better understand the impact
of constraint’s stability on the search space. In particular,
we are applying an approach coming for multidimensional
scaling to discover resemblance relationships between lay-
outs within a same population.
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