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Abstract 

We consider the behavior of the limited memory L-BFGS algorithm as a representative 

constraint-free gradient-based algorithm which is used for multiobjective (MO) dose optimization 

for intensity modulated radiotherapy (IMRT). Using a parameter transformation, the positivity 

constraint problem of negative beam fluences is entirely eliminated: a feature which to date has 

not been fully understood by all investigators.   

We analyze the global convergence properties of L-BFGS by searching for the existence 

and the influence of possible local minima. With a fast simulated annealing algorithm FSA we 

examine whether the L-BFGS solutions are globally Pareto optimal. The three examples used in 

our analysis are a brain tumor, a prostate tumor and a test case with a C-shaped PTV. In one 

percent of the optimizations global convergence is violated. A simple mechanism practically 

eliminates the influence this failure and the obtained solutions are globally optimal. A single-

objective dose optimization requires less than 4 seconds for 5400 parameters and 40000 

sampling points.          

The elimination of the problem of negative beam fluences and the high computational 

speed permits constraint-free gradient-based optimization algorithms to be used for MO dose 

optimization. In this situation, a representative spectrum of possible solutions is obtained which 

contains information such as the trade-off between the objectives and range of dose values. 

Using simple decision making tools the best of all the possible solutions can be chosen.  

We perform MO dose optimization for the three examples and compare the spectra of 

solutions, firstly using recommended critical dose values for the organs at risk and secondly, 

setting these dose values to zero.   
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1. Introduction 

 

The desired dose distribution in radiotherapy cannot always be obtained, due to physical 

limitations and to the existence of trade-offs between the various conflicting optimization 

objectives. We therefore have a MO optimization problem to solve. It is, though, important to 

realize that MO provides a spectrum of possible solutions and not just a single solution.  

The implementation of MO dose optimization in brachytherapy was first described by 

Lahanas et al (1999) and in IMRT by Cotrutz et al (2001) is a new approach of inverse planning. 

Haas et al (1998) used for the first time to our knowledge a MO evolutionary algorithm in 

radiotherapy for optimization of the beam directions in two-dimensions without employing a 

dose optimization. In Haas (1999) the use of MO dose optimization for external beam 

radiotherapy is proposed.  

The trial and error method used by treatment planners, which involves modifying the 

importance factors in order to obtain a satisfactory solution is in MO replaced by the 

determination of a representative set of so-called efficient solutions out of which the solution 

with the smallest compromise on all objectives for the treatment can be obtained. We have a set 

of solutions in which each solution is characterized by a different set of importance factors used 

to generate the solution.  

This off-line or a posteriori approach provides information for all possible dose 

distributions which can be obtained for a given set of objective functions. This information is 

used for the selection of the best solution. The treatment planner is not assumed to have any 

knowledge of what the limitations of dose distributions are that can be obtained or what are the 

ideal importance factors. An a priori MO optimization method was proposed by Yu (1997) which 

assumes that the planner has such knowledge. The treatment planner is assumed to provide 

satisfaction constraints, goals, priorities, importance factors etc. Alternatively, there is the a 

priori approach of Xing et al (1999) where a solution is obtained using ideal dose-volume 

histograms (DVH). A search engine was proposed which determines the set of importance 

factors for which a solution is obtained with DVHs that are as close as possible to the ideal 
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DVHs in terms of a defined metric. Even if the algorithm described by Yu uses some artificial 

intelligence finally the a priori methods provide a single solution for which we do not know its 

optimality, i.e. its relation to all other possible solutions. 

For both methods it is necessary to know the limitations of the single objective 

optimization algorithm which has to be applied many times with different set of importance 

factors.  

We use as decision variables the square root of the beam fluences (weights) Cotrutz et 

al (2001) which eliminate the problem of solutions with negative beam fluences of previous 

algorithms. Previous methods, Mohan et al (1994), have considered modifications of the line 

search algorithms and/or correction mechanisms for the negative weights which cannot be 

avoided. This has had the effect of either reducing the quality and/or increasing the optimization 

time.  

Important for deterministic gradient-based algorithms is the problem of global 

convergence as described for brachytherapy by Lahanas et al 2003 and in radiotherapy by 

Rowbottom et al (2002). It was reported that the results approximately depended on the initial 

value of the beam fluences (Llacer et al 2001). This was attributed either to local minima in 

which the algorithms were trapped, or as the result of corrections applied for the elimination or 

reduction of the number of non-physical solutions with negative beam fluences. One such 

correction method is the truncation to zero of all negative weights found at the end of each 

optimization step. The number of negative weights in some cases can be larger than the 

number of positive weights (Mohan et al. 1994). This approach alters the result which 

consequently may differ significantly from the actual global optimal solution.  

Rowbottom et al (2002) observed local minima using a downhill simplex optimization 

algorithm. For gradient-based optimization algorithms such an analysis has never been 

presented. Llacer et al (2003), although the title of their paper is “Absence of multiple local 

minima…” find that the final score function values sometimes depend on the initial beam 

weights and the case studied. An iterative method was used and correction methods for 

negative fluences were applied.  
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The parameter transformation does not require any correction mechanism, therefore the 

influence of negative weights is eliminated and a constrained free true gradient-based 

optimization algorithm is used for the first time in IMRT dose optimization.  

In comparison to the conjugate gradient algorithm used by Cotrutz et al (2001) we use 

the limited memory algorithm L-BFGS which is a few times faster and requires also less 

memory. We extend the study to three dimensional clinical cases with more than 5000 bixel 

intensities. We include a study of the dependence of the results on the initial value which 

defines the so-called global convergence properties and also the nature of the obtained minima. 

We obtain a representative efficient set using a set of importance factors. We compare the 

results using simulated annealing SA to determine whether the solutions obtained by L-BFGS 

are Pareto global optimal solutions. We study individual objective values to look for the 

presence of possible degenerate states. We use standard dose variances as objectives and not 

normalized scale invariant objectives used by Cotrutz et al.  

Inverse planning in radiotherapy considers the problem of obtaining a solution that 

satisfies as best as possible clinical defined criteria given physical constraints and limitations. In 

principle we have the set all possible fluence distributions that are physical possible, the so-

called fluence space. The set of all possible dose distribution defines the dose space. We want 

to obtain a dose distribution from this set and the corresponding fluence distribution that is as 

close as possible to a desired dose distribution. What part of the dose space is available 

depends also on which optimization algorithm we use and what objectives we consider. MO 

provides a representative set of the dose space available for a given set of objectives.  

We apply such a comparison of the spectra of solutions obtained by MO dose 

optimization for the three examples, firstly using recommended critical dose values for the 

organs at risk (OAR) and secondly, setting these dose values to zero.  
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2. Methods 

 

2.1 Constraint-free gradient-based optimization algorithms 

 

We use the limited memory BFGS algorithm L-BFGS by Liu and Nocedal (1989) described by 

the following algorithm. Let )(xf  be a function twice differentiable and convex and kx  the 

vector of the N optimization parameters, )( kk xgg =  the gradient of f  at kx  and kH  the 

approximation of the inverse Hessian of f  at the kth iteration. 

  Giving a starting point x0 and H0 a positive definitive approximation of the inverse Hessian at x0 

                  For iteration k = 0 until stopping criterion is satisfied   

                         1.  Determine a descent direction )( kk xHp fk ∇−=   

               2. Line search: Choose a step size )(minarg
0

kk px αα
α

+=
>

fk    

                         3. Update kk1k pxx α+=+  

                         4. Update 1k+g  

                         5. Compute Hk+1 by updating Hk 

                         4. k = k+1 

                 End. 

At each iteration step a line search procedure is used to determine the step size for the 

optimizer of the objective function in a chosen direction. The line search algorithm (which should 

really be called a ray search algorithm) finds the exact step size (“exact line”) to the minimum of 

f  along the ray 0, ≥+ αα kk px   or an approximation (“soft line”). L-BFGS uses a backtracking 

line search. For convergence the step size has to be chosen such that a sufficient decrease 

criterion is satisfied, which depends on the local gradient and function value and is specified in 

L-BFGS by the Wolfe conditions, see Liu and Nocedal (1989).  

The difference between the standard BFGS algorithm (Press et al) and L-BFGS is the 

method for the inverse Hessian update in step 5. BFGS requires O(N2) operations for the 
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update whereas L-BFGS requires only 4mN operations to calculate the descent direction 

indirectly from the m last values of kkk xxs −= +1  and  kkk ggy −= +1 .  

L-BFGS uses a set of m values { } 1,...,,, −−= kmkiii ys  and a basic diagonal matrix 

)0(
kH is used for the update using the m pairs. A value of m = 5 is recommended. We say that 

1+kH  is obtained by updating kH using the pairs { }ii ys , . Liu and Nocedal (1989) have found 

that the update can be done very effective using symmetry principles. After the new iterate the 

oldest of the m pairs { }ii ys ,  is replaced by the newest pair. 

The required memory for the m pairs { }ii ys ,  is 2mN+O(N) whereas BFGS requires N2/2 

for the matrix Hk. L-BFGS is very effective for problems with a very large number of parameters 

such as required for IMRT dose optimization. 

We allow L-BFGS to run either until a maximum number of iterations is reached or the 

following criterion using the parameter ε   is fulfilled. 

ε<
∇

),1max(

)(

2

2

k

kf

x

x
 

where kx is the optimal solution at the kth iteration.  

 

2.2 Multiobjective optimization 

 

MO or multicriteria optimization or vector optimization is the problem of determining “A 

vector of decision variables which satisfies constraints and optimizes a vector function whose 

elements represent M objective functions Miettinen (1999).  

We call decision variables xj, j=1,2,...,N for which values are to be chosen in an 

optimization problem. In order to know how ''good'' a certain solution is we need to have some 

criteria for evaluation. These criteria are expressed as computable functions 

)(),...,(),( 21 xxx Mfff  of the decision variables, which are called objective functions. These form 

a vector function f. In general, some of these will be in conflict with others, and some will have 

to be minimized while others are maximized. The multiobjective optimization problem can be 
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now defined as the problem to find the vector x=(x1,x2,...,xN), i.e. solution which optimize the 

vector function f 

The vector function f(x) is a function that maps the set X in the set F that represents all 

possible values of the objective functions. Normally we never have a situation in which all the 

fi(x) values have a optimum in X at a common point x. We therefore have to establish certain 

criteria to determine what would be considered an ’’optimal’’ solution. One interpretation of the 

term optimum in multiobjective optimization is the Pareto optimum.  

A solution x1 dominates a solution x2 if the two following conditions are true: 

1) x1 is no worse than x2 in all objectives, i.e. M1,...,j  )()( 21 =∀≤ xx jj ff   

2) x1 is strictly better than x2 in at least one objective, i.e.   )()( 21 xx jj ff < for at least one 

{ }M,...,1 j∈    

We assume, without loss of generality, that this is a minimization problem. x1 is said to be non-

dominated by x2 or x1 is non-inferior to x2 and x2 is dominated by x1. Among a set of solutions P, 

the non-dominated set of solutions P’ are those that are not dominated by any other member of 

the set P. When the set P is the entire feasible search space then the set P’ is called the global 

Pareto optimal set. If for every member x of a set P there exists no solution in the neighborhood 

of x then the solutions of P form a local Pareto optimal set. The image of the Pareto optimal set 

is called the Pareto front.  

We produce a representative set of solutions by repeating the optimization with L-BFGS 

using a weighted sum fTot(x) of the single objective functions )(xjf , j=1,…,M. Each time a 

different set of importance factors is used from the set W of normalized and uniformly 

distributed vectors of weights. 

∑
=
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We call k  the sampling parameter. For M objectives and a sampling parameter k  we have 







−

−+
1

1

M

kM
 such combinations.   

 
2.3 Decision making  

The two tasks of multiobjective optimization are: 

• Obtaining a representative set of non-dominated solutions.   

• Selecting a solution from this set, i.e. the decision making (DCM) process. 

For single objective optimization methods there is only one optimization result and the only 

decision necessary is whether or not to accept the solution. For MO decision-making tools are 

necessary to filter a single solution from the non-dominated set that matches at best the goals of 

the treatment planner.  

DCM tools are used in this study similar to that developed for the Real-Time HDR 

brachytherapy prostate planning system SWIFTTM (Nucletron B.V., Veenendaal, The 

Netherlands). A display table of a list of values for all solutions of the objectives, DVHs for all 

OARs, the NT and the PTV of each solution and various parameters are of clinical interest. 

Additionally, the extreme dose values are also provided. The entire table for every such quantity 

can then be sorted and solutions can be selected and highlighted by the treatment planner. 

Various DVH constraints can be applied and solutions that do not satisfy the constraints are 

removed from the list. This reduces the number of solutions and simplifies the selection of an 

optimal solution. The DVHs of all selected solutions can be displayed and compared. 

Other DCM tools used are projections of the Pareto front onto a pair of selected 

objectives. For M objectives the number of such projections is 





2

M
.  

The position of selected solutions can be seen in these projections. This helps to identify 

their position in the multidimensional Pareto front and to quantify the degree of correlation 

between the objectives and of the possibilities provided by the non-dominated set.  
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2.4 Variance based optimization objectives 

 

As objective functions we use the PTV dose variance PTVf  around the prescription dose refD , 

for NT the sum of the squared dose values NTf and for each OAR the variance OARf  for dose 

values above a specific critical dose value OAR
critD . 

( )∑
=

−=
PTVN

j
ref

PTV
j

PTV
PTV Dd

N
f

1

21
 

( )∑
=

=
NTN

j

NT
j

NT
NT d

N
f

1

21
 

( )( )∑
=

−−Θ=
OARN

j

OAR
crit

OAR
j

OAR
crit

OAR
j

OAR
OAR DdDd

N
f

1

21
 

)(xΘ  is the Heaviside step function. PTV
jd , NT

jd and OAR
jd  are the calculated dose values at the 

jth sampling point for the PTV, the NT and each OAR respectively. PTVN , NTN  and OARN  are the 

corresponding number of sampling points.  

A Clarkson dose computation model was used. The dose value at each sampling point 

was obtained from the interpolation of tissue phantom ratio (TPR) values and off-center ratio 

(OCR) values. Such values are presented in tables and are derived from percentage depth dose 

and beam profile measurements in water phantom.   

 Quasi-randomly distributed sampling points in the target and in the OARs were used.  
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2.5 Global convergence analysis 

 

Global convergence for an optimization algorithm describes the property of the algorithm which 

states that the result is independent on the initial value. The individual single objective functions 

were determined by running L-BFGS with different starting fluence profiles. The results of the 

optimization runs were stored and the statistical properties such as the average, minimum and 

maximum and one standard deviation (SD) values were calculated for each objective. This 

calculation was repeated depending on the number of bixel (also called beamlet) weights and 

number of objectives for different sets of importance factors. A representative set of the Pareto 

front was sampled in order to determine whether local minima Deasy (1997) or degenerate 

cases exist for some combinations of importance factors.  

We have a degenerate state if the total objective function Totf for a fixed set of importance 

values can be obtained by different values of the individual objective functions, i.e. if two 

solutions a, b exist for which  

  
11

∑∑
==

==
M

i

i
b

i
M

i

i
a

i
Tot fwfwf and for some i

b
i

a ffM ≠⇒∈    ],1[i  

where i
b

i
a ff , are the optimal values for the ith objective found in solution a and b respectively. 

 

2.6 Optimization with simulated annealing 

 

We compare the optimization results of L-BFGS with results obtained by SA as global 

convergence does not guarantee that the solution is globally optimal, i.e. a global minimum is 

obtained. SA in principle can escape from local minima and it is statistically proven that it 

asymptotical converges to the global minimum if a defined annealing schema and a visiting 

probability distribution is used. We use the fast SA algorithm (FSA) Szu and Hartley (1987) with 

a Cauchy visiting probability distribution. 
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The optimization tests were undertaken with a 933 MHz Intel Pentium III PC with 512 MB RAM 

memory.  

 

2.7 Example cases  

Two clinical cases are used: a patient with a brain tumor and a patient with prostate cancer. The 

third example is a phantom case which has been chosen to test the algorithm for a difficult case 

for IMRT. We term this the phantom patient test case. For all examples, a total of nine beams 

were used at angles 40°n, where n=0,…,8. We use the notation recommended by IEC 1993 for 

the specification of angles. 

 

2.7.1 Phantom patient with C-shaped PTV 

 

The phantom geometry consists of a C-shaped PTV with a spherical OAR adjacent to the 

smaller concave periphery of the PTV but not actually within the PTV, see Fig. 1. In IMRT such 

PTV and OAR geometry is difficult to plan.  For this case only a two-dimensional case is 

considered with 567 bixels for the 9 beams. The number of sampling points used in the 

optimization is shown in Table I. 
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Figure 1 A phantom patient with a C-shaped PTV and spherical OAR with the nine beam directions 

shown. 

Object Number of 
Sampling Points 

PTV 2426 
NT 10029 
OAR 1505 

 
Table I. Statistics for the 13965 sampling points used for the C-shaped case. 
 

2.7.2 Brain tumor patient 

The brain tumor case consists of four structures, namely the PTV, the NT and both eyes, see 

Fig. 2. For this case 856 bixels for the 9 beams are considered. The number of sampling points 

used in the optimization is shown in Table II. 

 

Figure 2 The brain tumor patient with the nine beam directions shown. 
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Object Number of Sampling 
Points 

PTV 3162 
NT 20052 
Left eye 3091 
Right eye 3084 

 
Table II. Statistics for the 29389 sampling points used for the brain tumor patient. 
 
 
2.7.3 Prostate cancer patient 

The prostate tumor case consists of six structures, the PTV, NT, bladder, rectum and the two 

femoral heads, see Fig. 3. For the optimization 5464 bixels are used. The number of sampling 

points in each structure is shown in Table III. 

 

Figure 3 The prostate cancer patient with the nine beam directions shown. 

Object Number of 
Sampling Points 

PTV 4852 
NT 20515 
Bladder 3275 
Left femoral head 3360 
Right femoral head 3350 
Rectum 3638 

 
Table III Statistics for the 38990 sampling points used for the prostate cancer patient. 
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3. Results 

 
 
3.1 Convergence  

Convergence of the optimization result with L-BFGS is observed after 300-500 iterations. The 

optimization results are virtually identical to the high precision optimization results obtained after 

5000 iterations. 

 

3.2 Global Convergence Analysis. 

We investigate the existence of possible local minima and degenerate cases and the global 

convergence properties of L-BFGS for variance based objectives for the three cases. The 

critical dose for the OARs is set to 0. That is, we investigate the strictest requirements for the 

OARs and the NT which cannot be satisfied completely except for the trivial case for zero beam 

fluences, i.e. no beams at all. For each case we consider the convergence of a representative 

set of solutions specified by a set of importance factors. L-BFGS for each such set of 

importance factors is applied 100 times using always different random initial beam fluences. 

 

3.2.1 Phantom patient with C-shaped PTV 

 

The result of the configuration space analysis using L-BFGS for the C-shaped case is shown in 

Fig. 4 for a sampling parameter k = 8 which corresponds to 45 sets of importance factors. For 

each such set a distinct point on the Pareto front is expected, i.e. a Pareto global optimal 

solution. 

The 45 solutions were obtained 100 times with different initial staring bixel intensities. 

The values of the individual objective functions, not including the importance factors, have been 

saved. The maximum number of iterations for each optimization run was 1000. Each of the 100 

repetitions produces a distribution of 45 values for fPTV, fNT, fOAR and fTot. 
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The results of these 100 distributions which represent 4500 optimization runs are shown 

in Fig. 4.  

 

 

Figure 4 Distribution of the individual and the total objective function values for 45 solutions with different 

importance factors for the phantom patient with a C-shaped PTV obtained with L-BFGS. The optimization 

results for each set of importance factors repeated 100 times with different initial beam profiles is shown.  

 

The results are so reproducible, i.e. independent on the initial beam fluences such that the 100 

distributions included in Fig. 4 appear as a single distribution. Only in some optimization runs 

small deviations are observed which are due to a 1-2 percent convergence failure, see section 

3.2.4. 

 

3.2.2 Brain tumor patient 

 

The result of the configuration space analysis using L-BFGS for the brain tumor case is shown 

in Fig. 5 for k = 5 which corresponds to 56 sets of importance factors. The optimization for each 

such set is repeated 100 times each time with different initial random beam fluences. The 

results for the 5600 optimization runs are presented in Fig. 5. For this 3D case the maximum 

number of iterations for each optimization run was set to 3000. 
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Figure 5 Distribution of the individual and the total objective function values for 56 solutions with different 

importance factors for the brain tumor patient obtained with L-BFGS. The optimization results for each set 

of importance factors repeated 100 times with different initial beam profiles is shown.  

 

As for the C-shape case the 100 distributions appear as a single distribution and only in 1% of 

the cases we see some small differences. 

 

3.2.3 Prostate cancer patient 

 

The result of the configuration space analysis using L-BFGS with a maximum of 5000 iterations 

for the prostate cancer is shown in Fig. 6 for k = 3 which corresponds to 46 sets of importance 

factors. The values of fTot and the individual objective values for the 4600 solutions are shown. 

The results are independent on the initial value of the beamlet fluences.  
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Figure 6 Distribution of the individual and the total objective function values for 46 solutions with different 

importance factors for the prostate cancer patient obtained with L-BFGS. The optimization results for 

each set of importance factors repeated 100 times with different initial beam profiles is shown.  
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3.2.4 Failure of global convergence and correction 

 

For the prostate case no differences between the results using different initial beam weights are 

observed. For the C-shaped case global convergence is not established in 1-2% of the 

optimization runs. For these solutions the objective function value differs by up to 20% from the 

objective value of the remaining solutions. For the brain tumor case the number of failures is 

less than 1%.  Similar results are found by applying different critical dose values for the OARs. 
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Figure 7 Distribution of the PTV dose variance fPTV for 400 solutions obtained for the C-shaped PTV with 

L-BFGS. (a) Optimization using 500 iterations. For some solutions a violation of global convergence is 

observed. (b) Optimization using 2000 iterations; the accuracy improves but the algorithm is still trapped 

producing a few sub-optimal solutions. (c) Optimization using 500 iterations, including a correction 

mechanism as described in the text. Sub-optimal solutions are not more observed, global convergence is 

established.   
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The failure is shown for the C-shaped case using Dcrit = 50% of refD for the spherical 

OAR. The optimization was repeated 400 times with different initial beam weights. The number 

of iterations was set to 500. The PTV dose variance of the obtained solutions is shown in Fig. 7.  

A special scale is used to enhance the size of the fluctuations. For few solutions a 

violation of global convergence is observed, see Fig. 7(a). Repeating the optimization with 

another set using 2000 iterations improves the accuracy but still new sub-optimal solutions are 

produced, see Fig. 7(b).  

The resulting DVHs for the PTV, NT and the OAR of all 400 solutions in Fig. 7(a) are 

shown in Fig. 8.  

 

Figure 8 DVHs of the PTV, the NT and the OAR for the C-shaped case. The result of 400 solutions 

obtained with L-BFGS after 500 iterations is shown. The accuracy and the failure of global convergence is 

shown. 

 In brachytherapy (Lahanas et al 2003) our analysis showed that the line search method 

can be a reason for the failure. Whereas global convergence has been found for L-BFGS this 
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was not the case for BFGS which in a few percent of the cases failed to converge to the global 

optimum value.  

We include a small disturbance in order to help L-BFGS to escape from local minima or 

optimization paths with a very small convergence. After every 100 iteration steps we add a very 

small constant term, beginning with a value of 10-5, to all weights. This term decreases each 

time by a factor of 10.  The correction is applied only three times.   

The optimization was repeated 400 times using the correction method with 500 

iterations. The PTV dose variance is shown in Fig. 7(c). No failure of global convergence is 

observed anymore.  

   

Figure 9 Dose-volume histograms for the C-shaped case for the PTV, the NT and the OAR. The result of 

400 solutions obtained with L-BFGS after 2000 iterations is shown. A correction mechanism is applied 

during the optimization. The obtained DVHs are identical. 
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The DVHs of all 400 solutions obtained for the C-shaped case with the correction 

method is shown in Fig. 9. All 400 DVHs included in the plot are practical identical and appear 

as a single DVH.  

It was reported in tomotherapy by Shepard et al (2000) that numerous combinations of 

beam weights can produce similar objective function values. We show in Fig. 10 for the C-shape 

case the distribution of the weights for all 400 solutions, i.e. all 400 intensity distributions are 

included in Fig. 10. The distributions are identical and appear as a single distribution; the 

resulting fluence profile is independent on the initial values used. 

 

Figure 10 Distribution of the beam weights for the C-shaped case. The result of 400 solutions obtained by 

L-BFGS after 2000 iterations using different initial values for the beam weights is shown. A correction 

mechanism is applied during the optimization. 
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3.3 Comparison with fast simulated annealing 

 

We compare the optimization results of L-BFGS with fast simulated annealing (FSA). We obtain 

a representative set of solutions obtained with uniformly distributed importance factor vectors 

and we compare the results using FSA. In this way we determine if the solutions obtained by L-

BFGS are global optimal, i.e. if the representative Pareto front is a global Pareto front. 

 

3.3.1 Phantom patient with C-shaped PTV 

In Fig. 11 we compare the optimization results obtained with L-BFGS for the C-shaped PTV with 

results obtained with FSA. L-BFGS was running with a maximum of 5000 iterations and ε=10-6. 

For FSA 1,000,000 iterations were used. We use Dcrit = 0 for the OARs. 

 

Figure 11 Comparison of the individual and total objective function values obtained for the C-shaped PTV 

when using L-BFGS and FSA. 

 

The results show that L-BFGS provides Pareto global optimal solutions. 
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3.3.2 Brain tumor patient 

 

The cost function fTot and the individual objective functions for the brain tumor patient obtained 

with L-BFGS and FSA are compared in Fig. 12. A non-dominated set with 56 solutions was 

produced by L-BFGS. FSA required more than 6 hours for each single optimization and used 

more than 2,000,000 iterations. Therefore because of this time factor we used a smaller set of 

solutions for FSA. We use Dcrit = 0 for the OARs. 

 

Figure 12 Comparison of the individual and total objective function values obtained for the brain tumor 

patient when using L-BFGS and FSA. 

 

3.3.3 Prostate patient 

The cost function fTot and the individual objective functions values for the prostate cancer 

obtained with L-BFGS and FSA are compared in Fig. 13. FSA required more than 10 hours for 
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each single optimization and used more than 2,000,000 iterations. Therefore because of this 

time factor we used a smaller set of solutions for FSA. We use Dcrit = 0 for the OARs. 

 

 

Figure 13 Comparison of the individual and total objective function values obtained for the prostate 

cancer patient when using L-BFGS and FSA. 

 

Similar to the other cases also for the prostate tumor case L-BFGS provides Pareto 

global optimal solutions. 
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3.4 Multiobjective optimization  

 

For the analysis of the spectrum of possible solutions obtained by MO we use as stopping 

criterion for L-BFGS a maximum of 500 iterations or a tolerance value ε  = 10-5.  

Sufficient coverage of the PTV by the prescribed dose requires a very small dose 

variance. Tests show that a PTV importance factor wPTV > 0.9 is required to obtain acceptable 

solutions. The corresponding dose variances for the OARs and NT are much larger. Rowbottom 

et al (2002) rescale for this reason the dose variances by the objective value found at the first 

optimization iteration. This requirement assumes that these values are not very different from 

the values at the end of the optimization. We have found that by multiplying the PTV objective 

by a factor of 100 we can use uniformly distributed importance factors in order to obtain a 

representative set of non-dominated solutions.  

A similar result is obtained by multiplying the PTV importance factor by a parameter s = 

100 and then normalizing the importance factors to obtain a sum equal to one. As an example 

we show the distribution of the importance factors or the C-shaped phantom case for 136 

solutions with s = 1 and s = 100, see Fig. 14. Shown are the (wPTV, wNT) and (wNT, wOAR) values. 

A fraction of importance vectors still have a small wPTV value but for the majority of solutions we 

have wPTV > 0.8. We use all importance factors vectors produced in this way in this study even 

those which produce not clinical acceptable solutions. These are filtered in the decision making 

process and are used here only to indicate the position of these solutions on the Pareto front. 
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Figure 14 Distribution of importance factors for the C-shaped phantom case for 136 solutions with s = 1, 

and s = 100. (a) Distribution of (wPTV, wNT), (b) distribution of (wNT, wOAR). Note that most of the solutions 

have wPTV > 0.8  when using a scaling parameter s = 100. A fraction of the solutions still have too small 

values which results in clinical not acceptable solutions.  

 

We show as an example a high statistics case with k = 60 which corresponds to 1891 

solutions using s = 1 for the C-shaped case, see Fig. 15. We show the PTV coverage fraction at 

the 95% of the prescription dose as a function of the importance factor wPTV and as a function of 

the PTV dose variance fPTV. Using uniformly distributed importance factors would produce only a 

few acceptable solutions. With a factor s = 100 we get a much larger fraction of acceptable 

solutions even with 136 solutions. Similar results are obtained for the other cases. 
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Figure 15 Dependence of the percentage of the PTV that is covered with the 95% of the prescription 

dose (a) as a function of the importance factor wPTV, (b) as a function of the dose variance fPTV for the C-

shaped phantom case. The results are shown for 1891 solutions using s = 1 and 136 solution using s = 

100. 

In Fig. 16 we show the three two-dimensional projections of the Pareto front for the C-

shaped case using 136 solutions obtained with s = 100 and 1891 solutions with s = 1. 

We see the trade-off between fPTV and fNT and fOAR respectively. This is a case where it is 

impossible to reduce the dose variance in the OARs and the NT below a specific value. The 

possible good candidates are concentrated at low fPTV values to ensure a sufficient dose 

coverage for the PTV. This is true for most of the solutions obtained using s = 100.  

A small fraction which has very small wPTV values does not represent acceptable 

solutions, This fraction increases with the number of obejctives.  

Most of the solutions with s = 1 are covering the entire extremely large Pareto front 

showing that this sampling method is very inefficient.  

The fPTV - fNT projection, see Fig. 16(c), shows that fOAR and fNT have to be both relatively 

large. Note that as the beam directions are fixed the level of fNT and the Pareto front depends on 

the beam orientation. This information is important in inverse planning where the trade-off 

between the objectives is analyzed for different beam orientations and number of beams. For 

the C-shaped case we have this Pareto front due to the concave shape of the PTV and the OAR 

position. 
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Figure 16 The three two-dimensional projections (a) (fPTV , fNT ), (b) (fPTV , fOAR ) and (c) (fNT, fOAR ) of the 

three-dimensional Pareto front (fPTV , fNT, fOAR ). Included are the 1891 solutions obtained with k = 60 and 

s = 1 and the 136 solutions obtained by k = 15 and s = 100.   

 

In Figure 17 we have a closer look at Figure 16(a) at small fPTV values. Included are the 

1891 solutions obtained with k = 60 and s = 1 and the 136 solutions obtained by k = 15 and s = 

100.  We obtain more clinical acceptable with the smaller set of solutions with s = 1 than the 

much larger set of solutions using s = 100. The number of more acceptable solutions for s = 100 

is approximately 100. Thus more than 10000 solutions with s = 1 would provide the same 

number of non-dominated solutions in the region of interest. Note the rapid increase of fNT as the 

dose variance in the PTV approaches its minimum value. At moderate fPTV values it is possible 

to obtain solution with very different dose variances in the NT. Very rapidly as the dose variance 

approaches the minimum value fPTV = 5.7 the variation of fNT is reduced and we have to accept a 

variance value fNT = 2370. 
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Figure 17 Projection of the Pareto front on the fNT - fPTV plane obtained with 1891 solutions using s = 1 

and 136 solutions using s = 100. Note that the clinical acceptable solutions require a small variance and 

much more solutions are obtained with the smaller set of solutions using s = 1, this number is 

approximately as large as the parameter s = 100.  

 

3.4.1 Results for the phantom patient with a C-shaped PTV  

 

For the C-shaped PTV example, we performed an MO dose optimization using L-BFGS with 

136 solutions. We compare the results with Dcrit = 0 and Dcrit = 50% of refD for the spherical 

OAR. The resulting DVHs for the PTV and OAR are shown in Fig. 18. The DVHs of solutions 

(filtered solutions) selected to have at least a 95% PTV coverage at 95% of refD  are 

highlighted, where 97.8% was the largest value found.  

For the optimization using Dcrit = 0 a larger variety of solutions is observed for the OARs. 

Solutions can be found with a dose smaller in the OAR than any other solution obtained by MO 

where Dcrit =0.5* refD was used. 
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Figure 18 DVHs of 136 solutions (k = 15) generated by L-BFGS for the PTV, NT and the OAR for the C-

shaped PTV example. Solutions filtered with at least 95% PTV coverage at 95% of refD are marked. The 

DVHs on the left side are obtained with Dcrit = 0.5 refD and on the right side Dcrit = 0 was used. The 

selected optimal solution from the set is shown.   

 

The analysis of the two dimensional Pareto front projections for this example shows that 

there is a rapid increase of the dose variance in the OARs and the NT with increasing PTV 

coverage and with dose uniformity. The variance of the dose in the NT for acceptable solutions 

is larger than 1400. For this example the spectrum of solutions is restricted and if the OAR has 

to be considered then an increase of the dose variance in the PTV cannot be avoided. A 

solution has been selected which reduces the dose variance in the NT and in the spherical OAR 

simultaneously for the filtered solutions. The DVHs of this solution is shown in Fig. 18 
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3.4.2 Results for the brain tumor patient  

 

A MO optimization was performed for the brain tumor example. The optimization is repeated 

with Dcrit = 0 and Dcrit = 63.4% of the prescription dose for the eyes. The resulting DVHs for 165 

solutions (k = 8) are shown in Fig. 18. The largest PTV coverage at 95% of refD  is 99.84%. The 

solutions with 99% PTV coverage are marked.  

The observed spectrum of DVHs is large, showing the different results which can be 

obtained by modifying the importance factors. The DVH for the PTV for all cases is almost 

identical. The best results for the OARs, see Fig. 19, are obtained by using a optimization with 

zero critical dose for all OARs where solutions can be obtained that are not available if the 

optimization uses clinical acceptable dose limits for the eyes.  
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Figure 19 DVHs of 165 solutions (k = 8) generated by L-BFGS for the PTV, the NT and the OARs for the 

brain tumor case. Solutions filtered with at least 99% PTV coverage at 95% of Dref are marked. The DVHs 

on the right side are obtained with Dcrit = 0, whereas on the left side Dcrit = 63.4% of Dref was used for both 

eyes. The resulting DVHs for the NT and the OARs show the possibilities when using different importance 

factors. The selected optimal solution is shown. 

 

Projections of the two-dimensional Pareto fronts show that the dose variance in the NT 

and much more in the left and right eye can be reduced significantly without any significant 

modification of the dose uniformity in the PTV. In contrast to the C-shaped PTV example the 

treatment planner has a larger spectrum of possible solutions.  



M. Lahanas et al: Multiobjective inverse planning for IMRT                                                     34  

A solution has been selected which for both eyes and the NT has simultaneously a value 

close to the corresponding smallest possible dose variance of all solutions. We obtained this by 

taking the solution with the smallest product of objective values for the eyes and the NT. The 

DVHs for this solution are shown in Fig. 19.    

We performed two MO with optimizations using s = 1 and k = 16 with Dcrit = 0 and Dcrit = 

63.4% of Dref for the eyes. This corresponds to 969 solutions. A filter was applied for the PTV 

coverage to be 99% at 95% of Dref with 116 and 135 solutions selected for the cases Dcrit = 0 

and Dcrit = 63.4% Dref respectively. The DVHs for the left eye are shown in Fig. 20. This higher 

statistics case confirms that we obtain better solutions using Dcrit = 0. In comparison to Fig. 19 

we see that using s = 100 even with only 165 solutions we obtain a broader spectrum of 

solutions, i.e. the Pareto front of clinical acceptable solutions is more efficiently sampled.  
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Figure 20 DVHs of the left eye obtained by 969 solution with s = 1 (k = 16) by L-BFGS. A filter was 

applied for the PTV coverage to be 99% at 95% of Dref the result are (a) 116 solutions obtained 

with Dcrit = 0 and (b) 135 solutions obtained with Dcrit = 63.4% of Dref. 

 

3.4.3 Results for the prostate cancer patient  

 

Two MO optimizations were performed for the prostate cancer example. For the first MO 

optimization we used Dcrit = 0 for all OARs and for the second MO optimization the critical 

values for the bladder, left and right femur and the rectum were set to 87.8%, 70.3%, 70.3%, 

and 81% of the prescription dose respectively. 
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The two-dimensional projections of the Pareto front reveal that the bladder and rectum 

dose variances show a strong trade-off with the PTV coverage, see Fig. 21. The results are 

obtained using  Dcrit = 0 for all OARs.  

For the femoral heads the dose variance is smaller than in the rectum and bladder, see 

Fig. 21. We also see that the range of solutions is large, i.e. if we do not use an optimal set of 

importance factors the dose variance can be very large. Note that a double logarithmic scale is 

used to reveal the fine structures of the Pareto front. Although solutions can be obtained which 

reduce strongly the dose variance in these structures without a significant change for the dose 

in the PTV, this cannot be accomplished simultaneously for the rectum and bladder. We have to 

accept a large dose variance for the bladder and rectum and we see that it is possible to reduce 

the dose variance in the PTV without a significant modification of the dose in the bladder and 

rectum. 

For the left and right femoral head it is possible to obtain solutions with a small dose 

variance even at low fPTV values. The large set of 2002 solutions obtained with s = 1 show that 

some of these solutions are not accessible by the smaller set of 126 solutions. For this case in 

order to reduce the further the dose in the femoral heads would require to generate more 

solutions. This is because the sampling parameter is small necessary to keep the number of 

solutions small for the six objectives. 
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Figure 21 Projections of the Pareto front for the prostate case showing the correlation between 

the dose variance in the PTV and the dose variance in the OARs. The non-dominated solutions of a large 

set of 2002 solutions with s = 1 are shown. Included are the solutions obtained from a smaller set of 126 

solutions using s = 100. The solutions which are clinical not acceptable are shown in red color.  

 

The resulting DVHs for 126 solutions (k = 4) are shown in Fig. 22. The maximum PTV 

coverage at 95% of refD  was found to be 98.8%. The DVHs of solutions selected have at least 

a PTV coverage of 97% are marked. Similarly to the first two examples studied, a larger 

spectrum of solutions is obtained for the case where the OAR critical dose value is set to 0. 
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Figure 22 DVHs of 126 solutions (k = 4) generated by L-BFGS the PTV and the OARs for the prostate 

tumor example. Solutions with have at least 97% PTV coverage at 95% of Dref are marked. We compare 

the results of a MO optimization with Dcrit = 0 (DVHs on the right side) and clinical acceptable critical dose 

values for the OARs (DHVs on the right side). The selected optimal solution is shown. 
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 A solution has been selected for which simultaneously, the dose variance of the rectum 

and bladder is close to the smallest possible value for a PTV coverage of at least 97% at 95% of 

refD . This solution is obtained by considering the minimum value of fBladder*fRectum of the 

corresponding variances of the filtered solutions and the DVHs are shown in Fig. 22. 
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4. Discussion and conclusions 

 

We studied the use of constraint-free gradient-based optimization algorithms for MO dose 

optimization in IMRT using as a representative the L-BFGS algorithm. The global convergence 

properties using variance based objectives have been analyzed. Results using BFGS and 

FRPR, Lahanas et al (2003) are not presented here but we found that they reproduce the L-

BFGS results.  

L-BFGS as with Newton based algorithms does not require the exact inverse Hessian 

matrix. Even if a smaller number of iterations were required for convergence, the use of an 

exact Hessian requires the initial values of the fluences to be not very different from their 

optimal values. L-BFGS is especially suitable for N-dimensional problems when N is very large.  

The required memory is proportional only to the number of optimization parameters N 

and not proportional to N2 as required by BFGS which requires much larger time for the 

optimization than L-BFGS.  

Gradient-based optimization methods have been modified in the past by changing the 

line minimization routines, or by setting artificially negative weights to 0 in order to avoid 

negative beam fluences. It is, however, not clear how the theoretical established convergence 

properties of the algorithms are modified by this approach. Our mapping which considers as 

optimization parameters the square root of weights eliminates this problem.  

The use of the square root of the bixel fluences as optimization parameters can be 

applied to all other non-linear optimization algorithms. This eliminates completely the problem of 

solutions with negative fluences. No artificial modifications of the line search routines is required 

which are important for gradient-based algorithms as some criteria have to be fulfilled by the line 

search for global convergence.  

Llacer et al (2001) say that “it is not clear whether setting negative intermediate results to 

zero during the iterations of the gradient methods is important or not, since they can yield 

excellent results, but the statement can be made that, with approximately 5 to 10% of the beam 

weights becoming negative in the CG and NG methods in the later part of the iterative process, 
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the results cannot be precisely minimum least square solutions, as the theories for those 

methods require the existence of negative beam weights”.  

The L-BFGS algorithm used in this study does not require a quadratic function such as 

by NG methods, but has successfully been applied for various nonlinear optimization problems. 

The mapping of the decision variables avoids completely negative beam fluences. 

A convergence analysis of L-BFGS shows that in some case the algorithm gets trapped 

in a local minimum. A very simple method can be used to practically eliminate this problem. 

Similar to simulated annealing the optimization path is disturbed slightly a few times and helps 

to escape from closed orbits or local minima.  

While a similar result was observed by Llacer et al 2003, this analysis considers the 

global convergence of a true constraint free gradient-based optimization algorithm without any 

artificial line modifications. The exact origin of the failure in some cases is unknown. The local 

optimal solutions are such that the resulting DVHs do not differ much from the DVHs of the 

global optimal solutions. The proposed method which is applied only at three iterations removes 

the probability of failure so that we can say that global convergence is practically established.  

As presented in Lahanas et al (2003) in a brachytherapy study, L-BFGS should not be 

used with a warm start option in which the results of a previous optimization are used to initialize 

the algorithm for a new optimization with only slightly modified importance factors. This could be 

used to increase the speed of the process of the generation of a representative efficient set. 

With this approach L-BFGS can prematurely converge as the starting point is required to be not 

on the border of the feasible objective space. For similar reasons found in brachytherapy by 

Lahanas et al (2003), statistical randomly selecting such a point is practical very unlikely. 

A comparison of the optimization results with FSA, shows that the solutions are global 

optimal solutions. FSA required approximately 1000 times more time to approach the result of L-

BFGS. This shows that for variance based objectives the use of SA algorithms is not necessary 

and for MO dose optimization SA is too slow.  

The solutions of L-BFGS are global optimal for a representative set of importance 

factors. In the time where some other algorithms provide just one solution it is possible to obtain 
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a representative spectrum of solutions with valuable information for the treatment planner for the 

selection of the best solution. 

L-BFGS produces a solution after 500 iterations which for practical purposes is almost 

identical to the global optimal solution. Eventually the algorithm could be stopped after 100 

iterations if only the value of the total objective function is considered. Even so, there will be 

some improvement in the result for the NT and the OARs possible for the remaining 400 

iterations. The reason is that the optimal solution requires a significant fraction of the importance 

factors to be distributed to wPTV so that the contribution of the OARs and the NT to the score 

function is very small.  

With current 3 GHz PCs the optimization time of the non-optimized code is 4 s for the 

prostate implant with 5464 bixels and 40,000 sampling points considering the NT and four 

OARs.  

In the past results comparing different algorithms or sets of objectives have been 

presented using only single objective optimization algorithms with only one solution selected by 

trial and error. We think that a better approach is to obtain a representative set of non-

dominated solutions. Based on the spectrum of solutions we are able to understand what dose 

distributions are available for a given set of objectives and a particular optimization method. The 

analysis which we performed showed that the solutions obtained are global optimal. It is 

important to know this for the comparison.  

As an example we applied a MO optimization to obtain the spectrum of possible 

solutions for one test case and two clinical cases. The optimization was applied by using the 

recommended critical values for the OARs and the optimization was repeated with the critical 

values set to 0. For the last case the spectrum of solutions is larger and the dose in the OARs 

can be reduced more than any solution which can be obtained by the former case. A trivial 

explanation is that by using the step function parts of the dose space are not “visible” by the 

optimization algorithm. With Dcrit = 0 critical dose the algorithm tries to reduce the dose variance 

including all dose values even those which could be considered as “acceptable”. 
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For the selection of the best solution we remove first clinical not acceptable solutions by 

applying constraints. The analysis of the tradeoff between the objectives and range of values 

using simple decision tools shows what we can obtain and for which objectives what 

compromise we have to make. For the remaining objectives that satisfy the clinical constraints 

we seek to obtain simultaneously a solution where the resulting objective value is close as 

possible to the minimum value.  

An a priori automatic selection method as described by Xing et al (1999) based on the 

Euclidean metric between the DVHs of a solution and ideal DVHs does not give always a 

satisfactory result as the ideal DVHs can be different than any solution possible. DVHs of OARs 

that are better than the ideal DVHs or have a different form can be the reason that a solution is 

selected where the other objectives could be satisfied better by other solutions. As the treatment 

planner does not have the information, it cannot be decided if this is actually the case or how 

good is the solution.   

A fuzzy logic approach has been presented by Li and Yin (2001) to consider the normal 

tissue versus PTV tradeoff and to obtain an optimal solution based on fuzzy logic. A fixed 

prescription dose is used for the OARs and Li and Yin try to obtain an optimal prescription for 

the NT. Our analysis shows that the best solutions can be obtained by setting the most natural 

choice Dcrit = 0 for the NT and the OARs. Li and Yin express their concern that line search 

algorithms may not provide global optimal solutions due to the line step selection problem. Our 

analysis shows that the results of L-BFGS are global optimal.  

The analysis of the spectrum of solutions shows that even if all solutions for the PTV are 

almost identical they are different especially for the OARs. A MO optimization is therefore 

important for the selection of a solution of high quality which reduces to the lowest possible level 

the dose in the OARs and the patient’s body reducing thus the level of unnecessary radiation 

exposed to the patient, even beyond that what could be considered as clinical acceptable. 

We used variance-based objectives and it remains to be seen what solutions can be 

obtained by other algorithms and other objectives which use DVH constraints, Cho et al (1998). 

The MO-approach considers the constraints in the decision process. We think that a 
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comparison of algorithms and/or different objective functions in radiotherapy should be based 

on comparing the spectrum of solutions of a representative set of non-dominated solutions and 

not on two solutions which we do not know which part of the Pareto front they represent. Such 

an analysis we have shown for two set of objective functions. 

The analysis shows that for variance based objectives and using L-BFGS and the 

mapping which avoids cutoffs each solution is a simple point on the Pareto front, i.e. a unique 

solution is obtained. For DVH-based objectives we expect this not to be the case. For a fixed set 

of importance factors each solution will produce with different starting intensities a different 

distribution of intensities. Repeating the optimization with fixed importance factors but different 

staring points will produce also different points on the Pareto front the solutions covering some, 

probably small, part of the Pareto front. This is because DVH-based objectives allow more 

freedom to the dose distributions which can be obtained, whereas variance based objectives 

produce a unique solution. 

We have for the first time observed multi-dimensional Pareto fronts for IMRT dose 

optimization with variance-based objectives and its increasing complexity as the number of 

OARs and the objectives increases. This provides the information of possibilities which we 

have. It is not an automatic procedure but it requires the treatment planner to understand the 

results and to be able to draw conclusions. This is more important for the next step of MO 

inverse planning where not only the intensities but also the beam orientation and the optimal 

number of beams has to be found. The results of the MO inverse planning will be presented in a 

further work. 

We used a very simple sampling method with uniform and importance factors with a 

specific scaling for wPTV. Using a uniformly distributed importance factors with s = 1 requires 

approximately 100 times more solutions to be processed than using s = 100  to obtain the same 

number of clinical acceptable solutions. Other better methods may exist such as using a few 

different scaling parameters s and smaller k in order to sample the Pareto front with different 

resolutions. 
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As the number of objectives increases a very large number of solutions could be 

required to obtain solutions more uniformly distributed on the Pareto front. The mapping from 

importance to objective space is highly complex. For this purpose MO evolutionary algorithms 

supported by L-BFGS seem to be a solution for this problem. Their strategy is to sample the 

Pareto front uniformly. For this L-BFGS is important as standard genetic algorithms perform 

very poor as an analysis showed which we did. With a support of L-BFGS hybrid genetic 

algorithms are able to obtain more than 1000 solutions in a few minutes.   
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