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Abstract- Generating a set of the good DNA sequences
needs to optimize multiple objectives and to satisfy sev-
eral constraints. Therefore, it can be regarded as an in-
stance of constrained multi-objective optimization prob-
lem. We apply the controlled elitist non-dominating
sorting genetic algorithm with constrained tournament
selection to this problem. First, multi-objective ap-
proach and constrained multi-objective approach are
compared in terms of the effectiveness in finding feasi-
ble the solutions. Then the performance is evaluated by
comparing with the good sequences published in litera-
ture.

1 Introduction

The problem of generating an independent DNA sequence
set is very important for the efficient DNA-related exper-
iments. Especially, it is one of the main issues of DNA
microarray design and DNA-based computing. The inde-
pendent DNA sequence set means a set of DNA sequences
which have minimal tendency of cross-hybridization and
maximal difference among them. In addition, they must
have the similar physical conditions such as length and
melting temperature. Thus, it can be regarded as a com-
binatorial optimization problem, in which evolutionary al-
gorithm has shown good performance. The objectives to be
optimized are the tendency to hybridize among the set, the
difference of sequences among the set, and other additional
factors.

There exist many researches which tried evolutionary ap-
proaches such as genetic algorithm and simulated anneal-
ing for sequence optimization. Deaton et al. used genetic
search based on Hamming distance to design sequences for
Hamiltonian path problem [Deaton98]. Arita et al. devel-
oped a DNA sequence design system using a genetic algo-
rithm with three fitness criteria [Arita00]. Recently, Tanaka
et al. listed up some sequence criteria and generated se-
quences with a simulated annealing technique [Tanaka01].
Reben et al. developed a system called “PUNCH” (Prince-
ton University Nucleotide Computing Heuristic) to opti-
mize DNA sequences using genetic algorithm with simple
2D matrix representation [Reben01]. Tuplan et al. used a
simple stochastic hill climbing method to search DNA word
[Tuplan02]. Kim et al. also applied a genetic algorithm
[Shin02, Shin03].

These works considered sequence generation problem as
a single objective optimization. However, as will be shown
in the next section, sequence generation problem consists
of multiple objectives to be optimized and constraints to be
fulfilled. Therefore, unifying all objectives and constraints
into a single objective would fail to provide useful and di-
verse solutions.

The authors already have tried multiobjective evolution-
ary approach, but penalties for violating constraints were
also used as objective functions [Shin02, Shin03]. In this
case, a solution which has good objective value but bad
penalty, and one that has better penalty but worse function
value, non-dominate each other. This implies that an infea-
sible solution can be non-dominated by any other feasible
solution. Therefore, they can waste the slots for feasible
solutions in Pareto front, and slow down convergence.

In this paper, we applied the controlled elitist non-
dominated sorting genetic algorithm (NSGA-II) with con-
straint handling technique - constrained domination - to
sequence generation problem [Deb01a, Deb01b]. NSGA-
II can handle any number of objectives as well as reduce
multiple objectives to a dummy fitness function using non-
dominated sorting procedure. And NSGA shows the good
performance in many artificial functions and applications
[Deb01b]. And unlike when using weighted summation,
it does not require additional parameters such as weights.
Therefore,we choose NSGA-II to solve sequence genera-
tion problem.

The rest of this paper is organized as follows. In sec-
tion 2, more formal definition of sequence generation prob-
lem and its objectives and constraints will be given. Then
the detail of our implementation and the experimental re-
sult will appear in section 3 and 4, respectively. Finally, the
conclusion is drawn in section 5.

2 Sequence Generation Problem

In a sequence generation problem, a designer must gener-
ate a set of sequences which shows good quality in vari-
ous perspective and satisfies every constraints. Thus, it can
be classified as a constrained multi-objective optimization
problem. In this problem, the objectives to be optimized are
the quality measures of a sequence set, and the constraints
are the requirements for each sequence. From now on, we
refer the problem of generating a set of � independent se-



quences with length
�

as the ����� ��� – sequence generation
problem. The formal description of ����� ��� – sequence gen-
eration problem is as follows:

Optimize �
	��
� � � �����������������
subject to �����
� � �����! "�#�$���%�����'&

where � �(��)+*
��)-,.���%���/�0)-1 � , and )325476�89��:;��<=�0>@?BA ,
for CD�E�$�%��������� . � and & denote the number of quality
measures and constraints, respectively.

2.1 Objective Functions

In general, the quality of a sequence set can be measured
from three perspectives. From the following three perspec-
tives, we formulate four objective functions.

In the first perspective, the sequences in the set must be
different from each other as much as possible to prevent
the sequences from hybridizing with wrong sequence. We
formulate a minimization measure named similarity based
on the Hamming distance measure including position shift.
The similarity value for two sequences is defined by max-
imum value of Hamming distance with various position
shifts. And for a sequence set, it is defined by the sum of
values for two different pairs. Formally, it can be written as
follows:
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where, )q��_r4 � , and T�h ��)q�'C � denotes the shift of ) byj C j right (if Cts � , left). f ] � )q��_ � denotes the Hamming
distance longer than threshold > between two sequences) ��_ . T%�VUD� �YX Z �V[R\�]^� )uj � � means the objective value of a
sequence )v4 � and is defined as the summation over other
sequences in the set.

The decision variable space for � ��� ��� – sequence gener-
ation problem is �
w A � 1 � w A 1 , and it grows exponentially as� and

�
grow. We try to get a hint of the surface for sim-

ilarity, but due to the size of decision variable space, we
could plot similarity for �Yxy�'z � –sequence generation prob-
lem only. Setting ‘A’ as 0, ‘C’ as 1, ‘G’ as 2, and ‘T’ as
3, a sequence can be thought as a number of base 4. A se-
quence can be represented by decimal number correspond-
ing to this number. We draw �.FR	HG{	 AHJLK 	 M�O �Y� � for every pair�!�|� ) ��_ � 456 8}�':;��<=�0>9?�~l� 6 8}�':;�'<"��>@?�~ . The global
optimal value for similarity is 0. As can be seen in Fig. 1,
there exist lots of local optima.

From the second point of view, the sequences in a set
should interact – hybridize – to each other as little as pos-
sible. Garzon et al. suggested a measure called H-measure
for this objective [Garzon97]. H-measure for a pair of se-
quences calculates the maximum number of bases that can
be hybridized between the sequences. Since the indepen-
dent DNA sequence set should be designed, H-measure is
a minimization objective. As in the case of similarity, H-
measure for a set of sequences is defined by sum of values

Figure 1: Fitness surface of similarity in case of �Yx ��z � –
sequence generation problem. Each sequence is represented
by decimal number (‘ATGC’ as ���$xy���������7z$��� *R� � ).

Figure 2: Fitness surface of H-measure in case of � x �'z � –
sequence generation problem. Each sequence is represented
with a decimal number by the same way as in similarity.

for sequence pairs.
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where, � ] � )��'_ � denotes the maximum number of base-
pairs larger than threshold > that ) and _ can produce.
It should be minimized, also. And h�\�� Z �V��]g� )kj � � is de-
fined in the same way as similarity. The plot of the fit-
ness surface for H-measure in � x �'z � – sequence generation
problem is shown in Fig. 2. As in the case of similarity,�
� a G�� J FR� K �
�
� � is drawn for every pair � � � )q��_ � 46 89��:;��<=�0>9? ~ � 6 89��:;��<=�0>9? ~ . You can find many local
optima.

The last perspective requires that the sequences should
be the second structure-free. Since the unintended sec-
ondary structure lowers the efficiency of experiment, it
should be avoided as much as possible. There are two
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Figure 3: The hairpin structure.

known factors that cause the secondary structure. One is
the continuous occurrence of the same base. And the other
is the occurrence of the complementary substrings in a se-
quence. The former makes a strand to twist or bend, and the
latter makes the strand to hybridize to itself. We define two
minimization objective functions, continuity and hairpin for
these factors respectively. Continuity is defined as follows,���������
	����
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and hairpin can be defined as below:��V � 	�WYXZ	��[����� � � 	�\�]T�
12	�� 3
where,

\�] � 1^�
denotes the number of hairpin that

1
can

form. Here, we assume that hairpin is formed when more
than 6 bases separated by at least 6 base hybridize together
as shown in Fig. 3. Therefore, this function is defined over
the sequence whose length is longer than 18.

2.2 Constraints

For the reliable and efficient experiments, the decision
maker requires each sequence to have similar physical and
chemical properties. The most important properties are the
number of bases ‘G’ and ‘C’ in the sequence and melting
temperature. The melting temperature denotes the temper-
ature where more than half of double strands start to break
into single strands. These properties determine the exper-
imental condition. To use a set of sequences in a experi-
ment, the experimental conditions must match each other.
Therefore, we take these properties as constraints for the�
0)3#_��

–sequence generation problem and define the penalty
functions for each property.
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where,
fYg ��1^�

denotes the melting temperature of sequence1
.
E g k

and
E g i

denote upper and lower limit for melt-
ing temperature, respectively. And ` , � 1^� denotes the num-
ber of ‘G’ and ‘C’ in

1
divided by

_
.
mDn k

and
mDn i

rep-
resent the upper and lower limit for ` ,��
1^� , respectively.

Figure 4: The relation between H-measure and similarity.
The line shows trade-off surface.

2.3 Relationship Between Objectives

So far, we formulate the sequence generation problem as
constrained multi-objective optimization problem with four
objectives and two constraints. By the way, you can find a
conflicting relation between similarity and H-measure. If a
pair of sequences are very similar to each other, they will
hardly hybridize to each other. Because, in most cases,
a sequence can not be its complementary sequence at the
same time. For the same reason, if a pair of sequences
are complementary to each other, they will look very dif-
ferent in most cases. Therefore, it is difficult to minimize
both H-measure and similarity. This conflicting relation-
ship between H-measure and similarity is shown in Fig. 4
for

��xe3-y �
–sequence generation problem. Although it is not

possible to achieve low value for both objectives, there exist
several trade-off solutions even in a small problem as shown
in Fig. 4. Using multi-objective evolutionary algorithm, we
can find lots of such trade-off solutions simultaneously.

3 Sequence Generation Using Constrained
Multi-objective Evolutionary Algorithm

As a first try of sequence generation using constrained mul-
tiobjective evolutionary algorithm, we used non-dominated
sorting genetic algotithm with controlled elitism (NSGA-
II) and constrained tournament selection. The details of our
implementation will be explained in the following subsec-
tions.

3.1 Individual Chromosome

Each individual represents a set of sequences with given
number and length. A DNA sequence consists of four bases.
Therefore, each sequence can be represented by a number of
base 4 or a quaternary string. And a set of sequences can be
thought of as a set of these quaternary strings.
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Figure 5: The two-stage crossover process.
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Figure 6: (a) The sequence set level (chromosome level)
crossover. (b) The sequence level crossover.

3.2 Genetic Operators

The crossover operation of two chromosomes is composed
of two stages. At the first stage, a sequence set level
crossover occurs by exchanging sequences between two
chromosomes. Then a sequence level crossover occurs.
In this step, one-point crossover occurs to each sequence
in two chromosomes. Fig. 5 and 6 show the two-stage
crossover process. And the mutation changes each sequence
by one base. As a selection operation, we use the con-
strained tournament selection. In constrained tournament
selection, a solution that is feasible, has less penalty, or be-
longs to higher front becomes the winner. There are three
cases in the constrained tournament [Deb01b].� Infeasible – feasible: feasible solution wins.
� Infeasible – infeasible: one with less penalty wins.
� Feasible – feasible: if any one dominates the other,

dominating one wins. If not, one with larger crowding
distance wins.

We use the sum of penalties for each constraints as the
penalty of a chromosome.

3.3 Constrained Multi-objective Evolutionary Algo-
rithm

In [Shin03], controlled elitist non-dominated sorting genetic
algorithm (NSGA-II) was used because it is one of the most
suitable algorithm for the sequence generation problem. But
the penalty functions were included as one of objective
functions, and it may slow down the convergence to true
Pareto optimal front. Since we treated a penalty function as
one of objective functions, an infeasible solution may dom-

evolve(
�

)�������	�
evaluate(

�
)
 = constrained-nondominated-sort(

�
)

for each �
���	� 

if (all solution in front(

��� � ) is feasible)
crowding-distance-assignment(front(

��� � ))�
= controlled-parent-selection(

�
)�������

while � � �������� = constrained-tournament-selection(
�

)
if (level1 crossover) then��� = constrained-tournament-selection(

�
)

if (level2 crossover) then� � ��� �
crossover2(��� ,��� ) �

else ������� �
crossover1(��� ,��� ) �

if (mutation) then mutate(
�"!$#$�%�"!'&

)
else � � �(� � ��� �

if (mutation) then mutate(
�"!$#

)

Figure 7: Main procedure for sequence generation.

inate feasible solution which has inferior objective values.
Also, it is difficult to find a solution which is both feasible
and non-dominated. Therefore, the infeasible solution may
stay in the first front for a long time.

To overcome this difficulty, a penalty function must be
treated separately from other objective functions. There-
fore, we include constrained tournament selection to handle
the penalty functions. As explained in the previous sub-
section, constrained tournament selection favors the feasible
solution over infeasible one and non-dominated one over the
dominated. Therefore, the first front is always filled with so-
lutions with least penalty or most non-dominated ones. And
infeasible solutions are drived to feasible region.

The main procedure of sequence generation using con-
trolled elitist NSGA-II with constrained tournament selec-
tion is shown in Fig. 7.

First, parent and offspring population are united and
evaluated. In procedure constrained-nondominated-sort,
the feasible solutions are always located in the better front
than infeasible ones. Among the feasible solutions, the
non-dominated ones belong to better front than those dom-
inated. Among the infeasible solutions, those with the
smaller penalty are located in the better front than those
with the larger penalty. And among the feasible solutions,
crowding distance is calculated. Then new parent popula-
tion is formed by constrained tournament selection. From
these new parents, new offsprings are generated by genetic
operators such as two-stage crossover and mutation.

This algorithm is implemented to improve the sequence
generating system ‘NACST/Seq’ (Nucleic Acid Computing
Simulation Toolkit) [Shin03, Zhang98]. NACST/Seq is im-
plemented in C++ using the Qt interface library on Linux
platform. Fig. 8 shows the screenshot of NACST/Seq.



Figure 8: The screenshot of NACST/Seq and a result of ex-
ample run.

4 Experimental Result

4.1 Comparison on Constraint Handling Method

To demonstrate the effectiveness of constraint handling
method in finding feasible solutions, we plot the ratio of
the feasible solutions over population using two constraint
handling methods. One method is not to treat the penalty
for constraint violation as one of objectives and to handle
it separately in selection. The other method is to think the
penalty as one of objectives to be minimized and to handle
it as additional objectives.

Fig. 9 shows the result in the ����������	 –sequence genera-
tion problem. As objectives, H-measure, similarity, conti-
nuity, and hairpin are used, and the constraint is 
���
���� 	
with ������������������� � . Except the constraint han-
dling method, the same set of parameters are used: pop-
ulation size is 1000, maximum generation number is 200,
crossover probability is 0.9, mutation probability is 0.01,
and reduction rate for controlled elitist NSGA-II is 0.5. As
you can see in Fig. 9, the constrained tournament selection
finds feasible solution quickly and keeps them well. On the
other hand, when the penalty is treated as the one of the ob-
jectives, infeasible solution is hardly removed from popula-
tion, if it has good objective values. As a result, it becomes
hard to insert a new feasible solution. As can be seen in Fig.
9, the feasible solutions could take up no more than 6% of
population.

The proportion of each front in population is shown in
Fig. 10 and 11. The lowest area denotes the portion of first
front in the population. In both case, the first front take
up 60 to 80% of the population. In Fig. 10, most of the
first front member is feasible solution when compared with
Fig. 9. On the other hand, in Fig. 11, most of the first front
member is infeasible solution. And there is only one kind of
feasible solutions in the first front. Therefore, it can be said
that the constraint handling using constrained tournament
selection is more effective.
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Figure 9: The ratio of feasible solutions over population
during generations. The dashed line is the result when the
constrained tournament selection is used. The other line is
when the penalty is treated as an additional objective.
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Figure 10: The proportion of each front in the population
over generation when the constrained tournament selection
is used.
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over generation when the penalty function is used as an ob-
jective.



Table 1: The fitness table for sequence sets generated by using two constraint handling methods. ‘Tm’ means the melting
temperature of each sequence.

Sequence ( ��������� ) Continuity Hairpin H-measure Similarity Tm GC%
Constrained tournament selection

TCGCAACACGCAAAATAGGC 16 0 62 53 66.7797 50
AAGGGATCATCGGAGACAGA 9 0 60 58 64.56 50
ATTGGTTGCGGATGCTCGTA 0 0 62 59 66.9694 50
CGGGTTAATGTGCACGGATA 9 0 62 57 64.8338 50
GACTAAACCGACCTTGCACA 9 3 65 50 64.9101 50
AGTAATCGATGCCGGTTGTG 0 6 66 59 65.1012 50
TTGAAACGGGTCGTGTGTCA 18 5 63 60 66.9341 50

Total Fitness 61 14 220 198

Penalty as additional objective
ACCGTATCTCGGACTTCAGA 0 9 68 61 64.4817 50
TTGGTAGCTAGGGCACGTTT 18 0 63 54 66.2673 50
TCATAGCTCCAACTTCTCCC 9 0 58 70 63.2604 50
AGCCTGTCAGCTCTAATCTC 0 3 61 60 63.3041 50
TTGGTGTGCGGTCAAACGTA 9 10 64 53 67.2754 50
TCTCAGGGTCTTAGACCCTA 18 3 81 61 62.8872 50
CACTTCCAACTCGATCCCTA 9 0 57 63 63.2319 50

Total Fitness 63 25 226 211

The generated sequences are summarized in Table 1.
The upper table shows one of feasible solutions generated
by using constrained tournament selection. And the lower
table shows the only feasible solution found when �
	���
����
is used as objective. The sequence set generated by con-
strained tournament selection dominates the other.

4.2 Comparison with Sequences in [Deaton96]

To show the effectiveness of the use of constrained multi-
objective evolutionary algorithm, we compare the se-
quences published in other paper with those generated by
the proposed algorithm.

Deaton et al. used a genetic algorithm to design good
code words for Adleman’s experiment [Deaton96]. This is
an example of 
���������� –sequence generation problem. The
Hamming bound was used to be an upper bound on the
number of good encodings. To compare the results, the fit-
ness values of the sequences in [Deaton96] is re-calculated
using NACST/Seq. In this problem, continuity, hairpin, H-
measure, and similarity are used as objective function, and
��	���
 � � as constraint with �! #"%$'&�(�) and �* !+,$'-�(�)
. The sequences are compared in Table 2. In Table 2, the to-
tal fitness means the fitness value of sequence set. And the
fitness values for each sequences are given in a row. The pa-
rameter setting of NACST/Seq is the same as in the previous
subsection.

As can be seen in Table 2, the sequences generated using
NSGA-II with constrained tournament selection dominates
the other sequence set.

5 Conclusions

We implement the controlled elitist non-dominated sort-
ing genetic algorithm with constrained tournament selec-
tion and two-stage crossover, and apply it to generate an
optimized DNA sequence set. By comparing the result with

other method, we show that the algorithm performs better
than other method and has more diversity in the Pareto front.
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