Automatic Construction of Fuzzy Controllers for Evolutionary
Multiobjective Optimization Algorithms

Michael A. LEE Henrik ESBENSEN
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720 USA
leem @cs.berkeley.edu esbensen @eecs.berkeley.edu
fax: 510 642 5775

Abstract

In this paper, we present techniques for designing fuzzy -

systems for controlling the behavior of multiobjective evo-
lutionary algorithms. The aim of this work is to develop
methods for improving the performance and understand-
ing the behavior of multiobjective evolutionary algo-
rithms. Because the output of a multiobjective
optimization algorithm is a set rather than a single point,
we present a search performance metric based on a Set
Quality measure. According to this set quality measure,
we demonstrate our techniques by developing fuzzy con-
trol strategies for a genetic algorithm based IC placement
application.

1 Introduction

Many real world design problems involve trading off
performance along more than one dimension. For exam-
ple, in the case of integrated circuit (IC) layout generation,
geometrical and timing specifications interact and perfor-
mance along each of these directions may need to be com-
promised to satisfy specifications [2]. Because more than
one solution may meet the application specifications, each
of these solutions must be regarded as equal.

One approach to this problem is known as multiobjec-
tive optimization. The goal of this approach is not to pro-
vide the users with a single solution, but rather a set of
solutions that represent the set of best alternatives, or
Pareto Optimal set. The notion of Pareto optimality is
based on the concept of dominance. Let

) = (f;(x), ..., f,(x) represent a vector valued objec-

tive function and u and v represent two solutions, and
assume each of the f; is to be minimized. ¥ dominates v,
written u<,yv, if and only if

7i: fw) < f(0) A(3i: f(w) < fi(v. Solutions included

0-7803-3645-3/96 $5.00©1996 IEEE 1518

in the Pareto Optimal Set are those that cannot be
improved along any dimension without simultaneously
being deteriorated along other dimension(s).

Evolutionary algorithms (EAs) have been applied to
multiple objective optimization problems. EAs are popula-
tion based stochastic search strategies that employ mecha-
nisms found in natural genetics[6]. However, there are a
number of unsolved problems not addressed in these tech-
niques relating to the quality of the solution sets found and
the efficiency of the search process. Non-dominated solu-
tions may be very few and/or clustered in a small region of
the cost-space, only providing the user with limited trade-
off information. Hence, the need for developing solution
set quality measures and systematic techniques for con-
trolling and improving quality of the final solution set.

This paper extends the hybrid fuzzy system/evolution-
ary algorithm techniques developed in [9,10]. The previ-
ously developed approach uses a fuzzy system to monitor
and control the behavior of a genetic algorithm. A sche-
matic diagram of the system is shown in Figure 1. The
fuzzy system can include rules that relate indicators mea-
suring population distribution characteristics to control
parameters such as population size or mutation rate. The
work reported in this paper is a continuation of the work
described in [7].

Section 2 presents the Set Quality measure used in our
experiments. Section 3 presents a fuzzy evolutionary algo-
rithm architecture and exemplifies how performance can
be improved by modifying the algorithm behavior through
fuzzy control. Section 4 discusses techniques for acquiring
high performance search control strategies.

2 Set Quality Measure

From one or more given sets of solutions the user will
ultimately select a single solution as the “best”. For exam-

ple, in the case of IC placement, a single layout will ulti-
mately be selected for production. The basic idea of the
proposed solution set quality measure is to model the final
selection performed by the user by a selection function
parameterized to account for different possible preferences
wrt. the relative importance of the optimization criteria. By
systematically varying the parameters of the selection func-
tion, a class of functions corresponding to a wide range of
possible user-preferences is obtained. The quality ¢(X) of a
set X is then defined as the expected value of the selection
function when selecting from X while traversing the class of
selection functions.

The measure g is outlined below (a detailed description
can be found in [3]). Let fi(x) € [0, 1] denote the normalized

cost of x € X wrt. the i'th dimension. The selection function
5,,(x) is then defined as

5,0 = Y0 Wi {x) €]

where w = (wy,...,w,) € W is a weight vector. s,, can be

considered to be a simple model of the final choice process
where w represent the relative importance of the optimiza-
tion criteria and the solution selected is the one minimizing
s,, - The solution set quality measure g is then defined as

q(X) = E(min{s (x) | x€ X}) @)
where the expected value E is computed over all we W, a

evaluation
system

genetic
algorithm

application
task

\J fuzzy

inference

genetic

algorithm
parameter

Figure 1. Schematic diagram of the Dynamic Parametric Ge-
netic Algorithm. Genetic algorithm search behavior is moni-
tored and controlled by a fuzzy system.

16 - T r -+ r —r
B
14% s 4
XN

12} s7. e .

10f ® T~ s8 .
N x. AN
S : \,
9 ol 4
E’ 8 ‘&\\

N
= ~ X §
[= I 1ﬁl\' N 4'-,5
N ~ -
6 \, S
Q B ® s6
af 4 Tm 1
[+] X 83
2} X §1 ©§2 :
0 :
0 2 4 6 8 10 12
Dimension 1

Figure 2. Each set is indicated by either circles connected by
adotted line or crosses connected by a dashed line. s4 is a sub-
set of s3, s6 a subset of s& and s8 a subset of s7.)

given weight space. Varying w over W generates a class of
selection functions s, , thus accounting for a range of differ-

ent user preferences.

For practical computation, ¢(X) can be estimated by

=2~

N
x) = Z min{s, () | x € X} 3)
k=1 '

where each w(k) is generated according to the definition of
W and N is the sample size.

Figure 2 illustrates the set quality measure on eight con-
structed sets sl through s8, assuming two optimization
dimensions. The corresponding estimated set quality values
are given in Table 1.

Table 1: Estimated set qualities for sets sl through s8, using (3)
with N = 50, 000.

set sl s2 s3 | s4 s5 s6 s7 s8

q 0.0001 | 0.0762 | 0.2127 | 0.2642 | 0.4130 | 0.4130 | 0.5232 | 0.5253

3 Hybrid Fuzzy-Genetic Algorithms

In this section we demonstrate how an evolutionary algo-
rithm can be controlled by a fuzzy system to improve the
final solution set quality.

1519

3.1 Architecture and Case Study

In the experiments relating to this work, we have designed
a fazzy controller with the following inputs: set quality, set
quality change, and time left (See Figure 3). The inputs and
outputs chosen can be substituted with other indicators and
control outputs. For example, other output parameters con-
trolling crossover probabilities or selection operators can be
controlled using this structure. Further research is warranted
in this area. :

The change in set quality can be measured as follows:

L. -1
Ag - [z@__qg_)) @
X)

where X' is the population at time ¢.

A time-based input was included after considering how
tasks are usually defined; both a problem specification and
deadline are given. Humans faced with a time constraint will
usually alter their strategy by not how much time has
elapsed, but by how much time remains.

Outputs of our system are the change in population size,
and mutation rate. Each of the outputs was coded as a multi-
plier to the current value. In addition, following the parame-
ter update, hard limiting was enforced to bound population
size to [10, 200] and mutation rate to [0.00001, 0.01]. An
additional constraint on the population size was that it could
never shrink to below the size of the non-dominated set.

- Rules used in our experimental controller are:

IF time left is small THEN increase mutation rate
IF Ag is close to zero THEN decrease mutation rate

IF time left is small THEN decrease population size

(These manually constructed rules are fixed and are pre-
sented for illustration purposes only.) The system used trian-
gular membership functions which were combined using the
MIN operator. The membership functions were initially set

q >

————— Apopulation size

b Fuzzy
Aq Controller

- —p Amutation rate
Time Left ————

Figure 3. Inputs and outputs of the fuzzy controller used to
modulate genetic algorithm parameters.

to equally cover the input ranges and then tuned by trial and
error. The output of each rule was a singleton value. The
final values were aggregated using WEIGHTED-SUM
defuzzification.

Initial values for the mutation rate and population size
were set according to a meta-level optimization described in
Section 4.1: population size 153 and mutation rate 0.001315.

3.2 Experiments and Results

The techniques presented in this paper have been investi-
gated using the application briefly described below as a case
study. For a detailed description of the application the reader
is referred to [2].

A class of integrated circuits (ICs) consist of a number of
rectangular blocks. The IC placement problem is that of plac-
ing the blocks in the plane such that a number of competing
objectives are optimized while satisfying given geometrical
constraints, of which the most important is that blocks can-
not overlap. In practice, area, delay, aspect ration, and rout-
ing congestion are among the key objectives. A sample
placement is shown in Figure 4.

The results applying random walk, a static genetic algo-
rithm, an optimized static genetic algorithm, and a dynamic
genetic algorithm to the placement problem for a simple cir-
cuit are given in Table 2 below. '

The random walk algorithm generates random solutions
and updates and stores the set. of non-dominated solutions.
To equalize the search space size, the random walk generated
random genetic strings which are passed through the same
decoding and evaluation routines that the genetic algorithms
use. The static genetic algorithm uses static parameter set-
tings.

[C29 e
- 11
C25 o2 C15
C24
y . y cs3
20 c17 | os 21 cs G5 o
C32 Cl4 b
23 o1
12 o
als .‘22
26 C4 C19
30 c13 o2
o or c31 C9 C18 C10 1CO

Figure 4. A layout of 33 blocks named CO through C32.

1520

Population Size

Mutation Rate

Time

Figure 5. Dynamic population size and mutation rates are
shown in the first two plots, respectively. The bottom plot

shows how ¢ and dg, set quality and Ag change over time.

The optimized static genetic algorithm used a different set
of static parameters for population size, mutation rate, and
bias. These parameter values were obtained by optimizing
the algorithm using a technique presented in Section 4.1.

The dynamic genetic algorithm uses the controller
described in Section 3. An example run produced the
dynamic population sizing and mutation rate shown in
Figure 5.

Table 2: Final g Performance Measures

Algorithm g 9
Random Walk 0.376 0.031
Genetic Algorithm 0.273 0.030
Optimized Genetic Algorithm 0.264 0.012
Dynamic Genetic Algorithm 0.258 0.024

Entries of Table 2 were compiled from ten independent

runs. For each algorithm, the first and second columns report
the average and standard deviation of the final values, respec-
tively.

According to these results, using a genetic -algorithm
improves the final set quality relative to random search. Opti-
mizing the static parameter settings for the genetic algorithm
shows further improvement in both the average final value
and its standard deviation. The standard deviation for this
optimized static genetic algorithm is reduced to less than half
the value attained by the other algorithms. The dynamic
genetic algorithm further improves the average final set qual-
ity, however, the standard deviation increases.

4 Acquiring Search Control Strategies

In this section, we present techniques for acquiring and
refining the dynamic search control strategies. The first
method is based on a meta-level optimization of the fuzzy
rule-base. The second method aims at acquiring knowledge
by monitoring user interaction patterns.

4.1 Meta-level Optimization of the Fuzzy Rule-Base

One approach to acquire the fuzzy rule-based control strat-
egy using a meta-level genetic algorithm technique proposed
in [9].

The fuzzy system is coded as a string of information which
is then searched using a meta-level genetic algorithm. In this
case, the fitness of a fuzzy system will be how well it is able
to maximize a search performance measure through dynamic
control. For example, we used the final set quality after a
fixed amount of CPU time as the performance measure to be
maximized. A diagram showing the relationship between the
meta-level search and evolutionary search algorithm 1is
shown in Figure 6.

4.2 User Interaction Modeling

The meta-level optimization proposed in the previous sub-
section requires a significant amount of computation. Learn-
ing the rule base requires simulating many controllers on
several circuits. However, from a practical point of view, the
search techniques to date may not be efficient enough to
deliver a solution in an acceptable amount of time. There-
fore, it may be advantageous to leverage from the perceptual
capabilities of a human user to assist in the development of
the algorithm control strategy. In this section, we present an
approach that attempts to build a user model through obser-
vation.

The tool described in [2] has a graphical user interface,
allowing the user to interactively view and control the opti-

1521

online/offline
measures

valuatio
system

: Tost
Genstic y
Algorithm functions
Engine

e

genetic
algorithm
paramtars

N~

h:4

Genetic
Algorithm Engine

inference
engine

Figure 6. Meta-level technique for evolving hybrid fuzzy-
genetic multiobjective evolutionary algorithms.

mization process. The current state of the process is continu-
ously displayed to the user and as the optimization
progresses and knowledge of obtainable cost trade-offs is
gained, the user can perform various actions aiming at
obtaining the best possible solution set relative to his/hers
preferences.

The current state of the optimization is visualized in the
form of graphs showing the cost trade-offs of the solutions
obtained so far. Up to four independent graphs can be shown
simultaneously, and each graph can be 2- or 3-dimensional
with any of the four cost criteria on any axis.

Given this information, the user can perform three types of
actions:

1. Redefine the notion of a “good” solution. This is done by
adjusting the values of a 3-dimensional goal vector, defin-
ing a goal value for each of the three criteria optimized. A
preference relation between solutions which incorporates
the goal vector, is the key component of the rank-based
selection mechanism used in [2]. Hence, by adjusting the
goal vector, the user can directly affect the sampling of
the search space and can focus the search, or “zoom in”,
on the region of interest.

2. A simple hillclimbing algorithm can be executed on a
selected solution. A desired direction in the cost space of
the hillclimbing process can be specified. For example,
the user can specify that the hillclimber should attempt to
improve as much as possible wrt. the second optimization
criterion, allowing a cost increase wrt. the first and third
criterion of at most 5 and 10%, respectively.

3. The control parameters of the GA, such as population

size and mutation rate can be adjusted.

To evaluate whether search performance can be improved
by interactively controlling the optimization process, the fol-
lowing experiments have been performed. For each of five
example circuits, the algorithm was executed 10 times non-
interactively, using a 1 CPU-hour time limit per run. A single
interactive run was then performed for each circuit, defining
the time limit to be 1 hour, wall-clock time, i.e., including the
time spent interacting with the tool.As a baseline compari-
son, a random walk was also executed 10 times per circuit,
using a 5 CPU-hour time limit per run.

The obtained set qualities were evaluated using the mea-
sure described in Section 2 and results are shown in Table 3.

Table 3: Each entry for the non-interactive executions and the
random walk (RW) is the average value obtained from 10 runs
followed by the standard deviation in brackets. The number of
blocks for each circuit is indicative of the search space size.

0. of set quality
Circuit bl ’ X
ocks interactive | non-interactive RW

xeroxF 10 0.572 0.741(0.073) | 0.888(0.045)
hpF 11 0.605 0.638(0.033) | 0.822(0.029)
spertF 20 0.096 1.886(0.640) | 2.178(0.010)
ami33F 33 0.690 0.759(0.058) | 1.152(0.048)
ami49F 49 0.641 0.676(0.093) | 1.197(0.052)

As can be seen from the table, the output sets obtainec
non-interactively in 1 hour are always significantly bette:
than those obtained by the random walk in 5 hours. But more
interestingly, all of the five sample executions in interactive
mode yield better results than the average non-interactive
execution. Furthermore, the number of circuit evaluation:
performed in interactive mode averages only about 78% o
that of the non-interactive mode because of the idling proces
sor during user-interaction. Hence, user-interaction signifi
cantly improves the efficiency of the search process, yielding
a better result quality while performing less computationa
work.

The user’s actions implicitly embody search control strate
gies and in the experiments described above, these strategie
yielded high performance. This information can be used i
two ways: cither the knowledge can be modeled using vari
ous rule based techniques, i.e. a fuzzy system, or this knowl
edge can be used to identify the most significant actions
Although in theory the second use is covered by the first, i
practice, robust general techniques for rule-extraction still d
not exist.

To explore the complimentary use of both the informatio
gained from the interactive use and the meta-level techniqu
described in Section 4.1, we focus on the hill climber invoce

tion strategy. Further investigation, using the interactive tool,
revealed that use of the hillclimber, referred to as action 2,
accounted for most of the improvement reported in Table 2.

A manually constructed hillclimber invocation strategy
yield high performance, however not at levels obtained by
interactive use of the tool using all three types of actions.
This simple strategy invoked the hillclimber to perform 200
steps at regular intervals. This disparity in performance
between the interactive runs and the simple strategy can be
attributed to deficiencies in the simple hillclimber invocation
strategy in either choosing the right solution to perform hill-
climbing on or even when to invoke hillclimbing.

We proceeded to use the meta-level optimization approach
to improve the hillclimber invocation strategy. In these
experiments, we used a fuzzy system to model the strategy
and a simple genetic algorithm to find a high performance
strategy. Inputs to the fuzzy system were current set quality,
change in set quality, and time left. Output of the system was
a binary decision variable. In future experiments, the output
will represent the number of hillclimbing steps. The perfor-
mance of the hybrid search algorithm was measured by
examining the final set quality value after a fixed amount of
time (1800 cpu seconds). The search is actually performed
three times and the average of the independent runs is used
by the meta-level search algorithm to determine perfor-

mance. Table 4 reports average set quality values and stan--

dard deviations for a random walk, simple hillclimber
invocation strategy, and an automatically constructed fuzzy
invocation strategy. (Note that xeroxT is not identical to
xeroxF in Table 3).

Table 4: Comparison of random walk, a simple hillclimber
invocation strategy, and an automatically constructed fuzzy
hillclimber invocation strategy. Entries represent averages over
independent 10 runs on circuit xeroxT.

Algorithm g 95
Random Walk 0.1838 0.0048
Simple Hillclimbing 0.1563 0.0173
Fuzzy Hillclimbing 0.1553 0.0203
5 Summary

In this paper, we presented a fuzzy/genetic multiobjective
optimization algorithm and its application to component
placement. Unlike single objective optimization algorithms,
the output is a set of solutions rather than a single solution. In
our proposed scheme, a fuzzy system is used to embed
genetic algorithm control strategies to effect the quality of
the output set.

1523

Within this framework, we presented two techniques for
acquiring search algorithm control strategies: meta-level
optimization and user modeling techniques. We have
obtained high performance search control strategies using
these techniques both separately and cooperatively. When
used in combination with the meta-level optimization, the
user modeling is a key element because it can lead to a sig-
nificant reduction in the space of control strategies, thereby
increasing the feasibility of meta-level optimization.

Acknowledgments

This research is supported in part by NASA Grant NCC-2-
275, ONR Grant N00014-96-1-0556, LLNL Grant LLL-B-
291525, and BISC program of UC Berkeley. The authors
would also like to thank Prof. David Wessel and the Center
for New Music and Audio Technologies at UC Berkeley for
use of computing resources. Dr. Esbensen is supported
mainly by the Danish Technical Research Council.

References and Related Publications

[1] Delong, K.A. (1975) An Analysis of the Behavior of a Class of
Genetic Adaptive Systems, Ph.D. Dissertation, University of
Michigan, University Microfilms No. 68-7556.

[21 Esbensen, H., Kuh, E.S., “EXPLORER: An Interactive Floor-
planner for Design Space Exploration,” Proc. of the European
Design Automation Conference, 1996 (to appear).

[3] Esbensen H., Kuh, E.S., “Design Space Exploration Using the
Genetic Algorithm,” Proc. of the IEEE International Sympo-
sium on Circuits and Systems, 1996, Vol. IV, pp. 500-503.

[4] Fonseca, C.M. and Fleming, P.J. (1993) “Genetic Algorithms
for Multiobjective Optimization: Formulation, Discussion, and
Generalization,” in Proc. of the Fifth International Conference
on Genetic Algorithms, ed. S. Forest, San Mateo, CA: Morgan
Kaufmann.

[5] Grefenstette, J.J. (1986) “Optimization of Control Parameters
for Genetic Algorithms”, IEEE Trans. on Systems, Man, and
Cybernetics, Vol. 16, No. 1.

[6] Holland, J. H. (1975) Adaptation in Natural and Artificial Sys-
tems, MIT Press, Cambridge, MA.

[71 Lee,M. A., Esbensen, H., and Lemaitre, L. (1995) “The Design
of Hybrid Fuzzy/Evolutionary Multiobjective Optimization Al-
gorithms,” Proc. of the 1995 IEEE/Nagoya University WWW
on Fuzzy Logic and Neural Networks / Evolutionary Computa-
tion, pp. 118-125.

[8] Lee, M. A., and Esbensen, H., (1996) “Multiobjective Optimi-
zation using Adaptive Fuzzy/Evolutionary Algorithms,” Proc.
of the 1996 International Society for Computers and their Ap-
plications (ISCA’96), San Francisco, CA, pp. 67-70.

[9] Lee, M. A. and Takagi, H. (1993) “Integrating Design Stages of
Fuzzy Systems using Genetic Algorithms,” Proc. IEEE Int.
Conf. on Fuzzy Systems (FUZZ-IEEE '93), San Francisco, CA,
pp.612-617.

[10] Lee, M.A. and Takagi, H. (1993) “Dynamic Control of Genetic
Algorithms using Fuzzy Logic Techniques,” in Proc. of the
Fifth International Conference on Genetic Algorithms, ed. S.
Forest, San Mateo, CA: Morgan Kaufmann.

Reinforcement Learning in Fuzzy Dynamic Programming

Hamid Berenji
Intelligent Inference Systems Corporation
Computational Sciences Division
Moffett Field, CA 94035

0-7803-3645-3/96 $5.00©1996 TEEE 1524

