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Constraint handling improvements for multiobjective genetic
algorithms

A. Kurpati, S. Azarm and J. Wu

Abstract Four constraint handling improvements for
Multi-Objective Genetic Algorithms (MOGA) are pro-
posed. These improvements are made in the fitness as-
signment stage of a MOGA and are all based upon
a “Constraint-First-Objective-Next” model. Two multi-
objective design optimization examples, i.e. a speed re-
ducer design and the design of a fleet of ships, are used
to demonstrate the improvements. For both examples,
it is shown that the proposed constraint handling tech-
niques significantly improve the performance of a baseline
MOGA.
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1
Introduction

Real world engineering design problems have multiple ob-
jectives and constraints (Eschenauer et al. 1990). Often,
the objectives for such problems are at least partly con-
flicting and the designer wants to optimize a design based
on all such objectives simultaneously. In such a multiob-
jective design optimization problem, there is no single op-
timum solution to the problem. Instead, the designer ob-
tains a set of solutions called Pareto solutions. Amongst
these Pareto solutions, it is not possible to distinguish
which solution is “better” over the rest of the solutions.
This is because of the trade-offs that exist between var-
ious design objectives. Indeed, for any two Pareto solu-
tions, if one solution is “better” with respect to a design
objective, then it is “worse” with respect to at least one
other objective. That is the reason why Pareto solutions
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are also called noninferior or nondominated or trade-off
solutions.

In a multiobjective optimization problem, the design
variables may be comprised of a mix of continuous and
discrete variables. Traditionally, such problems are solved
by first converting them to a series of single objective
problems. Unfortunately, gradient-based optimization
techniques such as DFP, BFGS, among others (Papalam-
bros and Wilde 1988), are not applicable to these prob-
lems with such mixed variables. Stochastic techniques
such as Genetic Algorithms (or GAs) (Holland 1975),
simulated annealing (Van Laarhoven 1987) and tabu
search (Glover and Laguna 1997) are capable of solv-
ing single objective optimization problems with mixed
variables. These methods do not require computation of
the derivatives to guide the optimization process. More
recently, methods such as Multi-Objective Genetic Algo-
rithms (or MOGAs) (Fonseca and Fleming 1993) have
been developed that are capable of generating a Pareto
solution set in a single run of the GA (as the optimizer)
as opposed to solving a series of single objective optimiza-
tion problems.

GAs, and thus MOGAs are essentially unconstrained
optimization techniques. Hence, the way that the con-
straints are handled in GAs or MOGAs becomes import-
ant. A survey of the various constraint handling schemes
for evolutionary algorithms can be found in the paper by
Coello Coello (1999b). The most common way of hand-
ling constraints in evolutionary algorithms has been with
the use of a penalty method, as shown in (1). The idea is
to alter the fitness value of an individual by a penalty if it
violates any of the constraints (Goldberg 1989)

fitnessi = fi(x)+Qi , (1)

where the quantity fitnessi refers to the fitness of the
i-th individual, fi(x) is the objective function value
(to be minimized) of the i-th individual, and Qi is
a penalty function due to a constraint violation for the
i-th individual.

Many approaches based on the penalty method exist
for constraint handling in evolutionary algorithms (e.g.
Homaifar et al. 1994; Joines and Houck 1994;Michalewicz
and Attia 1994). Some methods define the penalty func-
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tion based on the number of constraints that are vio-
lated (Kuri and Quezada 1998). Others penalize the fit-
ness function if the individual represents an infeasible
point, without taking into account either the distance
of the point from the boundary of the feasible region or
the number of constraints that are violated (Narayanan
and Azarm 1999). Although the use of a penalty method
has been somewhat successful, the definition of a good
penalty function is critical to the search capabilities of
MOGAs. The main drawback of current approaches is
a potentially large number of parameters that need to
be defined and sensitivity of the method to these param-
eters. For instance, in the approach by Homaifar et al.
(1994), the user has to define penalties according to the
levels of violation for each constraint. This would im-
ply that for problem with many constraints, the user has
to define a large number of penalty parameters, which
can become cumbersome. Richardson et al. (1989) ob-
serve that for a problem with a few constraints and a few
feasible solutions, penalties that are solely functions of
the number of violated constraints are not likely to pro-
duce any solutions. Some of these approaches are problem
dependent. Almost all reported approaches assume that
the fitness of an individual is the penalized raw objective
function value. Scaling of the objective and constraint
functions so that they have comparable values is not con-
sidered in these approaches to enhance the search capa-
bilities of GAs. Most of the approaches either take into
consideration the distance from the feasible region or the
number of violated constraints. Both factors however can
affect the performance of the GA. Coello Coello (1999b)
proposes a technique that takes into account both of these
factors, but the method can become cumbersome since
it requires working with two populations of individuals.
Better constraint handling schemes should enable the de-
signer to obtain better solutions faster and characterize
the Pareto frontier better. Such solutions also would give
the designer a better idea of the design choices. Therefore,
in this paper, several new constraint handling techniques
specifically for MOGAs are proposed.

The rest of the paper is organized as follows. In Sect. 2,
some basic concepts in multiobjective optimization are
briefly reviewed to make the paper self-contained. In
Sect. 3, an overview of different multiobjective GA-based
optimization approaches, particularly MOGAs, is given.
Four new constraint handling techniques which can be
used in MOGAs are introduced in Sect. 4. Two engin-
eering design examples are provided in Sect. 5 to demon-
strate applications of the proposed constraint handling
techniques. Finally, the paper is concluded with the re-
marks in Sect. 6.

2
Multiobjective optimization: basic concepts

A general constrained multiobjective optimization prob-
lem can be defined as in (2)

minimize f(x) = {f1(x), . . . , fi(x), . . . , fm(x)}

subject to x ∈D

D = {x : gj(x)≤ 0 ,

j = 1, . . . , J , hk(x) = 0 , k = 1, . . . ,K} , (2)

where x is an n×1 design variable vector, f(x) is anm×1
vector of design objectives that are at least partly con-
flicting, is the j-th inequality constraint and is the k-th
equality constraint. The set of design vectors that satis-
fies all equality and inequality constraints constitutes the
feasible domainD.

Mathematically, a design solution x∗ ∈D is said to
be Pareto optimal if there does not exist another solu-
tion x ∈D such that fi(x) ≤ fi(x

∗) for all i = 1, . . . ,m
with strict inequality for at least one i. Any other feasible
solution x ∈D with fi(x

∗) ≤ fi(x) for all i = 1, . . . ,m,
is an inferior solution. If each of the objective func-
tions in (2) is individually minimized subject to the con-
straints defining the feasible domain D, then the compo-
nents of an ideal vector (or an ideal point) {f∗i , . . . f

∗
m}

are obtained. The ideal point is often used as a refer-
ence point and is the best solution that can be achieved.
However, it is extremely unlikely that any optimized so-
lution for (2) achieves an ideal point. In a minimiza-
tion problem of (2), the ideal point provides a lower
bound of the Pareto optimal set. In contrast, an upper
bound of the Pareto set defines the components of a nadir
point . The nadir point is given by {fi∗, . . . , f∗m}. A good
(bad) value for the i-th objective, i.e. fgood (Fbad), is
an estimate of the i-th component of the ideal (nadir)
point, f∗i (fi∗).

It is common practice to scale the objective functions
using fgood and fbad using (3), so that all objectives are
of the same order of magnitude and also convert the prob-
lem to a minimization type

fscaled =
(f −fgood)

(fbad−fgood)
. (3)

This is because, prior to the scaling of the objectives using
(3), if an objective is to be maximized (minimized), then
fgood would be greater (smaller) than fbad. Then, the
scaled objective function values (fscaled) lie in a range of
[0,1], and the smaller the value of the scaled objective
function, the better the solution is.

3
Multi-Objective Genetic Algorithm: MOGA

As stated earlier, when discreteness is involved in the
variables of multiobjective optimization problems, GA-
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based optimization approaches can be used to obtain
a discrete representation of the Pareto solutions. The idea
behind these techniques is to exploit the fact that GAs
work with a population of candidate solutions and this
population should be evolved to find as many Pareto so-
lutions as possible rather than just one solution. There
have been different approaches to incorporate multiple
objectives into GAs, such as Vector Evaluated Genetic
Algorithm or VEGA (Schaffer 1985), Nondominated
Sorting Genetic Algorithm or NSGA (Srinivas and Deb
1994), Multi-Objective Genetic Algorithm or MOGA
(Fonseca and Fleming 1993), among others. Coello Coello
(1999a) gives a comprehensive survey of the various
techniques for multiobjective optimization based evolu-
tionary methods. Some methods (like VEGA) are non-
Pareto based while others such as NSGA and MOGA are
Pareto based. Narayanan and Azarm (1999) made some
improvements to the MOGA proposed by Fonseca and
Fleming (1993).

Figure 1 gives an overview of the MOGA by Nara-
yanan and Azarm (1999). The algorithm initiates in the
same way as in a conventional GA, with the generation
of an initial population. For each generation, the dom-
inant value of an individual or point in the population
is calculated as follows. For a set of points in the objec-
tive space, P = (p1, . . . p

−
np), the dominant value of a point

pk (pk ∈ P ) is defined as the number of all other points
in the set P that dominate pk. For example, if n points
in the set P dominate the point pk, then the dominant
value of the point pk is quantified as n. For the initial
population, the individuals with zero dominant value are
identified. These individuals are called the noninferior
individuals. Note that, while these individuals are non-
inferior for the current population, they are most likely
non-Pareto for the problem in an absolute sense. These
noninferior individuals are given the highest rank in the
current population. With the highest probability, these
noninferior individuals will become parents to produce
offspring, and then the process is repeated. As such, the
population is gradually improved as it approaches the fi-
nal population and the corresponding Pareto set for the
problem.

Fig. 1 Graphical illustration of MOGA

4
Constraint handling improvements for MOGA

In this section, some improvements to the way constraints
are handled in a MOGA, over and beyond the methods
in the literature, are discussed. The proposed improve-
ments are used during the fitness assignment stage of
the MOGA. Each proposed improvement is given an
acronym. For instance, CH-NA represents the baseline
constraint handling approach by Narayanan and Azarm
(1999). CH-I1 stands for the proposed constraint hand-
ling improvement 1, and so on.

4.1
Assumptions

The proposed improvements are based on the guidelines
obtained from numerical studies by previous researchers
(Michalewicz and Attia 1994; Coello Coello 1999b) and
are based on the following assumptions.

(i) In a given population, feasible solutions are pre-
ferred over infeasible solutions, i.e. feasible solutions
should have a better rank than the infeasible ones.

(ii) The amount of infeasibility (or the extent of con-
straint violation) is an important piece of informa-
tion and should not be ignored while handling con-
straints.

(iii) The number of violated constraints is also an im-
portant piece of information and should be taken
into consideration while handling constraints.

4.2
First improvement: CH-I1

All of the proposed improvements are over and beyond
the constraint handling approach of CH-NA that was re-
ported in a MOGA implementation by Narayanan and
Azarm (1999).

In CH-NA, constraints were handled in the fitness
assignment stage. The following procedure was used in
CH-NA to assign fitness to various individuals in a popu-
lation.

Step 1. Evaluate the objective functions for every indi-
vidual.

Step 2. Identify the noninferior individuals in the cur-
rent population.

Step 3. Assign a low (bad) fitness value to all inferior in-
dividuals.

Step 4. Evaluate the constraints for all noninferior indi-
viduals.

Step 5. Assign a high (good) fitness value for feasible
noninferior individuals.

Step 6. Assign a low (bad) fitness value for infeasible
noninferior individuals.
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This approach would reduce the computation cost in-
volved, if the evaluation of constraints is computationally
expensive and conducted separately from the evaluation
of objectives [as shown in the (f)(g) model of Fig. 2]. This
is because the constraints are not evaluated for all indi-
viduals in the population. Essentially, this approach says
“Objectives FirstConstraintsNext” and it is referred to
as the OFCN model hereafter in the paper.

Fig. 2 Order of calculations of objective and constraint func-
tions in two different simulation models

However, there are many real-world problems for
which the computation cost involved in the evaluation of
the objectives is the same as the evaluation of both ob-
jectives and constraints [i.e. a (f ,g) model]. As shown in
Fig. 2, in a (f ,g) model, typically, the design objectives
and constraints are computed by running one or more
simulations. In contrast, in a (f)(g) model, one or more
simulations are run to evaluate the design objectives, fol-
lowed by one or more simulation runs to evaluate the
constraints.

If the evaluation of the objectives and constraints fol-
lows the (f ,g) model, then the evaluation of the con-
straints for every individual in the population does not
add to the computational cost. This fact has been ex-
ploited in all of the proposed improvements. In the first
improvement, CH-I1, the following procedure is used to
handle constraints during the fitness assignment stage of
the MOGA.

Step 1. Evaluate the constraints for every individual.
Step 2. Identify feasible and infeasible individuals in the

current population.
Step 3. Assign a high (i.e. bad) rank to all infeasible in-

dividuals (i.e. rank, r, is equal to: “0.95× popu-
lation size”).

Step 4. Assign a moderate rank to all feasible individuals
(i.e. r is equal to: “0.5× population size”).

Step 5. Evaluate the objective function for all feasible in-
dividuals.

Step 6. Identify the noninferior individuals amongst
feasible individuals.

Step 7. Assign a low (i.e. good) rank to feasible noninfe-
rior individuals (i.e. r is equal to: 1).

Step 8. Obtain fitness values for all individuals using (4)

fitnessi = Cmax− (Cmax−Cmin) (r−1)/(M−1),
(4)

whereCmax = 1.2;Cmin = 0.8; r is the rank of the
individual;M = population size.

The 8-step procedure listed above is based on the as-
sumption (i) of Sect. 4.1. Essentially, the proposed ap-
proach says “Constraints First Objectives Next” and it
is referred to as the CFON model hereafter in this pa-
per. A constraint handling approach based upon CFON
should be more robust than one based upon OFCN, as
explained next.

CH-I1 would identify the good solutions irrespective
of how the points are distributed in the objective space.
This is explained with the aid of Fig. 3 which shows the
distribution of individuals for a population in the ob-
jective space. The true Pareto frontier (which a MOGA
seeks to detect) is shown with a dotted line in Fig. 3.
Figure 3a shows the individuals that are identified as non-
inferior (by shaded spots) in the current population based

Fig. 3 (a) OFCN approach, and (b) CFON approach
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on the OFCN model. Of course, the lone infeasible in-
dividual lying on one side of the true Pareto frontier
would get a bad rank upon the evaluation of constraints.
But, only three individuals get a good rank based on the
OFCN model. All other individuals are treated equally
“bad”. In contrast, for the same population, Fig. 3b shows
the individuals identified as noninferior using the CFON
model as prescribed in this paper. Since feasibility is con-
sidered first, the CFON approach finds a better repre-
sentation (more number of points) of the true Pareto
frontier.

4.3
Second improvement: CH-I2

The second improvement, CH-I2, incorporates the as-
sumption (ii) of Sect. 4.1 in addition to assumption (i).
As a result, the amount of infeasibility is taken into ac-
count when constraints are handled. CH-I2 would reduce
the bad fitness values of infeasible individuals in a given
population by a quantity called: factor1 (see below), de-
pending on the extent of constraint violation. In addition
to the eight steps in CH-I1, the following step is per-
formed in CH-I2.

Step 9. Ignore steps 3 and 8 in Sect. 4.2 when calculating
the fitness of all infeasible individuals, instead,
obtain the fitness value of every infeasible indi-
vidual using (5)

fitnessi = [Cmax− (Cmax−Cmin) (r−1)/(M−1)]−

factor1 , (5)

where r = 0.8M and

factor1 = CF1×




[
J∑
j=1
max(gj,i(x), 0)+

K∑
k=1
|hk,i(x)|

]



 M∑
i=1

J∑
j=1

max(gj,i(x), 0)+
M∑
i=1

K∑
k=1

|hk,i(x)|


 /M






,

(6)

where gj,i is the j-th inequality constraint value
for the i-th individual, and hk,i is the k-th equal-
ity constraint value for the i-th individual. The
quantityCF1 is a correction factor with its value
prescribed to be between 0.0005 to 0.015. The
other parameters are defined right after (4).

In formulating (6), it is assumed that all constraints
are scaled so that their values are of an order of mag-
nitude of 1. For instance a constraint such as: x1x2 −
2800≤ 0 can be scaled to the form (x1x2/2800 − 1≤ 0).
If the constraints are not scaled, then different constraints
would be of different orders of magnitude, and it would

not be appropriate to sum up the violations. As shown
in (6), the quantity: factor1 , is computed with respect to
the other individuals of the population. It is the ratio of
the sum of constraint violations for the individual under
consideration to the average constraint violation in the
population, multiplied by a factor CF1.

4.4
Third improvement: CH-I3

In the third improvement, CH-I3, a strategy that takes
both assumptions (iii) and (i) of Sect. 4.1 in the constraint
handling is used. Instead of taking the amount of the con-
straint violation into account, CH-I3 makes use of the
number of violated constraints. Again, in addition to the
eight steps in CH-I1, the following step is performed in
CH-I3.

Step 9. Ignore steps 3 and 8 in Sect. 4.2 when calculat-
ing the fitness of all the infeasible individuals,
instead, obtain the fitness value of every infeasi-
ble individual using (7)

fitnessi =
[
Cmax− (Cmax−Cmin) (r−1)/(M −1)

]]
−

factor2 , (7)

where

factor2 = CF2




 J∑
j=1

δj,i+

K∑
k=1

δk,i


/(J+K)


 ,
(8)

δj,i (or δk,i) = 1 if gj (or hk) is violated for the
i-th individual, δj,i (or δk,i) = 0 otherwise.
The quantity CF2 is a correction factor whose
value is prescribed to be between 0.0005 to 0.015.
The other parameters are defined right after (4).

In (7) and (8), the quantity: factor2 , penalizes the
infeasible individuals depending on the number of con-
straints that the individual violates. The value of factor2 ,
unlike factor1 , does not depend on the other individuals
in the population.

4.5
Fourth (hybrid) improvement: CH-I4

In this section, a new constraint handling technique, CH-
I4, that seeks to combine the two independent factors,
factor1 and factor2 described in Sect. 4.3 and 4.4, using
a weighting technique is introduced. This technique takes
all three assumptions in Sect. 4.1 into account. Again, in
addition to the eight steps in CH-I1, the following step
is performed in CH-I4. Step 9. Ignore step 3 and 8 in
Sect. 4.2 when calculating the fitness of all the infeasible



209

solutions, instead, obtain the fitness value of every infea-
sible individual using (9)

fitnessi =
[
Cmax− (Cmax−Cmin) (r−1)/(M−1)

]]
−

(w1× factor1+w2× factor2) , (9)

where r = 0.8M ; and the quantities w1 and w2 are the
weighting factors that are determined with the following
steps. (In the following: “a� b” means “a is preferred to
b”.)

(i) Compute factor1avg, the average of factor1 for all
infeasible individuals in the population.

(ii) Compute factor2avg, the average of factor2 for all
infeasible individuals in the population.

(iii) For each individual in the population, compare fac-
tor1 with factor1avg and factor2 with factor2avg.
Case 1. If (factor1 > factor1avg) and

(factor2 < factor2avg), then (factor1 � factor2 ).
Set w1 = 0.75 and w2 = 0.25.

Case 2. If (factor1< factor1avg) and
(factor2> factor2avg), then (factor1≺ factor2).
Set w1 = 0.25 and w2 = 0.75.

Case 3. For all other cases, both factor1 and factor2
are considered equally important.
Set w1 = 0.50 and w2 = 0.50.

5
Examples

The above-mentioned constraint handling improvements
are demonstrated in this section with two engineering de-
sign examples: speed reducer design and design of a fleet
of ships. For both examples, the constraint handling tech-
niques (i.e. CH-NA, and CH-I1 to CH-I4) are imple-
mented in a MOGA (Narayanan and Azarm 1999).

5.1
Speed reducer design

This example was originally formulated by Golinski
(1970) as a single-objective optimization problem. Here,
the problem has been converted into a two-objective
optimization problem (following Azarm et al. 1989 for
a three-objective formulation). The example represents
the design of a simple gear-box, as shown in Fig. 4, that
might be used in a light airplane between the engine and
propeller.

The mathematical formulation, (10), of the problem is
now described. The seven design variables in the formula-
tion are: gear face width (x1), teeth module (x2), number
of teeth of pinion (x3 integer variable), distance between
bearings 1 (x4), distance between bearings 2 (x5), diam-
eter of shaft 1 (x6), and diameter of shaft 2 (x7). The first
design objective, f1, is to minimize the volume. The sec-
ond objective, f2, is to minimize the stress in one of the

Fig. 4 A speed reducer

two gear shafts. The design is subject to a number of con-
straints imposed by gear and shaft design practices. An
upper and lower limit is imposed on each of the seven de-
sign variables. There are 11 other inequality constraints
(of which one is a constraint imposed on the first objec-
tive), as follows: g1 is an upper bound of the bending
stress of the gear tooth; g2: upper bound of the contact
stress of the gear tooth; g3, g4 are upper bounds of the
transverse deflection of the shafts; g5-g7 are dimensional
restrictions based on space and/or experience; g8, g9 are
design requirements on the shaft based on experience;
and g10, g11 are constraints on stress in the gear shafts.
The optimization formulation is

minimize fweight = f1 =

0.7854x1x
2
2(10x

2
3/3+14.933x3−43.0934)−

1.508x1(x
2
6 +x2

7)+7.477(x3
6+x3

7)+0.7854(x4x
2
6 +x5x

2
7) ,

minimize fstress = f2 =

√
(745x4/x2x3)2 +1.69×107

0.1x3
6

subject to

g1 :
1

(x1x2
2x3)

−
1

27
≤ 0 , g2 :

1

(x1x2
2x

2
3)
−

1

397.5
≤ 0 ,

g3 :
x3

4

(x2x3x
4
6)
−

1

1.93
≤ 0 , g4 :

x3
5

(x2x3x
4
7)
−

1

1.93
≤ 0 ,

g5 : x2x3−40≤ 0 , g6 :
x1

x2
−12≤ 0 ,

g7 : 5−
x1

x2
≤ 0 , g8 : 1.9−x4+1.5x6 ≤ 0 ,

g9 : 1.9−x5+1.1x7 ≤ 0 , g10 : f1(x)≤ 1300 ,

g11 :

√
(745x5/x2x3)2 +1.575×108

0.1x3
7

≤ 1100 . (10)
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(a) (b)

(d)

(e)

(c)

Fig. 5 Speed reducer’s Pareto solutions for a MOGA with (a) CH-NA, and with the improvements: (b) CH-I1, (c) CH-I2,
(d) CH-I3, and (e) CH-I4

The lower and upper limits on the seven variables are

g12,13; 2.6≤ x1 ≤ 3.6 , g14,15 : 0.7≤ x2 ≤ 0.8 ,

g16,17; 17≤ x3 ≤ 28 , g18,19 : 7.3≤ x4 ≤ 8.3 ,

g20,21; 7.3≤ x5 ≤ 8.3 , g22,23 : 2.9≤ x6 ≤ 3.9 ,

g24,25; 5.0≤ x7 ≤ 5.5 .

The Pareto solutions obtained using the five con-
straint handling approaches, i.e. the baseline approach,
CH-NA, and the four proposed improvements, CH-I1 to

CH-I4 described in Sect. 4, are shown in Fig. 5. From the
results shown in Fig. 5 and Table 1, one can see that all of
the proposed constraint handling improvements, i.e. CH-
I1 to CH-I4, have out-performed the baseline approach of
CH-NA by Narayanan and Azarm (1999) in terms of both

Table 1 Speed reducer computational cost

Function calls per Pareto point

CH-NA CH-I1 CH-I2 CH-I3 CH-I4

305 210 165 174 152
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the computional cost (i.e. function calls per Pareto point)
and closeness of the solutions to the ideal point. One can
also see from Fig. 5 that the solutions produced by CH-I4
are more uniformly distributed.

5.2
Design of a fleet of ships

In this example, a fleet of ships is designed to carry oil
from one port to another that is located 2900 nautical
miles away. The problem was originally taken from Folk-
ers (1973), but modified with the information taken from
Manning (1956), Rao (1997), Schneekluth (1987). The
objectives are: (i) to minimize the overall cost of building
and operating a fleet of oil tankers, and (ii) to maximize
the cargo capacity of the fleet. The first objective is given
by (11)

cost =N (Chull+Cmachinery+Cfuel) , (11)

In (11), the cost of building the hull, Chull, is propor-
tional to the amount of steel used, Wst, and is given by
Chull =KstWst, where is a constant. This formula is ob-
tained from Schneekluth (1987). The costs of purchasing
machinery and fuel are both proportional to the engine
power. Hence, from the admiralty formula (Folkers 1973),
Cmachinery and Cfuel are obtained.

The second objective is given by (12)

capacity =N

(
DwtV

R
−
FV 3Dwt2/3

R

)
UW . (12)

There are nine design variables. They are: (i) the num-
ber of ships in the fleet, N , (ii) the length of each ship,
L, (ii) breadth, B, (iv) depth, D, (v) draft, T , (vi) dead-
weight, Dwt, (vii) displacement, Z, (viii) speed, V , and
(ix) utilization factor, U . The constraints are categorized
into two types. Type 1: operational requirements which
are limits on the size of the ship and are placed due to
factors like port facilities, canal width, depth, etc. The
constraint g1 represents the fact that the time of voy-
age at sea must be less than the total operating time.
Here,R= range,O = loading rate, V = speed of ship and
U = utilization factor. Type 2: ship-building constraints
are imposed because of purely engineering considerations.
The constraint g2 is the Archimedes’ principle. The con-
straint g3 has to do with the shape of the ship and its
speed. The “finer” the shape is, the faster it is. The ship
should have the ability to return to equilibrium after heel-
ing. This is specified by g4. The constraint g5 represents
safety for the deck immersion. The ship’s speed, char-
acterized by the Froude number, is set within limits in
constraints g6 and g7. The ship should have a minimum
length to depth ratio to reduce resistance and maintain
stability. The constraints g12 and g13 put limits on that.
The ratios L/B, B/T , L/D, T/D and Cb have upper and
lower bounds on their values to prevent an unrealistic de-
sign from being generated.

Mathematically, the formulation is shown in (13)

minimize cost =N (Chull+Cmachinery+Cfuel) ,

maximize capacity =N

(
DwtV

R
−
FV 3Dwt2/3

R

)
UW

subject to

g1 : U −
RO

RO+2DwtV
≤ 0 ,

g2 : Wst+0.02(V 3Z2/3)0.72+Dwt−Z ≤ 0 ,

g3 :
Dwt

0.3LBD
−1.0≤ 0 ,

g4 : 1.5+0.45D−

B

(
0.08B
√
CmT

+
T (0.9−0.3Cm−0.1Cb)

B

)
≤ 0 ,

g5 : 0.0019L
1.43+T −D ≤ 0 ,

g6 : 0.14−
V
√
gL
≤ 0 , g7 :

V
√
gL
−0.32≤ 0 ,

g8 : 0.6−Cb ≤ 0 , g9 : Cb−0.72≤ 0 ,

g10 : 4−
L

B
≤ 0 , g11 :

L

B
−7≤ 0 ,

g12 : 10−
L

D
≤ 0 , g13 :

L

D
−14≤ 0 ,

g14 : 2−
B

T
≤ 0 , g15 :

B

T
−4≤ 0 ,

g16 : 0.61−
T

D
≤ 0 , g17 :

T

D
−0.87≤ 0 ,

g18 : N ≤ 100 , g19 : 0.6≤ U ≤ 1 ,

g20 : 100≤ L≤ 289.56 , g21 : 10.0≤B ≤ 32.24 ,

g22 : 10.0≤D ≤ 57.91 , g23 : 6.0≤ T ≤ 12.4 ,

g24 : V ≤ 25 , g25 : Dwt ≤ 6×104 ,

g26 : z ≤ 1×105 ,

N, L,B,D, T, V, Z,Dwt, U ≥ 0 , (13)

where F = 5× 10−5, R = 2900, W = 8640, O = 2500,
Cm = 0.98, and g = 9.82.
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(a)

(c)

(b)

(d)

(e)

Fig. 6 Ship design’s Pareto solutions for a MOGAwith (a) CH-NA, and with the improvements: (b) CH-I1, (c) CH-I2, (d) CH-I3,
and (e) CH-I4 Pareto solutions

The results obtained for the ship design problem are
shown in Fig. 6. From the results one can see that again
the suggested constraint handling approaches, CH-I1 to
CH-I4, all have out-performed CH-NA in terms of the

Table 2 Ship design computational cost

Function calls per Pareto point

CH-NA CH-I1 CH-I2 CH-I3 CH-I4

8408 263 637 438 347

computational cost (see Table 2). Also, the proposed ap-
proaches all provide solutions that are closer to the ideal
point than CH-NA. Again, One can also see from Fig. 6
that the solutions produced by CH-I4 are more uniformly
distributed.

6
Conclusions

Four improved constraint handling techniques, i.e. CH-I1
to CH-I4, have been proposed in this paper. A compar-
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ison between the proposed improvements and a baseline
approach, i.e. CH-NA by Narayanan and Azarm (1999),
in terms of function calls, solution distribution and close-
ness to the ideal point, are presented with the help of two
engineering design examples: a speed reducer design and
the design of a fleet of ships.

In both examples, it was observed that all four of the
proposed constraint handling approaches out-performed
CH-NA. As such, it is concluded that the constraint
handling approaches that are based on a “Constraint-
First-Objective-Next” model generally perform better
than those which are based on a “Objective-First-Con-
straint-Next” model. One clear advantage of the pro-
posed constraint handling techniques is that they require
the definition of only a few parameters. The improve-
ments also show that both the amount of infeasibility
and the number of violated constraints are important
and should not be ignored during the constraint handling
process.
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