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Abstract—It is well understood that binary classifiers have In computer-aided diagnosis (CAD) [1]-[3], computers take
two implicit objective functions (sensitivity and specificity) de- features extracted from medical images and determine whether
scribing their performance. Traditional methods of classifier pathology is present by using automated classifiers [4], [5].

training attempt to combine these two objective functions (or . h - h
two analogous class performance measures) into one so thatIt is well known that the optimal method for classifying is

conventional scalar optimization techniques can be utilized. This t0 use the likelihood ratio or any monotonic transformation
involves incorporating a priori information into the aggregation of the likelihood ratio as the discriminant function [4]. The
method so that the resulting performance of the classifier is goal in training a diagnostic classifier is to employ a limited
satisfactory for the task at hand. We have investigated the use of a dataset to determine the parameters of the classifier such that

2Li?rﬁ?zapt?éﬁfo\;vqmt'ﬂ%ﬁgﬂvgggg“g%goggrgéj%ﬁt)i\]:gr \Cllea:;z':'?sr it approximates the likelihood ratio decision rule. For the most

optimized instead of a scalar function, eliminating the need to Part, these classifiers work in a similar fashion. A dataset
aggregate classification objective functions. The niched Pareto of features extracted from both normal (without disease) and
GA returns a set of optimal solutions that are equivalent in the abnormal (with disease) images is used for determining the
absence of any information regarding the preferences of the 0b- ¢ |aqgifier parameter values, or for “training” the classifier,

jectives. Thea priori knowledge that was used for aggregating the . .
objective functions in conventional classifier training can instead so that it correctly classifies future datasets of unknown

be applied post-optimization to select from one of the series of pathology.
solutions returned from the multiobjective genetic optimization. Classifier training can be viewed as an optimization problem

We have applied this technique to train a linear classifier and an where the quantity to be maximized is the performance of
artificial neural network (ANN), using simulated datasets. The the classifier on an independent dataset. There are, however,

performances of the solutions returned from the multiobjective bl ith fi |assifi ’
genetic optimization represent a series of optimal (sensitivity, numerous probiems with representing classifier performance

specificity) pairs, which can be thought of as operating points Py @ single (scalar) objective function, which is needed so
on a receiver operating characteristic (ROC) curve. All possible that one can use a scalar optimizer [6], [7]. Binary classi-
ROC curves for a given dataset and classifier are less than or fiers [4] have, in essence, two implicit objective functions:

equal to the ROC curve generated by the niched Pareto genetic 5o gescribing how well they classify the abnormal cases

optimization. e - .

(sensitivity) and one describing how well they classify the

Index Terms—Dbiagnostic classifiers, genetic algorithms, multi- normal cases (specificity). These two objective functions are
objective optimization, ROC analysis. noncommensurable, implying that it may not be possible to
simultaneously improve both the sensitivity and specificity.

|. INTRODUCTION Traditional methods of classifier training attempt to combine

HE task in medical diagnostic decision making is typighese two objective functions (or two analogous class per-

. . . formance measures) into a single scalar objective function
cally one of employing multiple features to classify an

observation as normal or abnormal. A radiologist may, fthat permits the use of conventional (scalar) optimization

r,r ) ;
example, note the size, shape and margin sharpness g\ecz;?nlques [8]. A drawback to this approach is that the proper

way of aggregating the objective functions is usually unknown.

potential breast lesion in a mammogram and somehow : o .
this information to determine whether a cancer is preseuri?;ere are, in fact, an infinite number of ways of mapping two

jective functions to a single scalar function. Even wiaen
priori information about the relative importance of the two
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one and the other objective is to map normal observations to
a value close to zero.

Genetic algorithms (GA's) [9] have been applied to many
diagnostic and classification problems [8], [10]-[15]. A con-
ventional GA, however, is a scalar optimization technique. It
thus possesses the undesirable features of an aggregating-base
approach. One method of avoiding this is to adopt a multiob- g _
jective approach [16], [17] to the optimization problem. In a p L st
multiobjective optimization approach, the objective function X x % b
is vector valued and the independent objectives (sensitivity - P TR S 16 s T LT
and specificity) are optimized simultaneously. Thus, the need R %
to aggregate the independent objective functions is removed.
Unlike a scalar optimization that returns a single solution, ;
the solution to the multiobjective optimization problem is a e Ca(0)
set of solutions called the Pareto-optimal set. The Pareto-
optimal set is defined as the set of solutions for which no
other solution exists that is better in both objectives. In the
absence of any preference information about the objectives, the
members of the Pareto-optimal set are equally valid solutions
to the optimization problem; no other solutions exist that argy. 1. The job of an automated classifier is to partition the multidimensional
better in all of the objectives. In the context of diagnostitgature space into two partition&, («7)) belonging to classr, andCy (<)
classifier optimization, the members of the Pareto-optimflonnd o clissy Trese parttons, (1) andc,() we shown by he
set correspond to operating points on an optimal receiv@fferent symbols (x's and 0’s). The decision boundary is denoted by the solid
operating characteristic (ROC) curve, whose performandi#s separating the shaded from the unshaded region.
describe the limiting sensitivity—specificity tradeoffs that the

classifier can provide for the given training dataset. Convege start with a dataset of known pathology, called the training
tional nonevolutionary optimization techniques have not beefataset. A graphical depiction of an automated classifier for a
successfully extended to the multiobjective case because thgy-feature examplép = 2) is shown in Fig. 1. Thez;, 2}
are not designed to operate on multiple solutions. Becausgace spanned by the feature vectors is denoted.bsn
GA'’s are population based, they have formed the basis gftomated classifier uses a parameter vegtar partition this
several multiobjective optimization techniques, collectivel¥pace into the sets, (), the set of observations that belong
referred to as multiobjective GA’s (MOGA’s) [16]-[19].  to class, andC,(w), the set of observations belonging to
In this paper, we investigate the application of a MOGAjlassx,. The parameterss of a classifier can represent, for
called a niched Pareto GA (NP-GA) for optimizing the perexample, the weights of an artificial neural network (ANN) or

formance of two popular diagnostic classifiers. The paper tige threshold values in a rule-based classifier. For a fixed
organized as follows. Section Il contains a general introductiQn () U C, (i) = S and C,, (@) N Co (W) = 0.

to automated classifiers and a brief description of the NP-GA.Given a measurement the classifier assignﬁto classrm,
Section |1l describes the two classifiers that were studied ajdz C,. () or to classn, if # € C,(«&). The probability that

it describes how the NP-GA was employed to train them. Thg observation belonging to class is correctly classified
results of the two optimizations are presented in Section 1\4 referred to as the sensitivity of the classifier, denoted by
Sections V and VI contain a discussion of the results ands@m(w), Similarly, the probability that an observation is
summary of the advantages and drawbacks of the propogegrectly classified as belonging to class is referred to
approach to diagnostic classifier training and ROC curgg the specificity of the classifier, denoted $yec(«). Note
generation. that both the sensitivity and specificity of the classifier depend
explicitly on the choice ofi and implicitly on the underlying
distribution of the normal and abnormal observations. The
sensitivity is a measure of how well the classifier performs on
abnormal cases, whereas the specificity is a measure of how
well a classifier performs on normal cases. In practice, the
An automated binary classifier separates two classes figfction of classr, observations that are correctly classified
observations (e.g. images) and assigns new observationdstased as an estimate Stns(i). Likewise, the fraction of
one of the two classes. In this paper, we will label thelassw, observations that are correctly classified is used as
two classes as normal (no disease evident) and abnormalestimate ofSpec(w).
(indicative of disease), denoted hy, and ,, respectively. A popular construct used for describing the performance of
Certain characteristics of the observations, called features, ardiagnostic classifier is the ROC curve [6], [7], [20], [21]. A
used in making the classification decision. The set of featur@®©C curve is generated by varying the value of one (or more)
corresponding to an observation can be expressed by a vectothe components of the parameter veatyrand plotting the
& = [#1,%2,...,2p]. In order for the classifier to be trained,correspondingens(w) andSpec(w) values. For example, the

Il. BACKGROUND

A. Automated Classifiers
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1 : selection mechanism and ranking scheme. Readers not familiar
e " with GA’'s may consult [9]. In the remainder of this section
,,,, we review the NP-GA proposed by Host al. [26].
0sl Pl | In order to directly address the multiobjective nature of
- the optimization problem, NP-GA’'s employ the concept of
L dominance. A solution to the optimization problem is called
% | nondominated if there is no solution superior to it in all
‘ ; objectives. It is the goal of the NP-GA to discover the set of
! ; all nondominated solutions, referred to as the Pareto-optimal
N ’ set, all of which are considered to be equally valid solutions to
| the problem in the absence of amypriori information about
the relative merits of the different objectives. If a solution
is not nondominated, it is referred to as being dominated. A
0.2} . nondominated solution is said to dominate a dominated solu-
tion. Equivalence classes of dominated solutions are formed
by grouping them according to the number of solutions that
0 02 o4 06 08 1 dominate them.
1-Specificity This grouping of solutions into distinct classes establishes a
partial order on the set of all solutions that is used to determine
Fig. 2. - The two ROC curves have equl values, but, depending upon the 5y \We assume that the Pareto-optimal set corresponds to
relative preferences concerning the sensitivity or specificity of the detection . .
task, one curve is typically preferred over the other. equivalence class zero and that all other solutions have an
equivalence class greater than zero. The rank of a particular

solution is then equal to its equivalence class number. This

output threshold is usually varied to generate a ROC curve fQig res that solutions within the same equivalence class have
ANN's [22]. Traditionally, the classifier is trained prior to theyhe same rank, which reflects the fact that solutions within

generation of the ROC curve [22], [23]. In this situation, all bu,e same class are equally good in the absence of any other
one point on the ROC curve represent operating points othef, - ~iion.

than the one to which the classifier was naturally trained. Ao perform selection, the NP-GA uses a modified tourna-
ROC curve that was generated with the same dataset that Was, selection method. In a scalar GA, tournament selection

o

o
T
~
L

Sensitivity

<
kS

unbiased estimate of classifier performance [24]. Two typicglge exists a single solution to the optimization problem;
ROC curves are shown in Fig. 2. The area under a ROC C,u,r}ﬁlersity among solutions in the population will be lost after
or 4., is an accepted way of comparing overall classifiel ;orain number of generations. This is undesirable in a
performance [6], [7], [2,0]’ [21]' Two curves may have equE}jnultiobjective optimization where we wish to discover all of
A?’ vall_Jes, as shown in Fig. 2. However, one O_f the CUNV&Re members of the Pareto-optimal set, not simply a single
will typically be preferred over the other, depending upon the, ion 1o circumvent this difficulty, Horet al. proposed
relative preference of the sensitivity and the specificity needﬁge use of a Pareto domination tournament in conjunction with

for the task at hand. a form of fitness sharing called equivalence class sharing. A

3 For2 certlaln types ofbclaslsmers, SliChhaS I;jul(;-baseq cTySteIB};ﬁ‘eto domination tournament is a modified conventional tour-
[31, [25], it may not be clear hows shou e varied to nament selection method that uses the concept of dominance to

sweep o_gt_the ROC curve that b?‘St represents the S_?ns'agfermine the winner of the tournament. First,,, randomly
ity—specificity tradeoffs that are achievable by the classifier Qjected solutions are compared and the solution with the

the specified dataset. The ROC curves generated by Varyl‘ﬂghest rank wins (is carried over to the next generation). The

different ;ets qf componenFs. Q_f wil ge.r?e.rally be different, rank, being based on the concept of dominance, incorporates
representing different sensitivity—specificity tradeoffs that atfie multiobjective nature of the problem into the selection

possible. In this work, we demonstrate that this amb'gu'%echanism. For situations when a certain tournament size

catn bec;el;noved |f|t_or:)e_ u?_es thet_pe_rfotr_man?eti of ﬁhe if_)lu“%ﬁgvides insufficient domination pressure, the size of the
returned by a multiobjective optimization of the classifier Urnament(tao.) can be increased.

define the ROC curve. When two or more solutions in a tournament belong to the
) same equivalence class (i.e., have the same rank), there will not
B. The Niched Pareto GA be a clear winner. A winner cannot simply be chosen at random
We have implemented a multiobjective optimization techbecause genetic drift will cause the population to converge to
nigue called an NP-GA, which is described in detail by Hora localized region of the Pareto-optimal set, thus obscuring
et al [26]. Other types of MOGA’'s have been proposedther potential solutions to the optimization problem. Instead,
and are described in [18]. The NP-GA can be viewed asform of fithess sharing, called equivalence class sharing, is
a conventional (scalar) GA that uses a modified tournamesrployed to determine the winner of a tied tournament. In

%o
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equivalence class sharing, the winner of a tied tournamentis 5
the solution that has the smallest niche count. The niche count
estimates the density of solutions in a localized region (niche)

around a given solution. As described in [26], the niche count

m; for the ith solution is given by

mi= Y s(di) 1)

j€Pop

whered;; is the distance (in objective space) between solutions = |
¢ and j and s() is the so-called sharing function given by ’
s(d) = 1 — d/osnare TOr d < ogpare and s(d) = 0 otherwise.

Here, ou.:e iS called the niche radius, which represents the
maximum distance between solutions that will result in an
increase in their niche counts. By employing fitness sharing
in this way, the Pareto-optimal set is more likely to be
uniformly sampled, thus providing a more diverse set of
potential solutions to the optimization problem from which 7 7 ‘
the user can choose. 5 0 5

IIl. M ETHODS Fig. 3. Contour diagrams of the two density functions that make up the
’ exclusive-OR problem. The abnormal class (solid lines) occupies the upper left
We trained a linear classifier and an ANN by using boténd lower right quadrants, whereas the normal class (dashed lines) occupies

conventional optimization techniques and the NP-GA. Twde upper right and lower left quadrants.

dimensional (2-D) exclusive-OR data [27], sampled from

the density functions shown in Fig. 3, were used for thistudied. Atqoy, value of four and &gy, value of 0.1 (or
study, because classifiers typically have difficulty in ade€-0% of the range of each objective) were also found to work
guately classifying both classes of data for this problemell for the optimization problems discussed in this paper. A
Two-dimensional isotropic standard normal distributions wittiscussion of these parameter settings is presented later.
mean(y.., , i, ) @and variance one were sampled in the four re-

gions of the exclusive-OR problem. The normal class (dashBd Classifiers

lines in Fig. 3) occupied the regions centered at (1.3,1.3)a |inear classifier attempts to separate the two classes

and (-1.3,-1.3). The abnormal class occupied the regions opservations by using a linear decision boundary. We
centered at (1.3;1.3) and (-1.3,1.3). A total of 100 normal gmpioved logistic discriminants [5] in order to implement

and 100 abnormal samples were generated for training data- i cjassification. A logistic discriminant projects the data
additional 10000 normal and 10000 abnormal samples Wefe, 5 gecision variable, and then a threshold is applied for
generated for testing the classifiers after they had been tra'”&é‘termining whether a given observation belongs tar ..

The performances of the conventionally optimized and NP-Gfy,o apnormal set for a logistic discriminant with parameter
optimized classifiers were evaluated on both the training aQd.ior .z is defined as

the testing datasets.
Co() = {7 : g(T'@") 2 0.5} (2)

A. NP-GA Implementation where & = [z1,%2,...,3,,—1] = [#,—1] and g() is a
The NP-GA was employed to simultaneously maximize tregmoidal function with an output bound between zero and
sensitivity and specificity of a linear classifier and an ANNne [5]. The normal set is defined 6s(@) = S — C,(W).
with a single hidden layer. The value of each component ®he conventional method for generating a ROC curve for a
w was restricted to remain within a maximum and minimurtogistic discriminant is to vary the final parameter in the vector
value, determined prior to the optimization. A binary repre#, which results in a translation of the decision boundary.
sentation of the chromosomes [9] was utilized so that eachThe NP-GA was used to optimize the parameters of a
real-valued parameter ¥ was encoded by a binary humbeiogistic discriminant so as to work with the exclusive-OR data
of fixed length. The range of each componentubfand the described previously. All three components (for 2-D problems,
length of its binary representation determined that parameteiishas three components) of the parameter vedtowere
floating-point precision. The encoding was accomplished lalowed to range between3 and 3. With a population size of
linearly scaling the floating point number using its specifief00 solutions, we ran the NP-GA for a total of 100 generations.
range to an integer between zero &id— 1 wheren is the Conventional logistic discriminant training, as described in [5],
number of bits. Standard single-point crossover and standards employed to compare with the NP-GA results.
mutation were employed as the genetic operations [9]. TheAn ANN is a set of connected nodes that is loosely based
rates of the genetic operations were determined empiricatip the human neuron system [5], [27]-[30]. For classification
by performing multiple optimizations. A crossover rate of 30%urposes, an ANN can be thought of as a mapping function
and a mutation rate of 5% were found suitable for the problertisat uses the weight& to map an input vectof to a scalar
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quantity to which a threshold is applied to determine whether
Z belongs to classr, or m,. Unlike logistic discriminants,

an ANN can separate the two classes of observations using a
nonlinear decision boundary. The abnormal set of observations
for an ANN using the weights/ is given by

Calt) = (& h(# ) 2 0.5} 3)

where h(Z; @) represents the nonlinear mapping of the input
features to the single output value bound between zero and
one.

We applied the NP-GA to optimize an ANN on the
exclusive-OR data. A two-layered ANN with two inputs,
two hidden units, and one output unit was employed. This
corresponded to a total of nine parameters to be optimized.
The magnitudes of the weights were forced to lie between
—5 and 5 in order to simplify the optimization task and to
regularize the problem somewhat, because large weight values . = i e o -
represent complex decision boundaries [28]. A population size 1-Specificity
of 3000 solutions was run for a total of 100 generations for _ L . _
this study. Conventional error-backpropagation ANN training, (& SiieTes fesus o e logistc dicrmnant vainng using o
[5], [27], [29], [30] was also employed numerous times, usingondominated solutions returned by the NP-GA based training. The solid line
different initial conditions. A comparison of the performance@ff?he Clon‘(etf_‘ti%f,‘a' ROC Cl:fv?t pf‘?tducedtby_Vagying,the OUtpult thfes{ho,'d ‘;_a'ue
of the NP-GA results with the best conventional resuits will b o 9951 disetminant afer & was vaned using a scaler optmizaon
shown, along with a comparison of the NP-GA performancesssible weight vectorss.
with a conventional optimization that was trapped in a local
minimum. The conventional ROC curves were generated by 1
varying the output bias weight value, which corresponds to
one component off. This is equivalent to varying the neural
network output threshold. It should be noted that Woods and o8l
Bowyer [23] studied the effect of varying weight values other
than the output bias weight in generating ROC curves. Their
study concluded that varying a subset of the weights can
produce better ROC curves than the ROC curves produced by
varying the output threshold, as is conventionally done. By
applying the NP-GA to ANN'’s, however, we are effectively
allowing all the weights to vary when generating the ROC
curve, including both the output threshold and the hidden layer
bias weights studied in the Woods and Bowyer work.

Sensitivity

a0 O
0o ©

Sensitivity

0.41

0.2

IV. RESULTS

A. Linear Classifier o 02 os 06 08 i
i i 1-Specificity
Fig. 4 shows the performances of the nondominated solu-

tions returned by the NP-GA and the ROC curve that resultéd. 5. Validation results of the logistic discriminant training for 20000

; . : mples from the exclusive-OR data distribution to evaluate the performances.
from the conventional training, generated by thresm)ldmg t e circles represent the performances of the nondominated solutions returned

output value. The operating points obtained by the NP-GA a§g the NP-GA based training. The solid line is the conventional ROC curve
seen to be better than the corresponding operating points onffeduced by varying the output threshold value of the logistic discriminant

conventional ROC curve in the high-sensitivity region. Fig. &€ t Was trained using a scalar optimization technique.

demonstrates the same behavior when the NP-GA solutions

and the conventional solution are evaluated on the independ&hen evaluated on the test set. The majority of the solutions,
data set. This is evidence that the performance improvem&gtvever, do not show signs of overtraining.

achieved by the NP-GA training was not simply a result of The ROC curve for the conventionally trained logistic dis-
over-training. However, because the training data were spagsé#ninant was generated by varying the output threshold (final
between the four regions of the exclusive-OR data, a few pfirameter inw) and plotting the corresponding sensitivity
the solutions returned by the NP-GA show slight signs @ind specificity values. Fig. 6 shows the decision boundaries
overfitting when tested on the 20000 testing samples, asaisvarious output thresholds for the conventionally trained
demonstrated by the fact that a few solutions are dominategistic discriminant. Decision boundaries corresponding to
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€
o

Sensitivity

" ) 0 . . o
25 0 5 02 0.4 06 0.8 1
it 1-Specificity

Fig. 6. An explanation of why the conventionally trained logistic discrimiFig. 7. Consistency results of the ANN training, using exclusive-OR training
nant only performs well in the low-sensitivity region. The decision boundarigtata. The circles represent the performances of the nondominated solutions
corresponding to different output threshold values of the discriminant areturned by the NP-GA based training. The solid line is the conventional ROC
shown superimposed on the data distribution. The o’s represent normal sigieaigye produced by varying the output threshold value of the ANN after it was
and the x's represent the abnormal signals. The abnormal region is to the teffined using a scalar optimization technique. The dashed line represents the
of each decision boundary and the normal region is to the right of eawtsult of a conventionally trained ANN trapped in a local minimum. The
decision boundary. When the threshold value is varied, the decision boundeeyventional training became trapped in local minima in approximately 30%
is simply translated with its orientation remaining fixed. By analyzing thef the conventional optimizations performed.

sensitivities and specificities for each decision boundary, one can generate the
conventional ROC curve shown in Fig. 4. In order for the classifier to perform

well in the high-sensitivity region, the decision boundaries would have to be 1
rotated by 90, which would result in the classifier performing poorly in the
low-sensitivity region.

0.8F
different threshold values are seen to be parallel. Because of
this, the classifier only performs well in the low-sensitivity
region. If, however, the decision boundaries were rotated by
90° to those shown in Fig. 6, the classifier would, instead,
perform well in the high-sensitivity region. The advantage
of the NP-GA is that, at different ROC operating points, the
orientation of the decision boundary can be different. Thus, the
NP-GA trained logistic discriminant can perform optimally in
both the high- and low-sensitivity regions. This is because,
with the NP-GA, all components af are effectively allowed oz
to vary when generating the ROC curve, rather than just
varying the value of one of the parameters and keeping the

0.6

Sensitivity

041

other two fixed. % 0z 04 06 08 i
1-Specificity
B. Artificial Neural Network Fig. 8. Validation results of the ANN training on 20000 samples from

. . the exclusive-OR data distribution to evaluate the performances. The circles
The performances of the NP-GA results on the 200 traiNifghresent the performances of the nondominated solutions returned by the

samples is shown in Fig. 7. The best conventional ANN optiP-GA based training. The solid line is the conventional ROC curve produced
mization ROC curve. created by varying the output threshol’bY varying the output threshold value of the ANN after it was trained using

. . ! . . 'scalar optimization technique.

is also shown in Fig. 7. The NP-GA result is either equaal

to or better than the best conventional result at all points.

The differences are small in most regions, but substantisith the conventional result at most places in the ROC space,
in the very-high-sensitivity region of the ROC curve. Naexcept in the high-sensitivity region where the NP-GA result

regularization techniques were applied to the conventiorialnoticeably better than the conventional result. Overtraining
optimization. Therefore, one would typically be concernedias not a noticeable problem in both of these optimizations
about overtraining. Fig. 8 shows the validation ROC curvd®cause the structure of the ANN was limited (two hidden

generated by applying the optimized results to the 2000@des) in both runs and the parameter range of the NP-GA
testing samples. Again, the NP-GA result is closely matcheghs limited as well.
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Fig. 9. Convergence of the NP-GA for the ANN training example as described in the text. (a)—(d) Performances of the nondominated solution®at generati
numbers 2, 5, 13, and 100, respectively. As the generation number increases, the loci of operating points migrate upward and to the left.

Local minima often plague conventional ANN optimizathe loci of operating points migrate upward and to the left
tions. We found that, depending upon the initial staring poirdis the generation number increases. Beyond 100 generations,
our ANN converged to local minima about 30% of thehe loci of operating points remain approximately constant,
time, as was evident by comparing the ROC curves of th@monstrating that the NP-GA had converged to a stable
different ANN optimizations. The NP-GA never had a problerget of solutions. It should also be noted that the relatively
with local minima. Fig. 7 also shows the performance dfigh density of the operating points returned by the NP-
the conventional result that resided in a local minimum IGA indicates that the nondominated set of solutions was
the parameter space (dashed line). The NP-GA result déequately sampled.
substantially better at almost all points in ROC space. Although the data described above demonstrate that the

NP-GA converged when training the ANN, we do not know
C. NP-GA Performance whether the final set of solutions represents the best possible

We conducted experiments to analyze the behavior of tfét of solutions (i.e., the Pareto-optimal set). To verify this, one
NP-GA and verify that our choice of NP-GA operating paramtould have to evaluate the performances of all the possible
eter settings was reasonable. Fig. 9 demonstrates the congembinations of parameter values of the ANN, which is not
gence of the nondominated set when the ANN was trainedl,computationally tractable problem with current computer
using the previously described training data and operatitechnology. We can, however, compute this for the linear
parameter settings. Fig. 9(a)—-(d) shows the performancesctissifier because it possesses only three free parameters. The
the nondominated solutions evaluated on the training datashaded region in Fig. 4 shows the operating points achievable
generations 2, 5, 13, and 100, respectively. It can be seen thatall possible parameter settings for the linear classifier.
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Because most of the operating points returned by the NP-GA ; ‘ ‘ ,
lie on the upper left boundary of the shaded region, we can 0@
conclude that, for this example, the NP-GA was successful at o
converging to the Pareto-optimal set. o8k o0 ° -
As was noticed in [19], we observed that the size of f
the Pareto dominant tournamefit,.,,) significantly affected Je
the convergence behavior of the NP-GA. Fig. 10 shows the S
operating points returned by two separate applications of the e
NP-GA to the ANN training. The upper set of solutions,
discussed previously, was obtained with,, = 4. The lower
set of solutions was obtained using the same NP-GA operating %4/
settings, except withgo, = 2. With f4on = 2, the NP-GA F
X
O

Sensitivity

returned a set of solutions that were clearly suboptimal. One
explanation of this result is the following. When a tournament 02
selection scheme is used, there is a nonzero probability that a ~ foo
solution in a given population will not be selected to compete
in any of the tournaments. This can result in a potentially good 0 s ‘ ‘
solution being lost by the NP-GA. The probability of losing a ° o2 * Spocificity o8 !
solution in this way is equal t62L)taem ™ where NV is the fo 10, Effect of e NPGA. A |
pOpliltatlon size. When is I.arge' this probability ConverggsoégﬁNo,.the N?D?tG?Atcdcc))r?/e?ge?jogl\'l:r:"lgaetﬂ(r:glyobetcguse of the Igﬁog (;Ignl:iiation
to e"dom. FOr taom = 2, this corresponds to a probabilitypressure. For the problems studied in this papeg.a, value of four resulted
of 0.135 of losing a solution in any given population. Wheim reliable convergence of the NP-GA. Large valuestgf,, caused the
taom = 4, this probability is reduced to 0.018. By increasingendominated set to fluctuate randomly.
the size of the tournament, we reduce the probability of
losing a potentially good solution which could contribute to The NP-GA exhibits several advantages over conventional
inadequate convergence of the NP-GA. classifier training techniques. One advantage is that the ob-
There are problems, however, with using too large a tournjactive function describing the optimization task is a vector-
ment size. When we used large valuest@f,, (for example, valued function. This eliminates completely the need to ag-
tdom > 20), the NP-GA converged to a solution similar to thagregate the different objectives (sensitivity, specificity) into
achieved forty.m = 4, but subsequently fluctuated about thag single scalar function. Rathea, priori information about
solution as a function of generation number. This instability ipe relative preferences of the objectives can be used post-
a result of having domination tournaments in which multiplgptimization to choose a member of the Pareto-optimal set as
nondominated solutions are forced to compete. When nondotie ultimate solution to the problem.
inated solutions are forced to compete in multiple tournaments,Another advantage is that a set of nondominated solutions
one or more of the members of the nondominated set Wi returned, rather than a single solution. This allows one to
inevitably be lost. (The niche count determines the winner ofsglect the solution (ROC operating point) whose performance
tied tournament.) The observed instability of the nondominatggd most clinically appropriate for the diagnostic task at hand.
set is a result of losing and regaining nondominated solutiorSenventional classifier optimizations can return a series of
When large values ofy.., are used, the value of the nichesolutions in the form of a ROC curve obtained by varying
size(osnare) becomes increasingly important because multiplgertain components af after the classifier has been trained.
tied tournaments may arise. Fof... = 4, we found that the |f the scalar cost function employed is an aggregation of
NP-GA performance was relatively insensitive to the value gknsitivity and specificity, then only one point in ROC space
Oshare- is guaranteed to be optimal. If the scalar cost function is
an aggregation of two different performance measures (such
V. DiscussioN as the sum-of-squares error function for ANN'’s), then no
Genetic algorithm parameters are difficult to determine amwint is guaranteed to be optimal in ROC space. The NP-GA
few methods exist to systematically set the GA parameteciiccumvents this problem by allowing all parametersuirnto
The total number of generations, the number of solutions @ffectively vary in an optimal manner when sweeping out the
each generation, the crossover rate, and the mutation rate WwR@C curve. In this sense, the consistency ROC curve returned
determined experimentally. Various GA parameter combinby the NP-GA, assuming that the optimization is complete, is
tions were tested and the results were compared. We foundmimal at every point. All other possible performances for the
set of parameters for which the results were consistent in th@me classifier and dataset are either equal to or less than the
sense that multiple optimizations gave solutions with simil&OC curve returned by the NP-GA optimization. Training the
performances. If the sets returned by different NP-GA rurtdassifier to operate at a particular operating point and then
were not optimal, one would expect that multiple NP-GA rungarying a subset of the parameters in a predetermined way to
would return sets with either better or poorer performancegenerate the ROC curve does not ensure this.
We also attempted to use variofig,... values and found that As we alluded to earlier, conventional methods of classifier
the NP-GA results were robust with respectot@,.c. optimization can, in fact, produce the Pareto-optimal operat-

[N
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ing points through multiple runs of the scalar optimization ; ‘ ,
procedure with different weighting factors on sensitivity and , o®
specificity (see the Appendix for a more detailed discussion of éj{gﬂ@éﬁ
this). Sensitivity and specificity are, however, discrete counting §0¢
statistics and, hence, are not differentiable functionswof il ﬁﬂ
Conventional gradient-based optimization methods, such as
backpropagation, cannot be employed in this situation. One
is therefore left with running multiple scalar optimizations
to produce the same operating points that were produced
with one single run of the NP-GA. It is also not always
clear how to set the relative weightings to evenly sample
the Pareto-optimal set using a scalar optimization technique.
Another option would be to run multiple optimizations, using
a conventional cost function such as the sum-of-squares cost ,|
function with different weightings on the two objectives. No
point, however, is guaranteed to be a member of the Pareto-
optimal set if this type of error function is employed. By ‘ ‘ ‘ ‘
using an NP-GA to train pattern classifiers, we are directly 0 02 04 08 08 !
addressing the multiobjective nature of classification problem. 1-Spocficity

If the density functions of the normal and abnormal classegy. 11. A comparison of the solutions returned by the NP-GA and the
(fn(f) and fa(f)' respectively) are known, then the ROGolutions returned by 20 scalar optimizations employing a weighted sum
curve that is produced using the likelinood ralif() = Cfsensity and specity as i scalar cost fnction, The o mehocs
fa(@)/ fr(&) or any monotonic transformation of the like-scalar optimizations tended to clump together in certain areas, whereas the
lihood ratio as the decision variable will be the optimalP-GA solutions were uniformly distributed in ROC space. Note that only
ROC curve [20], [31]. It will exhibit the best classification® °f the 20 scalar solutions were distinct.

performances that can be achieved with the given densitly ) o .
functions. It is often very difficult with limited datasets to¢f@ss preferences in the aggregated objective function. The

estimate the density functions of the two classes of data. THiflity of the NP-GA to circumvent this difficulty is very
many classifiers, including those used in this paper, make fractive. Because the no_ndomlnat_eq set of solutions will be
attempt to accurately estimate these distributions. The optinf&lig€r, care must be taken in determining the NP-GA parameter
ROC curves that have been discussed in this work are qu?r@tlngs to ensure that the Pareto-optimal set is adequately
different. Within the limitations of the classifier employed anga@mpled. . _ _
the dataset used for training, the ROC curves produced usind-0mMPplexity and overtraining are issues of great importance
the NP-GA are optimal, i.e., there is no better ROC curve thist diagnostic classifier research and, in particular, in ANN
can be produced with the same training data and classifierf@ining [28], [32]. In practice, there is typically a limited
There are sacrifices that are made when the NP-GA ggount of training data available, and some sort of regu-
used for classifier optimization. GA’s are population-baséﬁrizaltion is imposed during the classifier training to ensure
stochastic optimization algorithms. Thus, they are typicalf@t it performs well on other (unknown) data sets. It is
more time consuming than are deterministic algorithms. THE!I known that large ANN weights correspond to complex
time to optimize the linear classifier on a 400-MHz Pentiuf@€Paration functions [28], [32], which may be indicative of
Il system was on the order of 3 min. The time to Optimizgvertralnlng. To avoid this, we hgve imposed Ilmltatlons on
the ANN on this system was about 20 min. In fact, for verge magnitudes of the ANN weights when using the NP-
complex systems, an NP-GA optimization may be impractic A to detgrmme the weight values. M_ore systematic methods
with current computer technology. For ANN’s with a large regularizing the NP-GA-based training may be possible,
number of inputs and hidden nodes, the NP-GA may not pewever. One. su'ch methqd is to add a third compoqent to
suitable for training with current computer technology, becaul®® Vvector objective function that measures complexity. In
of the large number of parameters. In these situations, thiS Way, one can maximize the sensitivity and specificity
techniques for sweeping out ANN ROC curves proposed ile minimizing the complexny of the (_:Iassmer.. I?ependmg
Woods and Bowyer [23] may be better suited. The NP-GAN the amount and quality of the available training data, a

however, can readily be made to run in parallel, which wouf@®ndominated solution returned by the NP-GA can be chosen
substantially decrease the execution time. such that the classifier performance and generalizability of

This paper has dealt with binary classifiers. It is oftel{1® result are appropriate for the classification task. We are
important, however, to classify observations into more th&gyirrently investigating this approach to classifier training.

two classes (benign, malignant, and normal, for example).
For a three-class system, aggregating the multiple objective
functions into a single scalar function suffers from the sameWe have studied the use of a niched Pareto GA in train-
problems as the two-class problem, but to a greater degrimy two popular diagnostic classifiers. Unlike conventional
Here, it is even more difficult to adequately incorporate theassifier training techniques that formulate the problem as

o
fe2]

Co
@OOC

O NP-GA
x Scalar GA

Sensitivity

o
IS

VI. CONCLUSION
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the solution to a scalar optimization, the NP-GA explicitlwith A varying between zero and one. We implemented a
addresses the multiobjective nature of the training task. It hesalar GA, using the same GA parameters and parameter
been demonstrated that the multiobjective approach removestrictions as imposed on the NP-GA to optimize (A2).
the ambiguity associated with defining a scalar measure Ad described above, the solutions to both of these prob-
classifier performance and that it returns a set of optimgms should be Pareto-optimal in ROC space assuming the
solutions that are equivalent in the absence of any informatioptimizations are complete. Fig. 11 compares the NP-GA
regarding the preference of the objectives (sensitivity, spesblutions and the solution achieved through multiple runs of
ficity). The performances of these solutions can be interpretadscalar optimization with varying.. The points returned

as operating points on an optimal ROC curve, describing thg the multiple scalar optimizations are similar to certain
limiting tradeoffs between sensitivity and specificity that arpoints returned by the NP-GA. Note that the multiple scalar
achievable by that classifier, given the available training dataptimized solutions are clumped together in certain areas of
The task of classifier optimization and ROC curve generatithe ROC space. It is unknowm-priori, how to vary A to

are combined into a single task. It was demonstrated thatenly sample the Pareto-front, whereas the NP-GA employs
constructing the ROC curve in this way may result in a bettaiching to ensure an even sampling of the Pareto-front or
ROC curve than is produced by conventional methods of ROGptimal ROC curve. One also cannot employ gradient-based
curve generation. The NP-GA optimization typically requiretechniques to optimize discrete performance measures such
more computation time than do conventional nonstochastis sensitivity and specificity. Because of this, we performed
optimization methods, which may limit its application t®20 separate stochastic scalar optimizations to get the 20
certain problems. The advantages of the NP-GA approachR@C operating points. On the other hand, a more complete
classifier training become more pronounced when the numisampling of the ROC curve was obtained by a single run
of classes to be classified increases beyond two. of the NP-GA, which required approximately the same CPU
time as one run of the scalar optimizer. Thus, despite the
theoretical equivalence of the two methods, there are practical

advantages to performing a single multiobjective optimization
In this work, we have investigated the use of a multiobje@ver multiple scalar optimizations.

tive optimization algorithm to train diagnostic classifiers and

generate ROC curves. In fact, scalar optimization methods can ACKNOWLEDGMENT
theoretically arrive at the same ROC curves as a multiobjec-
tive optimization. Consider the following scalar optimizatio
problem:
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