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Abstract
In multicriteria optimization determination of the Pareto-
optimal front, is of utmost importance for decision making.
Simultaneous parallel search for multiple members of an
evolutionary algorithm can lead to effective optimization.

In a previous approach [6] extending the ideas of a for-
mer work of Lis and Eiben [5], we proposed the multi- sex-
ual-parents-crossovers genetic algorithm (MSPC-GA), a
method which by allowing multiple parents per sex and muiti-
ple crossovers per mating action attempted to balance the
explorative and exploitative efforts, which are present in any
evolutionary algorithm. The performance of the method pro-
duced an evenly distributed and larger set of efficient points.

Following this concept the present proposal incorpo-
rates a hybridisation of global and local search to the multi-
plicity approach. Now the evolutionary approach combined
with simulated annealing and neighbourhood search pro-
duced better results.

Keywords: multiobjective optimisation, evolutionary al-
gorithms, local search, Pareto optimality. .

1 Introduction

Many real world problems, mostly engineering, are char-
acterized by the simultaneous achievement of several goals.
Each of these goals corresponds to the optimum of an ob-
jective function to be optimized. In most cases, the objec-
tive functions are in conflict, being infeasible to optimize
any of the objective functions without damaging at least
one of the others. This is known as the concept of Pareto
optimality [12]. The simultaneous optimization (maximiza-
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tion and/or minimization) of these multiple objective func-
tions constitutes the problem we are trying to solve. But this
is not simple. Most of multi-objective optimization prob-
lems tend to be characterized by a very large set of admis-
sible solutions, known as the set of Pareto optimal solutions
or efficient points. These final solutions conform the so-
called Pareto front which is the global optimum of the
multi-objective problem considered. Knowledge of the
complete Pareto front is very important when search is
applied before decision making.

Study of Multiobjective Evolutionary Algorithms
(MOEAs) is well established within the Evolutionary Com-
putation field. Since the first work by Schaffer [14] and
Fourman [7] many researchers have gone more deeply in
this subject ([3, 4, 5, 13, 15, 16, 18, 19, 20, 21]). Most of
these studies have been motivated by a suggestion of a non-
dominated Genetic Algorithm (GA) outlined in [8] based
on the concept of Pareto optimality. The primary reason for
these studies is a main feature of GAs: population ap-
proach. Since these kinds of EAs work with a population of
solutions, multiple Pareto optimal solutions can be found in
a population in a single run [4]. At the same time, little
research has been done in the field of local search methods
applied to multi-objective optimization (e.g. [10]) and com-
bining local search with a population approach (e.g. [11]).
In our work a hybrid MOEA based on a non-canonical GA
and two local search methods, Simulated Annealing (SA)
and Neighborhood Search (NS), is introduced.

Most, if not all, of MOEAs designed and tested so far
seek to find the true Pareto front by finding the best non-
dominated set of solutions. But this does not guarantee that
the discovered solutions effectively belong to it. to over-



come this problem, post-optimal testing may be performed
to establish Pareto-optimality of members already in the
non-dominated set [4]. This was the motivation behind the
experiments reported in this paper.

In an earlier work [6] some modifications were made
to the multisexual genetic algorithm (MSGA) of Eiben and
Lis [5] to allow multiple crossover between multiple par-
ents per sex, and MSPC-GA was introduced.

The present paper is involved with improvements of
the behaviour of MSPC-GA. Here we attempt to ameliorate
performance by locally perturbing the already found solu-
tions in different ways. Local perturbation was achieved by
adding local search heuristics in different stages of the

current MSPC-GA. So, the performance of this new algo- .

rithm called multi-sexual-parents-crossovers with local
search (MSPC-LS) using testing functions as cited in
(14,17} is contrasted here against MSPC-GA.

2 Pareto optimality and multisexual
evolutionary algorithms

In an m-objective optimization problem the search
space can be seen as an m-dimensional space and therefore
each solution is an m-vector of attribute components.

The Pareto criterion simply states that a solution is
better than another one if it is so good in all attributes, and
better in at least one of these attributes. More formally,
let< and > be the binary relations denoting ‘worse’ and
‘better’, respectively, where ‘worse’ means

fitx1) < fifx2) or fifx)) = fifxa).
Then for a maximization problem having more than one
objective function (f;, with j = 1, 2,....,m and m > 1), a solu-
tion x, is-said to dominate other solution x,, if both follow-
ing conditions hold: )
1. The solution x, is no worse than x; in all objectives;
fixi) not=< fixz) V j =1, 2,...,m objectives.

2. The solution x; is strictly better than x, in
at least one objective; fi(x;) > fi(x,) for at least one je
{1,2,..mj.

If any of the above conditions is violated, the solution
x; does not dominate the solution x;. But if only the first
condition holds and the second solution is not worse than
the first then a conflict exists between these two solutions
and no one dominates each other, they are said to be non-
commesurate. This happen for instance, when given arbi-
trary functions £, fi,, and F={ fil fi# f, andf# f,,,}, with i,
k 1 € [1,.,M}) it results fifx;) > fi(x;)and fi(x;) > fi(x,),
and, fix;) = fi(x,), V fieF.

MSGA as the first multisexual evolutionary approach
assigns a sex, to each individual. There are as many sexes
as optimization criteria exist. In this way each individual is

specialized and tries to fulfil certain optimization criterion.
An individual is represented as the corresponding genetic
code plus a sex marker, which initially can be randomly set.
Consequently the population is divided into subpopulations,
each one in accordance to some optimization criterion and
individuals are evaluated correspondingly through the ap-
propriate fitness function.

Once individuals are evaluated they are sorted ac-
cording to their fitness and the rank obtained is the basis for
future selection. Ranks are determined independently for
each sex.

Recombination is performed as follows: one individual
is chosen, as a parent, from each sex and then they undergo
uniform scanning crossover, which generates a single off-
spring. Each gene in the child is provided from any of the
corresponding genes in the parents with equal probability.
The sex of the child is inherited from that parent, which
supplied the largest number of genes. If more than one
parent supplies to the offspring the same maximal number
of genes then the sex of the offspring is randomly chosen
from these parent’s sexes. Mutation takes place only in the
genetic code of the chromosome.

MSPC-GA differs from MSGA in the following:

e uses proportional selection instead of ranking selec-
tion.

o selects an equal number of multiple parents per sex,
not only one parent as MSGA does.

e uses a multirecombination approach called mulitiple
crossovers per mating action (MCPMA), which ap-
plies repeatedly uniform scanning crossovers on the
selected parents.

e for insertion in the next population, it gives prefer-
ence to those offspring, which are classified so far,
as globally non-dominated (belonging to the Py,,,»
set).

3 The hybrid approach

Referring to Pareto optimality we adopt the notation used
by Van Veldhuizen and Lamont in [18]. During a MOEA
execution, a "local” set of Pareto optimal solutions is de-
termined at each generation and termed P,,,,.,. This MOEA
implementation uses a secondary population termed Py,.
that stores non-dominated solutions found through the gen-
erations. Because a solution's classification as Pareto opti-
mal depends upon the context within which it is evaluated,
the corresponding vectors of this last set must be periodi-
cally tested, removing solutions that became dominated. To
reflect the possible changes in membership between gen-
erations the variable ¢ is added to represent the completion
of t generations. Pp,..(0) is defined as ¢ (empty set) and
Proun as the final set of solutions returned by the MOEA.



Of course, the true Pareto optimal solutions set (termed
P...e) is not explicitly known for most of problems of any
difficulty.

4 Implemented techniques

In what follows when referring to the evolutionary algo-
rithm we adopt a notation similar to that used by Bick
[1,2]. :

Let u be the population size, n, the number of sexes
(objectives), n; the number of parents per sex and n, the
number of crossovers. These are the main parameters of the
MSPC-GA. Given P(t) = (ay(t), ..., a,(t)) € I" a population
of u individuals at generation 7. Then within the cycle cre-
ating the next generation, selection, recombination and
mutation are described as the following operators

These operators also depend on additional parameters
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©,, 6,, and O, which are features of the operator and repre-
sentation of individuals. A termination criterion ©, is also
defined.

In the sequel, a brief sketch of the MSPC used allow-
ing multiple crossovers on multiple parents per sex, com-
bined with local search is shown.

In what follows this algorithm is called multi-sexual-
parents-crossovers with local search (MSPC-LS), and
returns PFy,o.,, the Pareto front set corresponding to Prown
set.

MSPC-LS algorithm

begin

Input: .ur ng, 1y, Ny, @s: Qm » @rr 61
Output: PF,,,n

t<0
initialise(P(z)), the initial population
evaluate(P(t))
Pirnown(t+1) < select-nondominated(P(z), Prnown(t) )
while the termination criterion ©, does not hold
i<0
while the new population is created
MPy(t) « select(P(t), n;, ©,)
Oi(t) « recombine(MP,(t), n,, ©,)
O'(t) < mutate(O,(t), 6,)
1 0"(t) « Local-Search(0'(1))
evaluate(0"(1))

=i+l
end while

Pknown(t + 1) « Pknown(t) UPcurrem
e+l
end while
(2) Praown < Local-Search(Py,,,n)
end

Let MP; (1) be the set of multiple parents at the ;” selection step in generation ¢ to create the next generation ¢+1,
O; the set of offspring produced by multiple crossover applied to MP;,
O,0na the subset of these new offspring that are globally nondominated,

// select n;parents of each sex
// apply n, crossover operations over this ; Multiple Parents set
// to produce n, offspring

Opond < select-nondominated(O0"(t), Piuown(?))
if 0,4 <> ¢ then insert 0,,,, into the new population P(r+1)
else insert n,/2 offspring randomly chosen from O*(z) into the new population P(r+])

P current € select-nondominated(P (t +1 )9 P km)wn(t))

Fig. 1: The MSPC-LS Algorithm



As it can be seen in the preceding code, after a mul-
tiple parents set is selected and the corresponding opera-
tors are applied, the globally non-dominated children,
generated from the current multiple parents set, are col-
lected in O,,,q set. Globally non-dominated, stands for
those children that are superior or non-commesurate when
contrasted against the current solutions already in
Pinown(t). They will be chosen as new alternative solutions.
If O,pnq is not the empty set, then all the solutions be-
longing to it are copied into the next generation. Other-
wise, half of the generated children are randomly chosen
to be copied into the next generation. This later insertion
strategy will help to maintain genetic diversity.

Instructions numbered (1) and (2) correspond to
modifications made to the original MSPC-GA algorithm.
In some cases, Local-Search stands for a SA method and
in other cases for an NS one. These two local heuristics
were either used together or separated, in different cases.

The local search methods were implemented in such
a way that they do not only modify the genotypés, and
eventually the phenotypes, of the current already found
solutions (Pareto optimal or not). In addition to this if, by
applying any of these methods, new non-dominated solu-
tions are found (new means that they are not already in
Pinown(t)) they are added to the current Py,,,..(t) set. The
mentioned methods are then applied to the new added
solutions too.

5 Experiments

After many initial runs the following experiments were
more deeply studied because, according to the preliminary
results, best performance was obtained with them. The
four following groups of experiments were conducted and
their performance evaluated on the functions detailed in
the next section:

1. MSPC-GA no local search is considered. Some re-
sults are listed in [6].

2. MSPC-LS1: Once MSPC-GA returns Pi,,.. Sset,
applies a local search (SA) to each solutions in Py,
Corresponds to sentence numbered (2) described in

_the code of the preceding section.

3. MSPC-LS2: Each time one individual has to be
evaluated a local search (SA) starts with this individ-
ual as the starting point. Corresponds to sentence
number (1).

4. MSPC-LS3: After MSPC-LS2 returns the Py, S€t, a
local search (NS) is applied to every individual in the
set.

5.1 Test Problems and Experimental Results

To evaluate the performance of MSPC-LS the algorithm
was tested on the same problem suite used in [6]. They are
typical multi-objective problems. These problems and the
corresponding MSPC-LS parameters are listed bellow.
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Problem I Srinivas and Deb [17]
Minimize f] ()c1 ,x2) and f2(x1 ,x2) where

1

J1(x1:x5) =(x12 +x%)8

‘ 1
fa(xy09) = ((x =092 +(x, 05 )4
with -5< X ,x2S 10
Population size: 30
Crossover rate : 0.8
Mutation rate : 0.01

Chromosome length: 32

Problem 2: Schaffer F3 [14]
Minimize f,(x)and f,(x) where

-x if x<1
-2+x if l<x<3,
fl (x)= .
4—x if 3<x<4
—4+x if 4<x
fo0 = (x=-952
with -5<x<10
Population size: 100
Crossover rate : 0.3
Mutation rate : 0.001

Chromosome length: 16

Problem 3. Schaffer function F2 [14].
Minimize f,, (x)and f,,(x) where

f 21(x) =X 2
2

f22(x) =(x-2)

with —6<x<6
Population size : 100
Crossover rate 0.85
Mutation rate 0.01
Chromosome length: 14

For all versions of MSPC-LS the PF,o.. Size was li-
mited to store 1200 efficient points. Experiments were
undertaken for diverse values of n; and n, on each func-
tion. In general, good results were achieved for values of
n; and n, between 2 and 4. In this section we report results
obtained assigning values n; = n; = 3.

The following figures show relevant results.



MSPC-LS1 versus MSPC-GA

In Problem 1 after 100 generations 441 non-dominated
solutions, were found under MSPC-GA (Fig. 1)and 415
under MSPC-LS1 (Fig. 2), but here a more evenly distri-
bution of points is obtained showing a better delineated
Pareto front.

The reduction in the number of efficient points can
be explained as follows. Applying MSPC-LS1 the local
search continues in the PF,,,,, set obtained under MSPC-
GA and many of those points (not only the ancestors used
in the SA algorithm) become dominated and disappear as
PF0wn is updated.

For the remaining problems the number of non-
dominated solutions found was incremented. In Problem 2
after 600 generations 585 and 798 non-dominated solu-
tions, were found under MSPC-GA (Fig. 4) and MSPC-
LS1 (not shown), respectively. In Problem 3 after 200
generations 583 and 799 non-dominated solutions, were
found under MSPC-GA (Fig. 6) and MSPC-LS1 (not
shown), respectively
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Fig. 2: The Pareto front for Problem 1, MSPC-
GA. 441 efficient points
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Fig. 3: The Pareto front for Problem 1, MSPC-
LS1. 415 efficient points.

MSPC-LS2 versus MSPC-GA

Under MSPC-LS2 the local search (SA) is applied each
time an individual is created. For both, Problem 2 and 3
the number of non-dominated solutions reached the
maximum storage capacity of 1200.
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Fig. 4: The Pareto front for Problem 2, MSPC-GA
585 efficient points.
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Fig. 5: The Pareto front for Problem 2, MSPC-
L.S2. 1200 efficient points.
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Fig. 6: The Pareto front for Problem 3, MSPC-GA
583 efficient points.
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Fig. 7: The Pareto front for Problem 3, MSPC-
LS2. 1200 efficient points.

For problem 1 a further reduction in the number of
efficient points was observed, only 205 points were found.
This limitation of the variants LS1 and LS2 lead us to
implement LS3.

MSPC-LS3 versus MSPC-GA

MSPC-LS3 adds a final NS local to each individual of the
Prnown set provided by MSPC-LS2. As a result the algo-
rithm found 1200 efficient points for all three problems
(the maximum number allowed). Figure 8 show the re-
sulting Pareto front for problem 1, the hardest of the test
suite.

Table 1 summarises the number of efficient points
found under each of the discussed algorithms.

MSPC-LS3
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Fig. 8: The Pareto front for Problem 1, MSPC-
LS3. 1200 efficient points.
Problem 1 | Problem2 | Problem 3
MSPC-GA 441 585 583
MSPC-LS1 415 798 799
MSPC-LS2 205 1200 1200
MSPC-LS3 1200 1200 1200

Table 1: Results under MSPC-GA and MSPC-LS
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6. Conclusions

Recently MSPC-GA, emphasising multiplicity of some of
the techniques used in evolutionary computation, was pro-
posed as a new approach to face multicriteria problems. In
that work it was allowed multiple parents per sex and multi-
ple crossovers per mating. Parent’s selection rewarded for
reproduction those best performer individuals. Moreover,
offspring selection for replacement favoured those new
created individuals that are prone to reside in the Pareto
front. If no one fulfilling that condition exits then a random
selection is done to maintain genetic diversity.

The present proposal attempts to enhance performance
by means of a hybrid approach, MSPC-LS, ‘using both
global and local search and maintaining the main character-
istics of the earlier proposal.

Three versions of MSPC-LS were implemented. LS1,
simply adds a final local search stage to MSPC-GA, using
simulated annealing. LS2 applies simulated annealing each
time a new offspring is created. LS3, adds a final local
search stage to LS2 using neighbourhood search .

When contrasting both methods, current results outper-
form previous findings with the same parameter settings on
the same problem test suite. Distribution of efficient points
is now better in all cases. Also, all three variants enlarge the
size of the Pareto front for problems 2 and 3. For the hard-
est problem 1, LS3 is the only one reaching this later goal.

These results are promising and encourage us to
deep forward investigation by testing MSPC-LS on harder
multicriteria problems to establish the abilities and possi-
ble limitations of this approach. :
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