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Abstract—It is well understood that binary classifiers have
two implicit objective functions (sensitivity and specificity) de-
scribing their performance. Traditional methods of classifier
training attempt to combine these two objective functions (or
two analogous class performance measures) into one so that
conventional scalar optimization techniques can be utilized. This
involves incorporating a priori information into the aggregation
method so that the resulting performance of the classifier is
satisfactory for the task at hand. We have investigated the use of a
niched Pareto multiobjective genetic algorithm (GA) for classifier
optimization. With niched Pareto GA’s, an objective vector is
optimized instead of a scalar function, eliminating the need to
aggregate classification objective functions. The niched Pareto
GA returns a set of optimal solutions that are equivalent in the
absence of any information regarding the preferences of the ob-
jectives. Thea priori knowledge that was used for aggregating the
objective functions in conventional classifier training can instead
be applied post-optimization to select from one of the series of
solutions returned from the multiobjective genetic optimization.
We have applied this technique to train a linear classifier and an
artificial neural network (ANN), using simulated datasets. The
performances of the solutions returned from the multiobjective
genetic optimization represent a series of optimal (sensitivity,
specificity) pairs, which can be thought of as operating points
on a receiver operating characteristic (ROC) curve. All possible
ROC curves for a given dataset and classifier are less than or
equal to the ROC curve generated by the niched Pareto genetic
optimization.

Index Terms—Diagnostic classifiers, genetic algorithms, multi-
objective optimization, ROC analysis.

I. INTRODUCTION

T HE task in medical diagnostic decision making is typi-
cally one of employing multiple features to classify an

observation as normal or abnormal. A radiologist may, for
example, note the size, shape and margin sharpness of a
potential breast lesion in a mammogram and somehow use
this information to determine whether a cancer is present.
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In computer-aided diagnosis (CAD) [1]–[3], computers take
features extracted from medical images and determine whether
pathology is present by using automated classifiers [4], [5].
It is well known that the optimal method for classifying is
to use the likelihood ratio or any monotonic transformation
of the likelihood ratio as the discriminant function [4]. The
goal in training a diagnostic classifier is to employ a limited
dataset to determine the parameters of the classifier such that
it approximates the likelihood ratio decision rule. For the most
part, these classifiers work in a similar fashion. A dataset
of features extracted from both normal (without disease) and
abnormal (with disease) images is used for determining the
classifier parameter values, or for “training” the classifier,
so that it correctly classifies future datasets of unknown
pathology.

Classifier training can be viewed as an optimization problem
where the quantity to be maximized is the performance of
the classifier on an independent dataset. There are, however,
numerous problems with representing classifier performance
by a single (scalar) objective function, which is needed so
that one can use a scalar optimizer [6], [7]. Binary classi-
fiers [4] have, in essence, two implicit objective functions:
one describing how well they classify the abnormal cases
(sensitivity) and one describing how well they classify the
normal cases (specificity). These two objective functions are
noncommensurable, implying that it may not be possible to
simultaneously improve both the sensitivity and specificity.
Traditional methods of classifier training attempt to combine
these two objective functions (or two analogous class per-
formance measures) into a single scalar objective function
that permits the use of conventional (scalar) optimization
techniques [8]. A drawback to this approach is that the proper
way of aggregating the objective functions is usually unknown.
There are, in fact, an infinite number of ways of mapping two
objective functions to a single scalar function. Even whena
priori information about the relative importance of the two
objective functions is available, it is not always clear how to
incorporate it in the aggregating approach to objective function
design. Sometimes, numerousad hoc combination functions
are tried until a suitable objective function is found [8]. Most
classifiers do not aggregate sensitivity and specificity directly.
Artificial neural networks, for example, typically employ a
sum-of-squares error function [5], which can still be thought
of as a sum of two noncommensurable objectives, i.e., one
objective is to map abnormal observations to a value close to
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one and the other objective is to map normal observations to
a value close to zero.

Genetic algorithms (GA’s) [9] have been applied to many
diagnostic and classification problems [8], [10]–[15]. A con-
ventional GA, however, is a scalar optimization technique. It
thus possesses the undesirable features of an aggregating-based
approach. One method of avoiding this is to adopt a multiob-
jective approach [16], [17] to the optimization problem. In a
multiobjective optimization approach, the objective function
is vector valued and the independent objectives (sensitivity
and specificity) are optimized simultaneously. Thus, the need
to aggregate the independent objective functions is removed.
Unlike a scalar optimization that returns a single solution,
the solution to the multiobjective optimization problem is a
set of solutions called the Pareto-optimal set. The Pareto-
optimal set is defined as the set of solutions for which no
other solution exists that is better in both objectives. In the
absence of any preference information about the objectives, the
members of the Pareto-optimal set are equally valid solutions
to the optimization problem; no other solutions exist that are
better in all of the objectives. In the context of diagnostic
classifier optimization, the members of the Pareto-optimal
set correspond to operating points on an optimal receiver
operating characteristic (ROC) curve, whose performances
describe the limiting sensitivity–specificity tradeoffs that the
classifier can provide for the given training dataset. Conven-
tional nonevolutionary optimization techniques have not been
successfully extended to the multiobjective case because they
are not designed to operate on multiple solutions. Because
GA’s are population based, they have formed the basis of
several multiobjective optimization techniques, collectively
referred to as multiobjective GA’s (MOGA’s) [16]–[19].

In this paper, we investigate the application of a MOGA
called a niched Pareto GA (NP-GA) for optimizing the per-
formance of two popular diagnostic classifiers. The paper is
organized as follows. Section II contains a general introduction
to automated classifiers and a brief description of the NP-GA.
Section III describes the two classifiers that were studied and
it describes how the NP-GA was employed to train them. The
results of the two optimizations are presented in Section IV.
Sections V and VI contain a discussion of the results and a
summary of the advantages and drawbacks of the proposed
approach to diagnostic classifier training and ROC curve
generation.

II. BACKGROUND

A. Automated Classifiers

An automated binary classifier separates two classes of
observations (e.g. images) and assigns new observations to
one of the two classes. In this paper, we will label the
two classes as normal (no disease evident) and abnormal
(indicative of disease), denoted by and , respectively.
Certain characteristics of the observations, called features, are
used in making the classification decision. The set of features
corresponding to an observation can be expressed by a vector

. In order for the classifier to be trained,

Fig. 1. The job of an automated classifier is to partition the multidimensional
feature space into two partitionsCa(~w) belonging to class�a and Cn(~w)
belonging to class�n. These partitionsCn(~w) andCa(~w) are shown by the
shaded and unshaded regions. The two classes�a and�n are represented by
different symbols (x’s and o’s). The decision boundary is denoted by the solid
line separating the shaded from the unshaded region.

we start with a dataset of known pathology, called the training
dataset. A graphical depiction of an automated classifier for a
two-feature example is shown in Fig. 1. The
space spanned by the feature vectors is denoted by. An
automated classifier uses a parameter vectorto partition this
space into the sets , the set of observations that belong
to class and , the set of observations belonging to
class . The parameters of a classifier can represent, for
example, the weights of an artificial neural network (ANN) or
the threshold values in a rule-based classifier. For a fixed

and .
Given a measurement, the classifier assigns to class

if or to class if . The probability that
an observation belonging to class is correctly classified
is referred to as the sensitivity of the classifier, denoted by

. Similarly, the probability that an observation is
correctly classified as belonging to class is referred to
as the specificity of the classifier, denoted by . Note
that both the sensitivity and specificity of the classifier depend
explicitly on the choice of and implicitly on the underlying
distribution of the normal and abnormal observations. The
sensitivity is a measure of how well the classifier performs on
abnormal cases, whereas the specificity is a measure of how
well a classifier performs on normal cases. In practice, the
fraction of class observations that are correctly classified
is used as an estimate of . Likewise, the fraction of
class observations that are correctly classified is used as
an estimate of .

A popular construct used for describing the performance of
a diagnostic classifier is the ROC curve [6], [7], [20], [21]. A
ROC curve is generated by varying the value of one (or more)
of the components of the parameter vector, and plotting the
corresponding and values. For example, the
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Fig. 2. The two ROC curves have equalAz values, but, depending upon the
relative preferences concerning the sensitivity or specificity of the detection
task, one curve is typically preferred over the other.

output threshold is usually varied to generate a ROC curve for
ANN’s [22]. Traditionally, the classifier is trained prior to the
generation of the ROC curve [22], [23]. In this situation, all but
one point on the ROC curve represent operating points other
than the one to which the classifier was naturally trained. A
ROC curve that was generated with the same dataset that was
used to train the classifier is referred to as a consistency ROC
curve. A validation ROC curve is obtained when the curve
is generated from an independent data set and represents an
unbiased estimate of classifier performance [24]. Two typical
ROC curves are shown in Fig. 2. The area under a ROC curve,
or , is an accepted way of comparing overall classifier
performance [6], [7], [20], [21]. Two curves may have equal

values, as shown in Fig. 2. However, one of the curves
will typically be preferred over the other, depending upon the
relative preference of the sensitivity and the specificity needed
for the task at hand.

For certain types of classifiers, such as rule-based systems
[3], [25], it may not be clear how should be varied to
sweep out the ROC curve that best represents the sensitiv-
ity–specificity tradeoffs that are achievable by the classifier on
the specified dataset. The ROC curves generated by varying
different sets of components of will generally be different,
representing different sensitivity–specificity tradeoffs that are
possible. In this work, we demonstrate that this ambiguity
can be removed if one uses the performances of the solutions
returned by a multiobjective optimization of the classifier to
define the ROC curve.

B. The Niched Pareto GA

We have implemented a multiobjective optimization tech-
nique called an NP-GA, which is described in detail by Horn
et al. [26]. Other types of MOGA’s have been proposed
and are described in [18]. The NP-GA can be viewed as
a conventional (scalar) GA that uses a modified tournament

selection mechanism and ranking scheme. Readers not familiar
with GA’s may consult [9]. In the remainder of this section
we review the NP-GA proposed by Hornet al. [26].

In order to directly address the multiobjective nature of
the optimization problem, NP-GA’s employ the concept of
dominance. A solution to the optimization problem is called
nondominated if there is no solution superior to it in all
objectives. It is the goal of the NP-GA to discover the set of
all nondominated solutions, referred to as the Pareto-optimal
set, all of which are considered to be equally valid solutions to
the problem in the absence of anya priori information about
the relative merits of the different objectives. If a solution
is not nondominated, it is referred to as being dominated. A
nondominated solution is said to dominate a dominated solu-
tion. Equivalence classes of dominated solutions are formed
by grouping them according to the number of solutions that
dominate them.

This grouping of solutions into distinct classes establishes a
partial order on the set of all solutions that is used to determine
rank. We assume that the Pareto-optimal set corresponds to
equivalence class zero and that all other solutions have an
equivalence class greater than zero. The rank of a particular
solution is then equal to its equivalence class number. This
ensures that solutions within the same equivalence class have
the same rank, which reflects the fact that solutions within
the same class are equally good in the absence of any other
information.

To perform selection, the NP-GA uses a modified tourna-
ment selection method. In a scalar GA, tournament selection
is one of the methods commonly used for choosing a subset of
solutions in the current generation to be placed in the following
generation. Implicit in its formulation is the assumption that
there exists a single solution to the optimization problem;
diversity among solutions in the population will be lost after
a certain number of generations. This is undesirable in a
multiobjective optimization where we wish to discover all of
the members of the Pareto-optimal set, not simply a single
solution. To circumvent this difficulty, Hornet al. proposed
the use of a Pareto domination tournament in conjunction with
a form of fitness sharing called equivalence class sharing. A
Pareto domination tournament is a modified conventional tour-
nament selection method that uses the concept of dominance to
determine the winner of the tournament. First, randomly
selected solutions are compared and the solution with the
highest rank wins (is carried over to the next generation). The
rank, being based on the concept of dominance, incorporates
the multiobjective nature of the problem into the selection
mechanism. For situations when a certain tournament size
provides insufficient domination pressure, the size of the
tournament can be increased.

When two or more solutions in a tournament belong to the
same equivalence class (i.e., have the same rank), there will not
be a clear winner. A winner cannot simply be chosen at random
because genetic drift will cause the population to converge to
a localized region of the Pareto-optimal set, thus obscuring
other potential solutions to the optimization problem. Instead,
a form of fitness sharing, called equivalence class sharing, is
employed to determine the winner of a tied tournament. In
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equivalence class sharing, the winner of a tied tournament is
the solution that has the smallest niche count. The niche count
estimates the density of solutions in a localized region (niche)
around a given solution. As described in [26], the niche count

for the th solution is given by

(1)

where is the distance (in objective space) between solutions
and and is the so-called sharing function given by

for and otherwise.
Here, is called the niche radius, which represents the
maximum distance between solutions that will result in an
increase in their niche counts. By employing fitness sharing
in this way, the Pareto-optimal set is more likely to be
uniformly sampled, thus providing a more diverse set of
potential solutions to the optimization problem from which
the user can choose.

III. M ETHODS

We trained a linear classifier and an ANN by using both
conventional optimization techniques and the NP-GA. Two-
dimensional (2-D) exclusive-OR data [27], sampled from
the density functions shown in Fig. 3, were used for this
study, because classifiers typically have difficulty in ade-
quately classifying both classes of data for this problem.
Two-dimensional isotropic standard normal distributions with
mean and variance one were sampled in the four re-
gions of the exclusive-OR problem. The normal class (dashed
lines in Fig. 3) occupied the regions centered at (1.3,1.3)
and ( 1.3, 1.3). The abnormal class occupied the regions
centered at (1.3,1.3) and ( 1.3,1.3). A total of 100 normal
and 100 abnormal samples were generated for training data. An
additional 10 000 normal and 10 000 abnormal samples were
generated for testing the classifiers after they had been trained.
The performances of the conventionally optimized and NP-GA
optimized classifiers were evaluated on both the training and
the testing datasets.

A. NP-GA Implementation

The NP-GA was employed to simultaneously maximize the
sensitivity and specificity of a linear classifier and an ANN
with a single hidden layer. The value of each component of

was restricted to remain within a maximum and minimum
value, determined prior to the optimization. A binary repre-
sentation of the chromosomes [9] was utilized so that each
real-valued parameter in was encoded by a binary number
of fixed length. The range of each component ofand the
length of its binary representation determined that parameter’s
floating-point precision. The encoding was accomplished by
linearly scaling the floating point number using its specified
range to an integer between zero and where is the
number of bits. Standard single-point crossover and standard
mutation were employed as the genetic operations [9]. The
rates of the genetic operations were determined empirically
by performing multiple optimizations. A crossover rate of 30%
and a mutation rate of 5% were found suitable for the problems

Fig. 3. Contour diagrams of the two density functions that make up the
exclusive-OR problem. The abnormal class (solid lines) occupies the upper left
and lower right quadrants, whereas the normal class (dashed lines) occupies
the upper right and lower left quadrants.

studied. A value of four and a value of 0.1 (or
10% of the range of each objective) were also found to work
well for the optimization problems discussed in this paper. A
discussion of these parameter settings is presented later.

B. Classifiers

A linear classifier attempts to separate the two classes
of observations by using a linear decision boundary. We
employed logistic discriminants [5] in order to implement
this classification. A logistic discriminant projects the data
onto a decision variable, and then a threshold is applied for
determining whether a given observation belongs toor .
The abnormal set for a logistic discriminant with parameter
vector is defined as

(2)

where and is a
sigmoidal function with an output bound between zero and
one [5]. The normal set is defined as .
The conventional method for generating a ROC curve for a
logistic discriminant is to vary the final parameter in the vector

, which results in a translation of the decision boundary.
The NP-GA was used to optimize the parameters of a

logistic discriminant so as to work with the exclusive-OR data
described previously. All three components (for 2-D problems,

has three components) of the parameter vectorwere
allowed to range between3 and 3. With a population size of
500 solutions, we ran the NP-GA for a total of 100 generations.
Conventional logistic discriminant training, as described in [5],
was employed to compare with the NP-GA results.

An ANN is a set of connected nodes that is loosely based
on the human neuron system [5], [27]–[30]. For classification
purposes, an ANN can be thought of as a mapping function
that uses the weights to map an input vector to a scalar
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quantity to which a threshold is applied to determine whether
belongs to class or . Unlike logistic discriminants,

an ANN can separate the two classes of observations using a
nonlinear decision boundary. The abnormal set of observations
for an ANN using the weights is given by

(3)

where represents the nonlinear mapping of the input
features to the single output value bound between zero and
one.

We applied the NP-GA to optimize an ANN on the
exclusive-OR data. A two-layered ANN with two inputs,
two hidden units, and one output unit was employed. This
corresponded to a total of nine parameters to be optimized.
The magnitudes of the weights were forced to lie between

5 and 5 in order to simplify the optimization task and to
regularize the problem somewhat, because large weight values
represent complex decision boundaries [28]. A population size
of 3000 solutions was run for a total of 100 generations for
this study. Conventional error-backpropagation ANN training
[5], [27], [29], [30] was also employed numerous times, using
different initial conditions. A comparison of the performances
of the NP-GA results with the best conventional results will be
shown, along with a comparison of the NP-GA performances
with a conventional optimization that was trapped in a local
minimum. The conventional ROC curves were generated by
varying the output bias weight value, which corresponds to
one component of . This is equivalent to varying the neural
network output threshold. It should be noted that Woods and
Bowyer [23] studied the effect of varying weight values other
than the output bias weight in generating ROC curves. Their
study concluded that varying a subset of the weights can
produce better ROC curves than the ROC curves produced by
varying the output threshold, as is conventionally done. By
applying the NP-GA to ANN’s, however, we are effectively
allowing all the weights to vary when generating the ROC
curve, including both the output threshold and the hidden layer
bias weights studied in the Woods and Bowyer work.

IV. RESULTS

A. Linear Classifier

Fig. 4 shows the performances of the nondominated solu-
tions returned by the NP-GA and the ROC curve that resulted
from the conventional training, generated by thresholding the
output value. The operating points obtained by the NP-GA are
seen to be better than the corresponding operating points on the
conventional ROC curve in the high-sensitivity region. Fig. 5
demonstrates the same behavior when the NP-GA solutions
and the conventional solution are evaluated on the independent
data set. This is evidence that the performance improvement
achieved by the NP-GA training was not simply a result of
over-training. However, because the training data were sparse
between the four regions of the exclusive-OR data, a few of
the solutions returned by the NP-GA show slight signs of
overfitting when tested on the 20 000 testing samples, as is
demonstrated by the fact that a few solutions are dominated

Fig. 4. Consistency results of the logistic discriminant training using ex-
clusive-OR training data. The circles represent the performances of the
nondominated solutions returned by the NP-GA based training. The solid line
is the conventional ROC curve produced by varying the output threshold value
of the logistic discriminant after it was trained using a scalar optimization
technique. The shaded region shows the performances achievable by all
possible weight vectors~w.

Fig. 5. Validation results of the logistic discriminant training for 20 000
samples from the exclusive-OR data distribution to evaluate the performances.
The circles represent the performances of the nondominated solutions returned
by the NP-GA based training. The solid line is the conventional ROC curve
produced by varying the output threshold value of the logistic discriminant
after it was trained using a scalar optimization technique.

when evaluated on the test set. The majority of the solutions,
however, do not show signs of overtraining.

The ROC curve for the conventionally trained logistic dis-
criminant was generated by varying the output threshold (final
parameter in ) and plotting the corresponding sensitivity
and specificity values. Fig. 6 shows the decision boundaries
at various output thresholds for the conventionally trained
logistic discriminant. Decision boundaries corresponding to
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Fig. 6. An explanation of why the conventionally trained logistic discrimi-
nant only performs well in the low-sensitivity region. The decision boundaries
corresponding to different output threshold values of the discriminant are
shown superimposed on the data distribution. The o’s represent normal signals
and the x’s represent the abnormal signals. The abnormal region is to the left
of each decision boundary and the normal region is to the right of each
decision boundary. When the threshold value is varied, the decision boundary
is simply translated with its orientation remaining fixed. By analyzing the
sensitivities and specificities for each decision boundary, one can generate the
conventional ROC curve shown in Fig. 4. In order for the classifier to perform
well in the high-sensitivity region, the decision boundaries would have to be
rotated by 90�, which would result in the classifier performing poorly in the
low-sensitivity region.

different threshold values are seen to be parallel. Because of
this, the classifier only performs well in the low-sensitivity
region. If, however, the decision boundaries were rotated by
90 to those shown in Fig. 6, the classifier would, instead,
perform well in the high-sensitivity region. The advantage
of the NP-GA is that, at different ROC operating points, the
orientation of the decision boundary can be different. Thus, the
NP-GA trained logistic discriminant can perform optimally in
both the high- and low-sensitivity regions. This is because,
with the NP-GA, all components of are effectively allowed
to vary when generating the ROC curve, rather than just
varying the value of one of the parameters and keeping the
other two fixed.

B. Artificial Neural Network

The performances of the NP-GA results on the 200 training
samples is shown in Fig. 7. The best conventional ANN opti-
mization ROC curve, created by varying the output threshold,
is also shown in Fig. 7. The NP-GA result is either equal
to or better than the best conventional result at all points.
The differences are small in most regions, but substantial
in the very-high-sensitivity region of the ROC curve. No
regularization techniques were applied to the conventional
optimization. Therefore, one would typically be concerned
about overtraining. Fig. 8 shows the validation ROC curves
generated by applying the optimized results to the 20 000
testing samples. Again, the NP-GA result is closely matched

Fig. 7. Consistency results of the ANN training, using exclusive-OR training
data. The circles represent the performances of the nondominated solutions
returned by the NP-GA based training. The solid line is the conventional ROC
curve produced by varying the output threshold value of the ANN after it was
trained using a scalar optimization technique. The dashed line represents the
result of a conventionally trained ANN trapped in a local minimum. The
conventional training became trapped in local minima in approximately 30%
of the conventional optimizations performed.

Fig. 8. Validation results of the ANN training on 20 000 samples from
the exclusive-OR data distribution to evaluate the performances. The circles
represent the performances of the nondominated solutions returned by the
NP-GA based training. The solid line is the conventional ROC curve produced
by varying the output threshold value of the ANN after it was trained using
a scalar optimization technique.

with the conventional result at most places in the ROC space,
except in the high-sensitivity region where the NP-GA result
is noticeably better than the conventional result. Overtraining
was not a noticeable problem in both of these optimizations
because the structure of the ANN was limited (two hidden
nodes) in both runs and the parameter range of the NP-GA
was limited as well.
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(a) (b)

(c) (d)

Fig. 9. Convergence of the NP-GA for the ANN training example as described in the text. (a)–(d) Performances of the nondominated solutions at generation
numbers 2, 5, 13, and 100, respectively. As the generation number increases, the loci of operating points migrate upward and to the left.

Local minima often plague conventional ANN optimiza-
tions. We found that, depending upon the initial staring point,
our ANN converged to local minima about 30% of the
time, as was evident by comparing the ROC curves of the
different ANN optimizations. The NP-GA never had a problem
with local minima. Fig. 7 also shows the performance of
the conventional result that resided in a local minimum in
the parameter space (dashed line). The NP-GA result is
substantially better at almost all points in ROC space.

C. NP-GA Performance

We conducted experiments to analyze the behavior of the
NP-GA and verify that our choice of NP-GA operating param-
eter settings was reasonable. Fig. 9 demonstrates the conver-
gence of the nondominated set when the ANN was trained,
using the previously described training data and operating
parameter settings. Fig. 9(a)–(d) shows the performances of
the nondominated solutions evaluated on the training data at
generations 2, 5, 13, and 100, respectively. It can be seen that

the loci of operating points migrate upward and to the left
as the generation number increases. Beyond 100 generations,
the loci of operating points remain approximately constant,
demonstrating that the NP-GA had converged to a stable
set of solutions. It should also be noted that the relatively
high density of the operating points returned by the NP-
GA indicates that the nondominated set of solutions was
adequately sampled.

Although the data described above demonstrate that the
NP-GA converged when training the ANN, we do not know
whether the final set of solutions represents the best possible
set of solutions (i.e., the Pareto-optimal set). To verify this, one
would have to evaluate the performances of all the possible
combinations of parameter values of the ANN, which is not
a computationally tractable problem with current computer
technology. We can, however, compute this for the linear
classifier because it possesses only three free parameters. The
shaded region in Fig. 4 shows the operating points achievable
by all possible parameter settings for the linear classifier.
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Because most of the operating points returned by the NP-GA
lie on the upper left boundary of the shaded region, we can
conclude that, for this example, the NP-GA was successful at
converging to the Pareto-optimal set.

As was noticed in [19], we observed that the size of
the Pareto dominant tournament significantly affected
the convergence behavior of the NP-GA. Fig. 10 shows the
operating points returned by two separate applications of the
NP-GA to the ANN training. The upper set of solutions,
discussed previously, was obtained with . The lower
set of solutions was obtained using the same NP-GA operating
settings, except with . With , the NP-GA
returned a set of solutions that were clearly suboptimal. One
explanation of this result is the following. When a tournament
selection scheme is used, there is a nonzero probability that a
solution in a given population will not be selected to compete
in any of the tournaments. This can result in a potentially good
solution being lost by the NP-GA. The probability of losing a
solution in this way is equal to , where is the
population size. When is large, this probability converges
to . For , this corresponds to a probability
of 0.135 of losing a solution in any given population. When

, this probability is reduced to 0.018. By increasing
the size of the tournament, we reduce the probability of
losing a potentially good solution which could contribute to
inadequate convergence of the NP-GA.

There are problems, however, with using too large a tourna-
ment size. When we used large values of (for example,

), the NP-GA converged to a solution similar to that
achieved for , but subsequently fluctuated about that
solution as a function of generation number. This instability is
a result of having domination tournaments in which multiple
nondominated solutions are forced to compete. When nondom-
inated solutions are forced to compete in multiple tournaments,
one or more of the members of the nondominated set will
inevitably be lost. (The niche count determines the winner of a
tied tournament.) The observed instability of the nondominated
set is a result of losing and regaining nondominated solutions.
When large values of are used, the value of the niche
size becomes increasingly important because multiple
tied tournaments may arise. For , we found that the
NP-GA performance was relatively insensitive to the value of

.

V. DISCUSSION

Genetic algorithm parameters are difficult to determine and
few methods exist to systematically set the GA parameters.
The total number of generations, the number of solutions in
each generation, the crossover rate, and the mutation rate were
determined experimentally. Various GA parameter combina-
tions were tested and the results were compared. We found a
set of parameters for which the results were consistent in the
sense that multiple optimizations gave solutions with similar
performances. If the sets returned by different NP-GA runs
were not optimal, one would expect that multiple NP-GA runs
would return sets with either better or poorer performances.
We also attempted to use various values and found that
the NP-GA results were robust with respect to .

Fig. 10. Effect oftdom on convergence of the NP-GA. At atdom value
of two, the NP-GA converged prematurely because of the lack of domination
pressure. For the problems studied in this paper, atdom value of four resulted
in reliable convergence of the NP-GA. Large values oftdom caused the
nondominated set to fluctuate randomly.

The NP-GA exhibits several advantages over conventional
classifier training techniques. One advantage is that the ob-
jective function describing the optimization task is a vector-
valued function. This eliminates completely the need to ag-
gregate the different objectives (sensitivity, specificity) into
a single scalar function. Rather,a priori information about
the relative preferences of the objectives can be used post-
optimization to choose a member of the Pareto-optimal set as
the ultimate solution to the problem.

Another advantage is that a set of nondominated solutions
is returned, rather than a single solution. This allows one to
select the solution (ROC operating point) whose performance
is most clinically appropriate for the diagnostic task at hand.
Conventional classifier optimizations can return a series of
solutions in the form of a ROC curve obtained by varying
certain components of after the classifier has been trained.
If the scalar cost function employed is an aggregation of
sensitivity and specificity, then only one point in ROC space
is guaranteed to be optimal. If the scalar cost function is
an aggregation of two different performance measures (such
as the sum-of-squares error function for ANN’s), then no
point is guaranteed to be optimal in ROC space. The NP-GA
circumvents this problem by allowing all parameters into
effectively vary in an optimal manner when sweeping out the
ROC curve. In this sense, the consistency ROC curve returned
by the NP-GA, assuming that the optimization is complete, is
optimal at every point. All other possible performances for the
same classifier and dataset are either equal to or less than the
ROC curve returned by the NP-GA optimization. Training the
classifier to operate at a particular operating point and then
varying a subset of the parameters in a predetermined way to
generate the ROC curve does not ensure this.

As we alluded to earlier, conventional methods of classifier
optimization can, in fact, produce the Pareto-optimal operat-
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ing points through multiple runs of the scalar optimization
procedure with different weighting factors on sensitivity and
specificity (see the Appendix for a more detailed discussion of
this). Sensitivity and specificity are, however, discrete counting
statistics and, hence, are not differentiable functions of.
Conventional gradient-based optimization methods, such as
backpropagation, cannot be employed in this situation. One
is therefore left with running multiple scalar optimizations
to produce the same operating points that were produced
with one single run of the NP-GA. It is also not always
clear how to set the relative weightings to evenly sample
the Pareto-optimal set using a scalar optimization technique.
Another option would be to run multiple optimizations, using
a conventional cost function such as the sum-of-squares cost
function with different weightings on the two objectives. No
point, however, is guaranteed to be a member of the Pareto-
optimal set if this type of error function is employed. By
using an NP-GA to train pattern classifiers, we are directly
addressing the multiobjective nature of classification problem.

If the density functions of the normal and abnormal classes
( and , respectively) are known, then the ROC
curve that is produced using the likelihood ratio

or any monotonic transformation of the like-
lihood ratio as the decision variable will be the optimal
ROC curve [20], [31]. It will exhibit the best classification
performances that can be achieved with the given density
functions. It is often very difficult with limited datasets to
estimate the density functions of the two classes of data. Thus
many classifiers, including those used in this paper, make no
attempt to accurately estimate these distributions. The optimal
ROC curves that have been discussed in this work are quite
different. Within the limitations of the classifier employed and
the dataset used for training, the ROC curves produced using
the NP-GA are optimal, i.e., there is no better ROC curve that
can be produced with the same training data and classifier.

There are sacrifices that are made when the NP-GA is
used for classifier optimization. GA’s are population-based
stochastic optimization algorithms. Thus, they are typically
more time consuming than are deterministic algorithms. The
time to optimize the linear classifier on a 400-MHz Pentium
II system was on the order of 3 min. The time to optimize
the ANN on this system was about 20 min. In fact, for very
complex systems, an NP-GA optimization may be impractical
with current computer technology. For ANN’s with a large
number of inputs and hidden nodes, the NP-GA may not be
suitable for training with current computer technology, because
of the large number of parameters. In these situations, the
techniques for sweeping out ANN ROC curves proposed by
Woods and Bowyer [23] may be better suited. The NP-GA,
however, can readily be made to run in parallel, which would
substantially decrease the execution time.

This paper has dealt with binary classifiers. It is often
important, however, to classify observations into more than
two classes (benign, malignant, and normal, for example).
For a three-class system, aggregating the multiple objective
functions into a single scalar function suffers from the same
problems as the two-class problem, but to a greater degree.
Here, it is even more difficult to adequately incorporate the

Fig. 11. A comparison of the solutions returned by the NP-GA and the
solutions returned by 20 scalar optimizations employing a weighted sum
of sensitivity and specificity as the scalar cost function. The two methods
returned many similar solutions, but the solutions returned from multiple
scalar optimizations tended to clump together in certain areas, whereas the
NP-GA solutions were uniformly distributed in ROC space. Note that only
18 of the 20 scalar solutions were distinct.

class preferences in the aggregated objective function. The
ability of the NP-GA to circumvent this difficulty is very
attractive. Because the nondominated set of solutions will be
larger, care must be taken in determining the NP-GA parameter
settings to ensure that the Pareto-optimal set is adequately
sampled.

Complexity and overtraining are issues of great importance
in diagnostic classifier research and, in particular, in ANN
training [28], [32]. In practice, there is typically a limited
amount of training data available, and some sort of regu-
larization is imposed during the classifier training to ensure
that it performs well on other (unknown) data sets. It is
well known that large ANN weights correspond to complex
separation functions [28], [32], which may be indicative of
overtraining. To avoid this, we have imposed limitations on
the magnitudes of the ANN weights when using the NP-
GA to determine the weight values. More systematic methods
of regularizing the NP-GA-based training may be possible,
however. One such method is to add a third component to
the vector objective function that measures complexity. In
this way, one can maximize the sensitivity and specificity
while minimizing the complexity of the classifier. Depending
on the amount and quality of the available training data, a
nondominated solution returned by the NP-GA can be chosen
such that the classifier performance and generalizability of
the result are appropriate for the classification task. We are
currently investigating this approach to classifier training.

VI. CONCLUSION

We have studied the use of a niched Pareto GA in train-
ing two popular diagnostic classifiers. Unlike conventional
classifier training techniques that formulate the problem as
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the solution to a scalar optimization, the NP-GA explicitly
addresses the multiobjective nature of the training task. It has
been demonstrated that the multiobjective approach removes
the ambiguity associated with defining a scalar measure of
classifier performance and that it returns a set of optimal
solutions that are equivalent in the absence of any information
regarding the preference of the objectives (sensitivity, speci-
ficity). The performances of these solutions can be interpreted
as operating points on an optimal ROC curve, describing the
limiting tradeoffs between sensitivity and specificity that are
achievable by that classifier, given the available training data.
The task of classifier optimization and ROC curve generation
are combined into a single task. It was demonstrated that
constructing the ROC curve in this way may result in a better
ROC curve than is produced by conventional methods of ROC-
curve generation. The NP-GA optimization typically requires
more computation time than do conventional nonstochastic
optimization methods, which may limit its application to
certain problems. The advantages of the NP-GA approach to
classifier training become more pronounced when the number
of classes to be classified increases beyond two.

APPENDIX

In this work, we have investigated the use of a multiobjec-
tive optimization algorithm to train diagnostic classifiers and
generate ROC curves. In fact, scalar optimization methods can
theoretically arrive at the same ROC curves as a multiobjec-
tive optimization. Consider the following scalar optimization
problem:

(A1)

where is an element of the space of possible parameter
vectors are fixed, and . Geoffrion
[33] proved the following lemma.

Lemma 1

(a) If maximizes (A1), then is also Pareto-optimal in
the vector objective space .

(b) Let be a convex set and let the be convex on .
Then is Pareto-optimal if and only if maximizes
(A1) for some and .

Because the multiobjective training problem, as we have
formulated it, satisfies the convexity conditions used in the
Lemma, it must be true that the optimal ROC operating points
can be obtained by performing multiple scalar optimizations
with varying ’s.

It is clear from Fig. 4 that the solutions returned by the NP-
GA are Pareto-optimal because, for this problem, we can plot
the performances of all possible solutions (the shaded region in
Fig. 4). However, in Fig. 7, we cannot plot the performances
of all possible solutions due to the large dimensionality of
the parameter space. We can, however, make a comparison
between the solutions returned by the NP-GA and the solutions
returned by multiple scalar optimizations which maximize

Sens Spec (A2)

with varying between zero and one. We implemented a
scalar GA, using the same GA parameters and parameter
restrictions as imposed on the NP-GA to optimize (A2).
As described above, the solutions to both of these prob-
lems should be Pareto-optimal in ROC space assuming the
optimizations are complete. Fig. 11 compares the NP-GA
solutions and the solution achieved through multiple runs of
a scalar optimization with varying . The points returned
by the multiple scalar optimizations are similar to certain
points returned by the NP-GA. Note that the multiple scalar
optimized solutions are clumped together in certain areas of
the ROC space. It is unknown,a-priori, how to vary to
evenly sample the Pareto-front, whereas the NP-GA employs
niching to ensure an even sampling of the Pareto-front or
optimal ROC curve. One also cannot employ gradient-based
techniques to optimize discrete performance measures such
as sensitivity and specificity. Because of this, we performed
20 separate stochastic scalar optimizations to get the 20
ROC operating points. On the other hand, a more complete
sampling of the ROC curve was obtained by a single run
of the NP-GA, which required approximately the same CPU
time as one run of the scalar optimizer. Thus, despite the
theoretical equivalence of the two methods, there are practical
advantages to performing a single multiobjective optimization
over multiple scalar optimizations.
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