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Abstract. We apply the NSGA-II algorithm and its controlled elitist
version NSGA-IIc for the intensity modulated beam radiotherapy dose
optimization problem. We compare the performance of the algorithms
with objectives for which deterministic optimization methods provide
global optimal solutions. The number of parameters to be optimized
can be up to a few thousands and the number of objectives varies from
3 to 6. We compare the results with and without supporting solutions.
Optimization with constraints for the target dose variance value provides
clinical acceptable solutions.

1 Introduction

Every year more than one million patients only in the United States will be di-
agnosed with cancer. Half of these will be treated with radiation therapy [1]. In
teletherapy or external radiotherapy beams of penetrating radiation are directed
at the tumor. Along their path through the patient body the beams deposit en-
ergy. Cancer cells have a smaller probability than healthy normal cells to survive
the radiation damage. The dose is the amount of energy deposited per unit of
mass. The physical and biological characteristics of the patient anatomy and of
the source, such as intensity and geometry are used for the calculation of the
dose function, i.e. the absorbed dose as a function of the location in the body. A
physician depending on the patient, the size etc. prescribes the so called desired
dose function. The objectives of dose optimization are to deliver a sufficient high
dose in the cancerous tissue and to protect the surrounding normal tissue (NT)
and sensitive structures from excessive radiation. The problem is to determine a
intensity distribution for the radiation sources so that the resulting dose function
is equal to the desired dose function. The calculation of the dose function for a
given intensity distribution is possible with a high accuracy, whereas the inverse
problem, i.e. the determination of the intensity distribution for a given dose
function is with some exceptions not possible as the inverse dose operator pro-
duces non-physical solutions with negative intensities. Optimization algorithms
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are used to minimize the difference between the desired and the obtained dose
function.

In the past the multiobjective (MO) dose optimization problem has been
transformed into a single objective problem using as a score function the weighted
sum of the individual objective functions. The weights, called also importance
factors, have been determined by trial and error methods. The treatment plan-
ner was required to often repeat the optimization with other importance factors
until some satisfactory solution was obtained. We have recognized that a bet-
ter method is to produce a representative set of solutions and to select out of
these the best possible. Even if methods have been proposed to select automat-
ically optimal weights [2], these require additional importance factors which are
a priori not known. The MO optimization method is important as it provides
the treatment planner information about the trade-off between the objectives
and the limitations of the available solutions. Gradient based optimization al-
gorithms can be used only for variance based objectives [3]. The most used
optimization method is simulated annealing (SA)[4] which can be applied for all
types of objectives but requires a very large number of iterations and it is prac-
tical not possible in clinical relevant time to produce a sufficient large number
of solutions. We used in the past MO evolutionary algorithms for dose optimiza-
tion in brachytherapy [5], which is another radiation based cancer treatment
method. The resulting dose distribution must satisfy similar objectives. In ra-
diotherapy the sources are outside the patients body and the problem is to find
the beam directions and intensity of the beams so that the resulting dose distri-
bution satisfies various criteria. The number of parameters is much larger than
in brachytherapy and it can be as large as 2000 - 10000. Previous methods used
in radiotherapy include SA, iterative approaches and filtered back-projection [6].
We applied successfully gradient based optimization algorithms which are fast
enough to produce a large number of solutions [3]. Problems such as the selec-
tion of beams in two dimensions have been considered with MO evolutionary
algorithms by Haas et al [7],[8]. Various single objective genetic algorithms have
also been used. Knowles et al [9],[10]used EA for training neural networks which
bypass the optimization problem by learning from previous optimization results.

From our experience with deterministic MO algorithms we know that high
quality solutions can only be obtained by analyzing the trade-off information pro-
vided by a representative non-dominated set. We use realistic three-dimensional
cases with a large number of optimization parameters. We study the possibil-
ity of the use of MO evolutionary algorithms for the intensity modulated beam
radiotherapy (IMRT) dose optimization problem.

2 Methods

2.1 Intensity modulated beam radiotherapy

In IMRT each beam is divided in a number of small beamlets (bixels), see Fig.
1. The intensity of each beamlet can individually be adjusted. The geometry
of the planning target volume (PTV) which includes the tumor and a margin
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and organs at risk (OAR) is specified by contours. Tools can be used to select
the number of beams and their directions based on geometric criteria. The dose
at each sampling point in the PTV and other structures is calculated from the
contributions of each beamlet of each beam and its corresponding intensity. A
sparse dose matrix is precalculated and contains the dose value at each sampling
point from each bixel with a unit radiation intensity. The intensity (weights) of
the beamlets have to be determined such that the produced dose distribution is
”optimal”.

Bixels Intensities

OAR

Beam

NT
Beam

PTV

Fig. 1. Principle of IMRT dose optimization. The contours of the body, the PTV and
one OAR are shown. The problem is to determine the intensities of the tiny subdivisions
(bixels) of each beam, so that the resulting dose distribution is optimal.

Radiation oncologist use for the evaluation of the dose distribution quality
a cumulative dose volume histogram (DVH) for each structure ( PTV, NT or
OARs), which displays the fraction of the structure that receives at least a
specified dose level. If the objectives are expressed in terms of DVHs related
values, then the objectives are called DVH based objectives.

2.2 Variance based objectives

The optimization goals can be expressed also with variance based objectives
which are only indirect related to the DVHs values but they are used because
deterministic gradient based optimization algorithms can be applied. The objec-
tive functions are: for the PTV the dose variance fPTV around the prescription
dose Dref , for NT the sum of the squared dose values fNT and for each OAR
the variance fOAR for dose values above a specific critical dose value DOAR

cr .
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Θ(x) is the Heaviside step function. dPTV
j , dNT

j and dOAR
j are the calculated

dose values at the j-th sampling point for the PTV, the NT and each OAR
respectively. NPTV , NNT and NOAR are the corresponding number of sampling
points.

2.3 L-BFGS

We generate a representative set of non-dominated global optimal solutions with
the L-BFGS algorithm [11]. This deterministic gradient based optimization algo-
rithm requires derivatives of the objective function. We produce a representative
set of solutions using a weighted sum f(x) of the M single-objective functions
fj(x), j = 1, . . . ,M . Normalized and uniformly distributed weights wj are taken
from the set of importance vectors W .

f(x) =
M∑

j=1

wjfj(x) (4)

W =
{
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M∑

j=1

wj = 1; wi ∈ [
0
k

,
1
k

, . . . ,
k − 1

k
, 1]

}
(5)

We call k the sampling parameter. L-BFGS is especially suited for high-
dimensional problems as for N parameters it uses indirectly an approximation
of the Hessian matrix using only an order of 5N instead N2 operations. A repre-
sentative set of solutions is generated by repeating the optimization with L-BFGS
each time with a different vector of importance factors from the set W . The
stopping criteria are 300 iterations or a tolerance value of 10−6.

2.4 NSGA-II and NSGA-IIc

For the MO evolutionary optimization we use the non-dominated sorting ge-
netic algorithm NSGA-II [12] and the controlled elitist version NSGA-IIc [13].
The population of these algorithms can be initialized by a specific number of
solutions generated with L-BFGS. We call these solutions supporting solutions
[14],[15]. This is necessary as the number of objectives depending on the number
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of OARs to be considered is in the range 3-6. The calculation of the objective
values requires a significant fraction of the optimization time due to the large
number of sampling points where the dose has to be calculated. It is practical
not possible to allow the algorithm to evolve for thousands of generations. In
clinical practice time is important and a representative set of the Pareto front
has to be found in a few minutes. In order to obtain a sufficient large set of
solutions we archive all non-dominated solutions found during the optimization.
Dominated solutions are removed from this archive. This external archived pop-
ulation is not used in the optimization directly like in the PAES [16] or SPEA
[17] algorithm. We include a comparison of NSGA-II with its controlled elitist
version NSGA-IIc where a lateral diversity is kept by allowing a sufficient num-
ber of individuals to survive in various non-dominated fronts. The distribution
is specified by the geometric parameter G. For the crossover operator we use
simulated binary crossover SBX [18], [19]. This operator produces near parent
solutions with increasing probability as the population evolves. The probability
of generating near parent solutions increases with a parameter, the distribution
index ηc. For mutation we use a similar operator specified by the correspond-
ing index ηm. The mutation and crossover probability used was 0.01 and 0.9
respectively.

3 Results

3.1 Comparison of unconstrained optimization with NSGA-II and
NSGA-IIc

We compare the results from L-BFGS with NSGA-II and NSGA-IIc for two
clinical cases. The first is a brain tumor case, see Fig. 2. We consider only a
two-dimensional dose optimization, i.e. only the dose distribution in a slice is
optimized. Four beams are used and each beam is divided in 22 bixels. The
number of parameters to be optimized is 88. We have five objectives by con-
sidering the PTV, the left and right lobus temporalis, the left eye and the NT,
i.e. the brain as OARs. We use this clinical case to study the dependence of the
evolutionary algorithms results on the population size, number of generations
and other genetic parameters. The second case is a prostate tumor case, see Fig.
3. Again four beams are used. Each beam is divided in 22 ·22 bixels. The number
of parameters for a full three-dimensional optimization is 1936. The dose is cal-
culated at 15000 sampling points. For this case we have with the PTV the NT
and two OARs four objectives. We use this case in order to look at the perfor-
mance of NSGA-II, if the number of parameters is very large. The calculations
were performed using a 933 MHz Intel III Windows NT computer with 512 MB
RAM.

The population size was 200. For the crossover and mutation we set ηc =
ηm = 10. The number of accumulated non-dominated solutions in the archive
obtained by NSGA-IIc as a function of the geometric factor G after 200 genera-
tions is shown in Fig. 4. A maximum at 0.6 is observed which is close to G=0.65
found in [20] for a completely different problem. We use therefore G=0.65 for
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Fig. 2. 3D anatomy of the head tumor case. The PTV and the OARs are shown. The
orientation of the four beams is shown.

Fig. 3. 3D anatomy of the prostate tumor case. The PTV and the two OARs are
shown. The orientation of the four beams is shown together with the intensity profile
of the beams for one selected solution.
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NSGA-IIc. The archived population from NSGA-II and NSGA-IIc without sup-
porting solutions after 1000 generations is shown in Fig. 5. NSGA-IIc covers a
larger part of the Pareto front found by L-BFGS, whereas for NSGA-II stagna-
tion or premature convergence is observed.

The distribution of the archived non-dominated solutions of NSGA-II and
NSGA-IIc with and without support is shown after 200 generations in Fig. 6
for the two out of ten two-dimensional projections of the Pareto front. The
number of supported solutions were 35 (k=3) generated by L-BFGS. Without the
supporting solutions parts of the Pareto front are not accessible even after a few
thousand generations. Even if the supporting solutions improve the performance
of NSGA-II its controlled elitist version is superior in the coverage and number
of accumulated non-dominated solutions.

Fig. 4. Number of archived non-dominated solutions of NSGA-IIc as a function of the
geometric factor G.

The six two-dimensional projections for the prostate tumor case are shown
in Fig. 7. The results of NSGA-II and NSGA-IIc with supporting solutions are
compared with the corresponding 2380 generated L-BFGS solutions. The popu-
lation size was increased to 1000 for this high dimensional problem. The sampling
parameter k = 4 was used with corresponds to 35 supported solutions.

3.2 Constraint optimization with NSGA-II

In IMRT only a part of the Pareto front is of practical interest. The dose variance
in the PTV for clinical acceptable solutions is very small whereas for the OARs
and the NT it can be much larger. It is important to apply constraints for the
value of fPTV .

3.3 Comparison of deterministic and evolutionary optimization
results

We compare the spectrum of solutions (non-dominated set) obtained by a se-
quential application of L-BFGS and constrained optimization with the supported
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Fig. 5. Two examples of two-dimensional projections of the Pareto front of the archived
non-dominated solutions for the five-dimensional dose optimization problem for the
brain case. The solutions of NSGA-II and NSGA-IIc after 1000 generations are shown.
The result of L-BFGS is included. The objectives values shown are the dose variances
in organs at risk.
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Fig. 6. The result as in Fig. 5 but only after 200 generations. The result from NSGA-II
and NSGA-IIc with and without supporting solutions is shown.
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Fig. 7. Example of a the six two-dimensional projections of the four-dimensional Pareto
front for the prostate tumor case. The result from L-BFGS, NSGA-II and NSGA-IIc
with supported solutions.
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NSGA-II algorithm. Our current implementation of NSGA-IIc does not support
constraint optimization. The optimization with NSGA-II is performed with a
population size of 500 and 100 generations. The resulting 2D projections of the
Pareto front using 30 supported L-BFGS solutions is shown in Fig. 8. The result
is compared with the Pareto front obtained by L-BFGS with 815 solutions. The
calculation time for L-BFGS was 3860 s and for NSGA-II 271 s. We perform
a 3D-dimensional dose optimization for the brain tumor with 856 bixels and
nine beams. A display table with a list of objectives and dosimetric values of
all solutions is used for the selection of the best solution. Constraints on these
values can be applied. Solutions that satisfy these constraints are marked and
their corresponding DVHs highlighted.

The spectrum of DVHs of solutions from NSGA-II is shown in Fig. 9 for
the PTV, the left and right eye. The best solution has been selected as the
solution with the smallest product of dose variances for the NT and the eyes.
This solution obtained from the L-BFGS algorithm and NSGA-II is marked in
Fig. 9.

4 Discussion and conclusions

In the past many single-objective optimization methods have been proposed
for the dose optimization problem in radiotherapy. These methods were single-
objective whereas the dose optimization problem is a MO problem. Gradient
based optimization algorithms can be used with variance based objectives but if
other objectives such as radiobiological or DVH based are used then stochastic
algorithms such as SA are not efficient to produce a representative set of solu-
tions. With a support of a small fraction of solutions by deterministic algorithms
or SA the MO algorithm NSGA-IIc is able to produce efficiently a representative
set of non-dominated solutions. The supporting solutions are necessary to guide
a fraction of the population in parts of the objective space which are accessible
only after a very large number of generations with Pareto ranking algorithms.
A similar idea uses the genetic local search algorithm MOGLS [21] which using
a scalarization of the individual objective functions performs a repeated local
search in randomly specified directions. Also the local search hybrid method
used with NSGA-II in [22] increased its performance. The supported solution
approach is applied only at the start of the algorithm and requires a small num-
ber of solutions to be initialized, whereas the local search approach would require
for the high dimensional and MO problem a very large number of function evalu-
ations. The number of supported solutions depends on the number of objectives.
A sampling parameter at least k = 3 is required.

The archiving of non-dominated solutions found is necessary in order to have
a sufficient large set of representative solutions for the large number of objectives.
It additionally allows the population size to be reasonable small and reduces the
optimization time in order to obtain an approximate similar number of solutions
as the archive contains. The number of accumulated solutions in 200 generations
was 15000-20000 for both cases studied so that finally a filter has to be applied
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Fig. 8. Two-dimensional projections of the four-dimensional Pareto front for a brain
tumor case. The result using L-BFGS and NSGA-II with supported solutions and the
constraint fPTV < 2 is shown.
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Fig. 9. Spectrum of DVHs of solutions obtained by NSGA-II for the PTV, the left and
right eye for a brain tumor case. The best selected solution obtained by L-BFGS and
NSGA-II is shown.
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to reduce the number to an acceptable level. The results show that a lateral di-
versity is important to avoid a premature convergence and the controlled elitist
algorithm benefits more from the support. Even without support NSGA-IIc is
able to approach the global Pareto front better than NSGA-II which prematurely
converges. For the problem with 1936 parameters a sufficiently large population
with at least 500-1000 members is required. IMRT requires the use of constraint
optimization with a PTV dose variance value less than 10. The spectrum of the
obtained DVHs shows that we have a true MO optimization problem. NSGA-II
with constraints for the fPTV value produces clinical acceptable solutions even
if the best result from L-BFGS is better. MO dose optimization for IMRT re-
quires only a few minutes, whereas L-BFGS needs more than 10 times more time
to produce a comparable number of solutions. The Pareto front obtained from
NSGA-II is close to the global optimal Pareto front and this distance can possi-
bly be reduced if constrained optimization is applied using NSGA-IIc. We hope
that MO optimization with evolutionary algorithms will be applied in IMRT
where currently only single-objective optimization algorithms are used. MO op-
timization provides not only a satisfactory solution but the best possible. This
reduces the dose in the OARs and in the NT to a minimum possible level.

We want to use MO evolutionary optimization algorithms for inverse planning
in IMRT where the optimal number of beams and their orientation additional
must be found. For readers interested in experimenting with the IMRT dose
optimization problem an extension of the MOMHLIB library [23] used in this
study, together with dosimetric data sets and additional information, is available
at the website: www.mlahanas.de/IMRTOpt.html.
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