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Abstract

In this paper, we present evolutionary algorithms
based multiobjective optimization techniques for intelli-
gent systems design. Multiobjective optimization tech-
niques are necessary in situations where the performance
of a system is based on multiple, possibly conflicting
objective whose aggregation cannot be easily articulated.
The evolutionary algorithms approach presented in this
paper employs a search mechanism that treats each of the
objectives independently, avoiding the objective aggrega-
tion step. A key feature of our techniques is that they out-
put a set of solutions rather than a single solution. To
demonstrate how our techniques can be used to support
system design, we apply them to the task of designing a
fuzzy control system. In the final part of the paper, we pro-
pose metrics for multiobjective optimization algorithm
performance and techniques for employing them in the
design an adaptation of evolutionary algorithms based
multiobjective optimization.

1 Introduction

In many real world contexts, multiple metrics must be
considered simultaneously when evaluating the perfor-
mance of a system. However, aggregating these metrics in
a manner consistent with our intentions can be compli-
cated by our ignorance or our inability to accurately artic-
ulate our intentions. For example, when designing a
system, an engineer always considers the system complex-
ity and performance trade-off. In this example, the task of
the engineer is not only to develop a single solution, but to
understand the trade-offs involved with such a solution:
what is the best expected performance for a given amount
of complexity. The solution in such problems is not a sin-
gle solution, but rather a set of solutions that represent the
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set of best alternatives, or Pareto Optimal set. The notion
of Pareto optimality is based on the concept of dominance.

Let f(x) = (f{(®), ..., f,(x)) represent a vector valued

objective function and « and v represent two solutions. u

dominates v, written u< v,

7it f) S F ) AQGi: f(w) < fv. Solutions included
in the Pareto Optimal Set are those that cannot be
improved along any dimension without simultaneously
being deteriorated along other dimension(s). In this paper,

we present an evolutionary algorithm approach to multiob-
jective optimization.

if and only if

2 Multiobjective Evolutionary Algorithms

Evolutionary algorithms are population based stochas-
tic search strategies modeled after natural genetics mecha-
nisms[5]. An individual of a population encodes a solution
as a string of parameters, which is then subjected to
genetic operations such as mutation and crossover opera-
tions. An individual’s likelihood to pass information onto
the next generation is determined by its ability to thrive in
the target environment: evolutionary algorithms imple-
ment a survival of the fittest policy.

Among the main steps for using evolutionary algo-
rithms are:

* design a solution representation

*  design a genetic encoding of the solution

» design an appropriate evaluation function

» choose appropriate algorithm parameter settings

Evolutionary algorithms are well suited for multiob-
jective optimization problems because of their population
based nature. The population at the end of a run represents
the solution. The main idea behind using evolutionary
algorithms for multiobjective optimization is to search for
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a good approximation of the true Pareto set. To use evolu-
tionary algorithms in this context requires a modification
of the selection strategy.

In practice, virtually all evolutionary algorithms use a
single valued function to drive the selection; that is, the
performance of an individual is aggregated into a single
value that determines its selection probability. For exam-
ple, the selection probability can be a direct function of a
weighted linear combination of different performance
metrics. In this case, the weightings determine the relative
importance among the objectives. However, as mentioned
in the previous section, it can be difficult to combine satis-
factorily the objectives into a single value without prior
knowledge about the trade-offs.

To address this problem, we compute selection proba-
bility based on the dominance concept outlined in Section
1. The basic idea is to first compute the ranking of each
solution in the set according the following definition:

r3,X) = {xe X| (x<, 9} 1)

where y represents a solution and X represents a set of
solutions. This ranking mechanisms collapses the
multidimensional objective space into a single dimension.
The ranking is then passed through a function, i.e. linear
or exponential, to compute the selection probability. The
parameters of the selection function can be used to balance
the exploration and exploration behavior of the algorithm.

3 Experiments and Results

As a demonstration of our technique, we apply a multi-
objective evolutionary algorithm to the design a fuzzy sys-
tem for controlling the cart-pole system.

One of the many variations of this classic problem is to
attach a pole, using a hinge, to a cart that slides on a fixed
length track. Using this definition, the objective is some-
times stated as balance the pole and center the cart as fast
as possible by applying a force in either direction parallel
to the track. In the literature, the performance of such a
system is often formulated in the following way:

T
cart,, () = ¥ (x(t)-x,)* (3)

t=0

T
pole,,,,(T) = ¥ (8()-9,)° 3)

t=0

performance(T) = cart,, . T) + 5”018:"0‘1') (4)

where x indicates the cart position, 0 represents the pole
angle measured relative to the line perpendicular to the top
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of the cart, and T is the amount of time allotted for a trial.
In our experiments, the system fails when the pole angle
falls below Note that the performance measure, (4), should
be minimized and is a linear sum of two components that
measure the cart and pole performance independently.
Systems optimized according to this performance measure
will behave differently depending on the value of B. The
problem lies in choosing the proper weighting a priori. In
reality, there will be different solutions that solve the same
problem, but behave differently. Our goal is not to develop
a single solution, but a set of solutions that approximates
the set of best alternatives. Knowing the set of best
alternatives will lead to more informed design decisions.

In our experiments, we demonstrate how the cart and
pole performance metrics can be treated independently.
The next two subsections describe a fuzzy system archi-
tecture and a genetic coding. The representation is based
on the notion that the system is allowed a fixed number of
rules with which to solve the task at hand. The last subsec-
tion presents experimental results.

3.1 Shared-Triangular Fuzzy System Architec-
ture

The Shared-Triangular representation uses asymmetri-
cal triangular membership functions and the min operator
to synthesize multidimensional membership functions[6].
Each triangular membership function is specified by its
center, left base width, and right base width.

Rules cover the input space by selecting and combin-
ing the one-dimensional membership functions from a
globally defined set (all rules have access to the same set
of membership functions). There is also a possibility for a
rule to have no membership function associated with a
particular input dimension, which implicitly forces the
rule to cover entirely an input dimension.

Each rule has an additional parameter to modify, or
hedge, the rule firing strength, If we define p(%) as the
raw rule firing strength, then the modified firing strength
of a rule is given by:

W), %)

where p represents the degree of hedging. The consequent
output of each rule has a TSK form with the output of the
system computed by taking a weighted sum of the outputs
of all firing rules[8].

The total number of system parameters in an » -dimen-
sional system with r rules and a maximum of m member-
ship functions per input dimension is:

Imn+r(2n+2). ©)
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Figure 1 Shared-Triangular genetic representa-
tion showing rule validity parameter and rule
power parameter. Note that there are n+1 TSK
parameters.

Each rule requires »+1 parameters, because the
membership function associated with each dimension
must be specified (we implement this via an indexing
scheme).

3.2 Genetic Representation

The genetic representation for the Shared-Triangular
fuzzy systems is shown in Figure 1. The genetic code is
made up of two different macro structures: membership
function genes and rule genes. The membership genes
specify distance between adjacent triangle centers and the
left and right triangle base widths. The rule genes have
locations for the membership function set indices for each
input dimension as well as a validity bit. There is also a
provision for completely covering an input dimension
when the index is set to a special value.

3.3 Experimental Results

The design of fuzzy controllers for the cart-pole prob-
lem using our technique was simulation based. The perfor-
mance metric we used was a slightly modified version of
(4) (The measure was modified by starting the system
from several different initial conditions and summing the
performance over all trials.) In addition, to conserve com-
putational resources and discourage failures, in the case of
failures, we stopped the trials early and added a value pro-
portional to the time left in the trial.
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Figure 2 Output set of the evolutionary algorithm multiobjective optimization. The upper left and
lower right plots show a histogram of the final solution set along each of the performance axis.
The upper right and lower left show the solution set in the objective space.

362



In Figure 2, we show the output of our results. In the
upper left and lower right, histograms of the final solution
set as measured against each of the two objectives (the
upper left is pole response and the lower right is cart
response). The lower left and upper right plot the final
solution set in the objective space. The plot in the lower
left is a magnification of the objective space near the ori-
gin.

The output of this technique is a set of solutions, Solu-
tions contained in the set approximated the set of best
alternatives. From this set, we can identify the trade-offs
and choose the solution that best satisfies our require-
ments. To illustrate this point, (3) compares the dynamics
of two solutions chosen from the final set: one that has
superior cart response relative to the other and one that has
superior pole response relative the first.

4 Multiobjective Search Performance Met-
rics

One of the key features of our proposed approach is
that the output of the optimization algorithm is a set of
points as opposed to a single point. Using this concept as a
guideline, we should consider measuring the performance
of our algorithm based on the quality of the output set.
Unlike single objective functions, where final solution
quality can be measured using a single point, we would

like to consider metrics to compare the approximation
quality of two sets. For example, when is a cluster of
points better than a sparsely distributed set of points.
These metrics can be instrumental in designing the search
algorithm, and determining and adapting its parameter set-
tings.

As a first attempt to measure set quality, we have
developed a metric that models the final selection per-
formed by the user using a parametrized function that
specifies the relative importance among individual objec-
tives. We then measure the quality of a set by sampling the
space of possible selection functions as given by this func-
tional structure. For illustration purposes, consider a linear
weighted combination represents a simple structure, where
the linear weightings give the relative importance of each
objective. We now define the quality ¢(X) of a set X as the
expected value of the sclection function when selecting
from X while traversing the class of selection functions.
The measure ¢ is introduced and described in detail in [3].

Figure 4 illustrates the set quality measure on eight
constructed sets s1 through s8, assuming two optimization
dimensions. The corresponding estimated set quality val-
ues are given in Table 1. Except for sets s5 and s6, set
quality decreases strictly with the set number, as seems
intuitively reasonable. However, sS is not better than s6
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Figure 3 Comparison of the dynamics of two controllers chosen from the final solution set. One
exhibits superior cart response while the other exhibits superior pole response.
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Figure 4 Each set Is indicated by either circles connected by a dotted line or crosses

connected by a dashed line. s4 is a subset of s3, s6 a subset of §5 and s8 a subset of s7.

because the solution with cost (8,7) is non-convex relative
to s5.

Table 1. Estimated set qualities for sets s1 through s8, after sam-
pling 50,000 selection function parameter sets.

act sl 32 3 34 35 26 37 38

~

q 0.0001 | 0.0762 | 0.2127

0.2642 | 0.4130 | 04130 { 0.5232 | 0.5253

5 Summary and Conclusions

In this paper we presented an evolutionary algorithm
based multiobjective optimization technique for intelligent
systems design. One of the key characteristics of this
approach is that the output is a set of solutions rather than
a single solution. This is particularly useful in many real
world contexts where multiple, possibly competing objec-
tives are involved and the relationship between the objec-
tives is not easily articulated or known. Although we
applied our technique on a fuzzy systems design task, the
technique will easily generalize to other tasks involving
multiple objectives, such as component layout and finan-
cial engineering. We have also presented techniques for
measuring the performance of multiobjective optimization
algorithms. With further refinement, these metrics will
provide us with the tools necessary for designing algo-
rithm behavior and performance.
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