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Multiobjective Programming Using Uniform Design
and Genetic Algorithm
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Abstract—The notion of Pareto-optimality is one of the major thenx; is at least as good as, with respect to all thé\/ ob-
approaches to multiobjective programming. While it is desirable jectives (the first condition), anst; is strictly better thanx;
to find more Pareto-optimal solutions, it is also desirable to find with respect to at least one objective (the second condition).
the ones scattered uniformly over the Pareto frontier in order to . . S
provide a variety of compromise solutions to the decision maker. Thgrefore,xl i strictly better. thanc,. If no other S_OIUt'On IS
In this paper, we design a genetic algorithm for this purpose. We Strictly better tharx;, thenx; is called aPareto-optimal solu-
compose multiple fitness functions to guide the search, where eachtion. A multiobjective programming problem may have multiple
fitness function is equal to a weighted sum of the normalized objec- Pareto-optimal solutions, and these solutions can be regarded as
tive functions and we apply an experimental design method called o pagt compromise solutions. Different decision makers with
uniform designto select the weights. As a result, the search direc- . . .
tions guided by these fitness functions are scattered uniformly to- qn‘ferent preferenC(_a may sglect different Pareto_-opnmal _SOIU'
ward the Pareto frontier in the objective space. With multiple fit-  tions. [t may be desirable to find all the Pareto-optimal solutions,
ness functions, we design a selection scheme to maintain a goodo that the decision maker can select the best one based on his
and diverse population. In addition, we apply the uniform design preference. The set of all possible Pareto-optimal solutions con-

to generate a good initial population and design a new Crossover iy tes gPareto frontierin the objective space. Fig. 1 shows an
operator for searching the Pareto-optimal solutions. The numer-

ical results demonstrate that the proposed algorithm can find the example. o .
Pareto-optimal solutions scattered uniformly over the Pareto fron- Many multiobjective programming problems have very large
tier. or infinite numbers of Pareto-optimal solutions. When it is not

Index Terms—Experimental design methods, genetic algo- possible to.find all these.solqtions, it may be'desirableto find as
rithms, multiobjective programming, Pareto-optimality, uniform ~ many solutions as possible in order to provide more choices to
array, uniform design. the decision maker.

Genetic algorithm (GA) is a promising approach to finding
Pareto-optimal solutions [1]-[6], [8]-[10]. It evolves and im-
proves a population of potential solutions iteratively using bi-
E consider the following multiobjective programmingologically inspired operators such as selection, crossover and

. INTRODUCTION

problem: mutation [11]-[14]. In this evolution, it uses a fithess function
to guide the population members to converge toward the Pareto
Mir;iergize [1(x), fo(%), ..., fur(X) (1) frontier. A well-known fitness function is the weighted sum of
objective function
wherex = (x1,z2,...,25) IS @ variable vector in a real .
and N-dimen(sional spacd,z) is the feasible solution space, fitness = wi fi(x) +wa fo(x) + - Fwn fu(x) - G)
and there aré objective functionsf; (x), f2(x),. .., fa(X). wherews, ws, ..., wys are nonnegative weights such that-+
Many real-world decision problems can be formulated as thg, + ... 4w, = 1. We callw = (wy,wy, ..., wy) aweight

above problem (e.g., see [1]-[3]). Very often, the objectigactor.

functions are noncommensurable and they cannot be optimizeq* a GA uses one Weight vector to compose one fithess func-

simultaneously, and the decision maker has to find a compifn, there is only one search direction. For exampley’if=

mise solution. (0.5,0.5) is used for a two-objective programming problem, the
The notion of Pareto-optimality is one of the major apsearch direction in the objective space is shown in Fig. 2. Along

proaches to multiobjective programming [1]-[7]. For any twghis search direction, it may be easy to find the Pareto-optimal

pointsx; andx in €2, if the following conditions hold: solutionsB andC, but it is difficult to find the other Pareto-op-
) timal solutions such a4 andD. To overcome this shortcoming,
{ fi(x1) < fi(x2), foralli eb{l, 2,..., M} (2) multiple weight vectors can be used to compose multiple fitness
fi(x1) < fj(x2), forsomej €{1,2,..., M} functions, so that there are multiple search directions [1], [9],

[10]. Three specific methods were proposed in the literature.
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Fig. 1.

Fig. 2. Search directions toward the Pareto-optimal solutions.
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Pareto-optimal solutions for a two-objective programming problem over a 2-D solution space.
b(x) each other, they are nearly the same choice. For example, if
f1(x) is the cost and>(x) is the reliability, then the solutions
]w" {f1 = 10000, f; = 0.9990},{f = 10002, f, = 0.9991}
© o o) and{f1 = 9999, f>» = 0.9989} are nearly the same choice.
@ o0 © o 0 It is desirable to find the Pareto-optimal solutions scattered
@) O O uniformly over the Pareto frontier, so that the decision maker
C;% o O can have a variety of choices (e.g., see Fig. 4).
O In this paper, we design a genetic algorithm to determine
B® o L . h
0o the Pareto-optimal solutions scattered uniformly over the Pareto
¢ o O frontier. We apply an experimental design method cailled
W form designto compose multiple fitness functions and we de-
b sign a selection scheme using these fithess functions, so that

h(x)

the resulting search directions are scattered uniformly toward
the Pareto frontier. In addition, we apply the uniform design to
generate a good initial population and design a new crossover
operator. We demonstrate the effectiveness of the proposed al-

space (denoted by’ andw’’) for a two-objective pro- , , .
gorithm by numerical experiments.

gramming problem. Along these two directions, it may b
easy to find the Pareto-optimal solutiodsand D, but it
is difficult to find the other Pareto-optimal solutions such
asB andC. Experimental design method is a sophisticated branch of sta-
Kursawe [10] proposed a variant of the above methogkstics [15], [16]. In this section, we briefly describe an experi-
The decision maker has to specify a probability for eaghental design method callethiform designThe main objec-
objective function. When a fitness function is needed fajve of uniform design is to sample a small set of points from a
selection, one of the objective functions is selected g#/en set of points, such that the sampled points are uniformly
the fitness function based on this probability distributiorscattered. We describe the main features of uniform design in
Similar to the Schaffer's method, this method providés the following, and we refer the readers to [17]-[21] for more
fixed search directions. details.
Ishibuchi and Murata [1] recently proposed an interesting Suppose the yield of a chemical depends on the temperature,
method. When a fitness function is needed for selectiofhe amount of catalyst, and the duration of the chemical process.
a weighted sum of the objective functions is composed @ese three quantities are called faetorsof the experiment.
the fitness function where the weights are randomly geff-each factor has ten possible values, we say that each factor has
erated. Therefore, this method can provide multiple angnlevels There arel0®> = 59 049 combinations of levels. To
randomly generated search directions toward the Pargif the best combination for a maximum yield, it is necessary
frontier. to do 1000 experiments. When it is not possible or cost-effective
to do all these experiments, it is desirable to select a small but

Il. UNIFORM DESIGN

The Ishibuchi-Murata method [1] can find the solutionsepresentative sample of experiments. The uniform design was
that are randomly scattered over the Pareto frontier. It developed for this purpose [17]-[21].
possible that some solutions are close to each other in thd.et there ben factors andy levels per factor. Whemn and
objective space (e.g., see Fig. 3). If the solutions are closegtare given, the uniform design selegtgsombinations out of



LEUNG AND WANG: MULTIOBJECTIVE PROGRAMMING 295

£(x) B(x)

@ o Pareto-optimal solutons found @ the Pareto-optimal solutions found

other Pareto-optimal solutions other Parsto-optimal solutions

Pareto frontier Pareto frontier

fi(x) h(x)
(@) (b)

Fig. 3.  When the weight vectors are randomly generated, the resulting Pareto-optimal solutions are scattered randomly over the Pareto frontier.

B(x) r172...7,. The uniform design is to determimgpoints inC
such that the followingliscrepancyis minimized:

. the Pareto-optimal solutions found
other Pareto-optimal solutions q(r)

Sup | —= —7r172...7| . (6)
reC| 4

Then we map thesg points in the unit hypercube to the space
with n factors and; levels. Wheny is prime and; > n, it has
been proved that’; ; is given by [17]-[21]

U= (iaj_lmod ) +1 @

whereos is a parameter given in Table I.
Example 1: We construct a uniform array with five factors

f(x) and seven levels as follows. From Table I, we seedhatequal
to 3. We computdJ(5, 7) based on (7) and we get
Fig. 4. Ideglly, the Pareto-optimal solutions are scattered uniformly over the 2 4 3 7 57
Pareto frontier.
3 7 5 6 2
4 3 7 5 6
q" possible combinations, such that theseombinations are UGB, =15 6 2 4 3 (8)
scattered uniformly over the space of all possible combinations. 6 2 4 3 7
The selected combinations are expressed in terms ohé&orm 7 5 6 2 4
array U(n,q) = [U; ;];xn, WhereU; ; is the level of thejth 1 1 1 1 14

factor in theith combination.

Uniform arrays can be constructed as follows. Considerau
hypercube over an-dimensional space. We denote this hype
cube by the set of points in it

] the first combination, the five factors have respective levels
2, 4, 3, 7, 5; in the second combination, the five factors have
respective levels 3, 7, 5, 6, 2, etc.

[1l. DESIGN OFGENETIC ALGORITHM FOR MULTIOBJECTIVE

C={(c1,c2,...,¢,)|0< ¢ <1fori=1,2,...,n}. (4) PROGRAMMING

Consider any point irC, sayr = (r1,72,...,7,). We forma  We let the feasible range of; be [/;,«;], and we call this
hyper-rectangle betwednandr, and we denote it by the set ofrange thedomainof ;. We letl = (l,ls,...,Ix) andu =
points in it (u1,us,...,un), and we denote the feasible solution space by
[L,u]. We definex = (x1,22,...,2n) to be a chromosome.
C(r) = {(c1,c2,---,¢,) |0< ¢ <mfori=1,2,...,n}.  The problem is to find a set of chromosomes that are scattered

(5) uniformly over the Pareto frontier in the objective space.
We select a sample af points such that they are scattered .
uniformly in the hypercube. Suppogér) of these points are A Fithess Functions
in the hyper-rectangl€(r). Then the fraction of points in the Here, we apply the uniform design to compose multiple fit-
hyper-rectangle ig(r)/q. The volume of the unit hypercube isness functions, such that their search directions are scattered
1, and hence the fraction of volume of this hyper-rectangle imiformly toward the Pareto frontier in the objective space.
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TABLE |
VALUES OF THE PARAMETER ¢ FOR DIFFERENTNUMBER OF FACTORS AND
DIFFERENTNUMBER OF LEVELS PER FACTOR

Number of levels per factors

Number of factors

5

2-4

7

2-6

11

2-10

13

2

3

4-12

17

2—-16

19

2-3

4-18

23

2,13-14,20-22

8-12

3-7,15-19

29

2

3

4-7

8§—12,16—24

13—-15

25-28

31

2,5-12,20-30

3-4,13—-19

Letw; = (w; 1, wi2, ..., w; ). We apply the uniform design

to select the weight vectoss;, ws, ..., wp as follows. In the
objective space, we treat each objective function as one factor
and hence there ared factors. We need weight vectors and
hence there ar® levels. We apply the uniform arrdy (M, D)

to determinew; ; foranyl < ¢« < Dandl < 5 < M as
follows:

Ui,;

= 11
Ui+ U +---+U; p (11)

Wi, j

where the denominator ensures that the weights for each fitness
function must sum to one.

Example 2: We letM = 5andD = 7. We apply the uniform
arrayU(5, 7) [given by (8)] to select seven weight vectors, and
then compose the seven fithess functions shown in the equation
at the bottom of the page.

B. Generation of Initial Population

Before we solve a multiobjective optimization problem, we
have no information about the location of the Pareto-optimal
solutions in the solution space [see Fig. 1(a)]. We generate an
initial population in which the population members are scattered
uniformly over the feasible solution space, so that the genetic al-

The values of different objective functions may have differegjorithm can explore the whole solution space evenly. For this
order of magnitude. If a fitness function is equal to a weightgslirpose, we quantize the feasible solution space into a large
sum of objective functions, it may be dominated by the objectiygimber of points, and then apply the uniform design and a se-
functions with large values. For examplefif(x) represents the |ection scheme to sele6t points as the initial population where
cost with10000 < f;(x) < 100000 and f>(x) represents the (7 is a design parameter.

reliability with 0 < fo(x) < 1, thenw; f1(x)+w2 f2(x) may be

When the solution space is large, it is desirable to sample

dominated byfi(x). To overcome this problem, we normalizemore points for a better coverage. In principle, we can apply
each objective function as follows:

fi(x)

%

- maxyew{|fi(y)}
whereV is a set of points in the current population dn@x) is

the normalized objective function.

We composeD fitness functions for any givel, where the

ith fitness function is given by

fitness; = w; 1h1(X) +w; 2h2(X) + -+ - +w; mha (%),

the uniform array with a larger number of levels. However, only
the uniform arrays with at most 37 levels have been tabulated
in the literature [20], and it is very time consuming to compute
the larger uniform arrays. To bypass this difficulty, we divide
the solution space into multiple subspaces, and then apply the
uniform array to sample some points in each subspace.

We divide [, u] into S subspaces
0(1), u(D)], 1(2), u()], ... 1(S), u(S)], where
the design parameted can assume the values 2,27, or 23,
etc. First, we divide the solution space into two subspaces as
follows. We select the dimension with the largest domain,

( fitness; = &=

fitnessy = 5%

. _ 4
Jitnessg = 5

M . 9
fitness, = 55

’ — 6
fitnesss = 55

hi(x) + 37h2 (%) + 51 ha(x) + grha(x) + 5phs(x)
hi(%) + g3h2(%) + 33ha(x) + g3ha(x) + 55hs(x)
hi(x) + Zha(x) + 35 ha(x) + Zha(x) + S hs(x)
hi(%) + 5h2(%) + 55 ha(x) + 35ha(%) + 55h5(%)

hl(X) + %hg (X) + %hg(x) + 2—32]7,4()() + %hs(x)

fitnessg = 2—74/11()() + %hg (x)+ %hg(x) + %h;;(x) + %h5(x)

\ ﬁt’llv6557 = %hl(x) + %hg(x) + %hg(x) + %h4(x) + %h5(x)
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and divide the solution space into two equal subspaces al@fdg~ points to form the initial population. The details for gener-
this dimension. Then we divide the two subspaces into foating an initial population are as follows:

subspaces as follows. For any subspace, Béy),u(1)], Algorithm 2: Generation of Initial Population

we select the dimension with the largest domain, and thenstep 1) Execute Algorithm 1 to divide the fea-

divide the two subspaces along this dimension into four equal sible solution space[l,u] into S subspaces
subspaces. We repeat this step in a similar manner, until the [1(1), u(D)], 1(2),u(2)], ..., [I(S),u(S)].
solution space has been divided irficsubspaces. The details Step 2) Quantize each Subspace based on (12), and then
are as follows: apply the uniform arrayU(N, Q) to sampleQ,
Algorithm 1: Dividing the Solution Space points based on (13).
Step 1) Leth = landz = u. Repeatthe following computa- Step 3) Based on each fitness function, evaluate the quality
tion log, S times: select theth dimension such that of each of theSQ)y points generated in step 2, and
Zs — s = maxi<;<n1% — a;}, and then compute then select the bestG/Dqy| or [G/Dy] points.
25 = (as + 25) /2. Overall, a total ofG points are selected to form the
Step 2) Compute);, = 2; —a; andn, = (w — 1;)/A; initial population.

forall< =1,2,...,N. Then compute the subspace Example 3:Consider a three dimensional solution
(I(k),u(k)] forall 1 < j; < n;andl <i < N as space. Supposé < z; < 100,0 < z» < 60, and
follows: 0 < x3 < 80, and hence the feasible solution spéce] is
B ) ) ) [(0,0,0), (100, 60, 80)]. We chooses = 4,y = 5,Dg = 5,
{l(klz __11+ (({IA_ 1?‘AA17 (J2 _,,1)22’ s (v = DAN) and G = 8. We executeAlgorithm 1 to divide the solution
u(k) =1+ (181, 282, ..., INAN) space into four subspaces as follows.
where & = (i — Unong...ny + (jo — Step 1) a andz are found to bg0,0,0) and (50, 60,40),

Dngng...nn + -+ (Gvor — Dan + v respecfively.
After dividing the solution space int§ subspaces, we select St€P 2) A1 = 50,82 = 60, A3 = 40; andny = 2,ny =
a sample of points from each subspace as follows. Consider any 1,n3 = 2. The four subspaces are found to be

subspace, say thgh subspace, and denote it by [1(1), u(1)] = [(0,0,0), (50, 60, 40)]
[1(2), u(2)] = [(0,0,40), (50, 60,80)]
k), u(k)] 1(3).u(3)] = [(50,0,0), (100,60, 40)] ¥
= [(Lu(k), La(K), .. ., In(K)), (ur (), ua(k), ..., un (k)] [1(4),u(4)] = [(50,0,40), (100, 60, 30)]
In this subspace, we quantize the domiik), u;(k)] of z; We executédlgorithm 2to generate an initial population as fol-
into Qo levelsa 1 (k), a;.2(k), .. ., a;.0, (k) where the design 1OWS-
parameter), is prime andw; ; (k) is given by Step 1) Divide the solution space into four subspaces, which
’ are given by (14).
(k) j=1 Step 2) Quantize the first subspacg(l),u(l)] =
(k) = 4 Lk + (G - 1) (u (S)Oili(’“)) 2<i<Qy—1. [(0,0,0), (50, 60,40)] based on (12) to get
u; (k) J=Qo a1 (1) = (0.0,12.5,25.0,37.5, 50.0)
(12) az(1) = (0.0, 15.0, 30.0, 45.0, 60.0)
az(1) = (0.0,10.0, 20.0, 30.0, 40.0)

In other words, the difference between any two successive levels

is the same. We lef; (k) = (a1 (k). aia(k), ... .0, (k). Adopt the uniform arrajU (3, 5)

After quantization, the subspace consists@f points. We 2 3 5

apply the uniform arrayJ(V, Q9 ) to sample the following2 3 5 4

points: U@3,5)= 4 2 3

5 4 2

(al,Ul,l(k)valUl,z (k)v S UNUL & (k)) 1 1 1
.(.04.1,52,1(/6), ) - (13 and select the following five points based on (13)

(01,00, (B), 02,00, 5 (), - N v, ~ (K)) (12.5,30.0, 40.0)
(25.0,60.0, 30.0)
(37.5,15.0,20.0)
(50.0,45.0, 10.0)
(0.0,0.0,0.0).

We repeat the above steps for each of sheubspaces, so that
we get a total of5Q, points.

Among theS@Qy points, we seleat? of them to form the ini-
tial population. In this selection, we adap, fitness functions
in order to realizeDy search directions, whetB, is a design Proceed in a similar manner for the other three sub-
parameter and it is prime. Based on each fithess function, we spaces.
evaluate the quality of each of th82, points and then select Step 3) Based on each of the first three fithess functions,
the best|G/Dg| or [G/Dgy] points. Overall, we select a total evaluate the quality of each of the 20 points and then
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select the besf8/5] = 2 points. Based on each TABLE I

of the fourth and fifth fitness functions, evaluate the SUMMARY OF DESIGN PARAMETERS AND THEIR FEASIBLE VALUES
quality of each of the 20 points and then select the Design Parameter Feasible Valoes

best |_8/5J =1 pOint' Overa”r atotal of 8 points are Population size G G is a positive integer.

selected to form the initial population.

Generation of N S =2 where i is a positive integer.
C. Crossover Initial Population D, D, is a prime number larger than M.
. . . i i ber | than N.

We apply the uniform design to design a crossover operato : % Qols & prime nomber lreer han
This operator acts on two parents. It quantizes the solution spac ~ FP*" d Fis aposidive integer smaller than or equal to V.
defined by these parents into a finite number of points, and the =~ Evolution D Dy is a prime number larger than or equal to M;
applies the uniform design to select a small sample of uniformly 2nd By < Dy in practice.
scattered points as the potential offspring. o 0 is a prime number larger than F.

Consider any two parenﬁl = (p1,17p1,27 v 7pl,N) and P 0<p, <1and p, is small in practice.

p2 = (p2.1.p22,...,p2.5). They define the solution space
[lparent Uparent] @S Shown in (15) at the bottom of the page.
We quantize each domain ([jfparem7 uparem] into Ql levels Sincea:l,a:Q, e TN have been quantized, we define the fol-
Bi1,Bias- s Pio, WhereQ, is a design parameter aritj;  lowing @1 levels for theith factorf;:

is given by as shown in (16) at the bottom of the page. In other £(1) = ([3 3 3 )

words, the difference between any two successive levels is the| ' >\ — 3""'*1“’1’ 3""'*1“’1’ T 3"""1
same. We denot& = (5 1,52, --,5i.0.)- As the population 1(2) = (B2 Provzs - i) . (18)
is being evolved and improved, the population members are get- | "

ting closer to each other, so that the solution space defined by £(Q1) = (Bricirran Briar2@use oo i)

two parents is becoming smaller. Sin@e is fixed, the quan- \ye apply the uniform arra{J (F, ;) to select the following

tized points are getting closer and hence we can get more %@%me ofQ; chromosomes as the potential offspring:
more precise results.

After quantizing[Lparent, Uparent], We apply the uniform de- (£1(U1,1), 22(Ur,2), - -, Tr(Ur,F))
sign to select a sample of points as the potential offspring. These (f1(U2,1),2(U2,2), - - ., Tp(Uz, ) (19)
potential offspring will undergo a selection process, and the de- T
tails are described in Section I11-D. Each pair of parents should (f1(Ug, 1), 22(Uq, 2): - - -, Tr(Uq, )

hot produce 100 many potent|al'offspr|n.g n order_ to avoid f"‘ The details of the proposed crossover operator are given as
large number of function evaluations during selection. For thjig;;.\s:

purpose, we divide the variables, z2, ...,z into F' groups Algorithm 3: Crossover Operation

whereF is a small design parameter, and each group is treate .

as one factor. Consequently, the corresponding uniform arra)(jS :ep ;) Suagt'zalparem’uéméenz] .b?sed ;n (]15)' 1

has a small number of combinations and hence a small numbert€P 2) Randomly generafé—1lintegershy, ks, ..., kr—1
suchthatl < ky < ko < --- < kp_1; < N. Create

of potential offspring are generated. Specifically, we randomly F factors based on (17)

generate” — 1 integersky, ko, ..., kp_1 such thatl < k; < .
ks < -+ < kp_1 < N, and then create the followirf factors Step 3) Apply_ the unlfprm arrayJ(I’, Q1) to generatey,
potential offspring based on (19).

for any chromosom& = (z1,%2,...,2N) : ) ) - / o
Example 4:Consider a five-dimensional multiobjec-
£ = (z1,...,71,) tive programming problem. Let the two parents pe =
£ = (Tryt1se e Thy) (7.5,4.7,2.3,2.5,1.0) and p» = (2.7,0.2,-1.2,7.5,6.7).
(17) These parents define the solution sp@grent, Wparent] =
fr = (Thp_ 41 TN) [(2.7,0.2,-1.2,2.5,1.0),(7.5,4.7,2.3,7.5,6.7)]. Based on (7)
]-parent = [Inin(pl,17p2,l)7 Inin(pl,27p2,2)7 e 7Inin(pl,]\77p2,]\‘r)]
(15)
Uparent — [lnax(pl,17p2,l)7 1H&X(p172,p272), (RS 1H&X(p17]\r,p27]\r)]
min(ps ;,po.;) j=1
Bij = min(pi,p2:) +( — 1) (lplQl;_pfl) 2<j<@i—1 (16)

max(p1 ;,p2.;) J=
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and Table 1,U(4, 5) can be found to be

2 3 5 4
35 4 2
U4,5)=|4 2 3 5
5 4 2 3
1111

(20)
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(@)
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Fig. 5. Pareto-optimal solutions in the objective space for the first test problem.
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The execution oflgorithm 3is as follows.
Step 1) Quantizfl,arent, Uparent] INO

B, = (2.700,3.900, 5.100, 6.300, 7.500
B> = (0.200, 1.325, 2.450, 3.575, 4.700

B =
By =
Bs =

(
(
(
(

—1.200, —0.325,0.550, 1.425, 2.300)

2.500,3.750, 5.000, 6.250, 7.500
1.000, 2.425, 3.850, 5.275, 6.700

)
)

)
).
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Step 2) Supposé; = 1,ke = 3,ks = 4, andky = 5.
Create the following four factordy = (z1),f; =
(w2,23), 13 = (w4), T4 = (x5).
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TABLE Il

NUMBER OF PARETO-OPTIMAL SOLUTIONS FOUND AND THE NUMBER OF
FUNCTION EVALUATION REQUIRED FORTEST PROBLEM 1

Step 3) ApplyU(4, 5) to get the following five potential off-  Execution Number of Pareto-optimal Number of function evaluations
spring: solutions found

UGA HGA UGA HGA
(3.900, 2.450, 0.550, 7.500, 5.275) Ist 291 25 1674 11967
(5.100,4.700, 2.300, 6.250, 2.425) 2nd 237 28 1683 11981
(6.300, 1.325, —0.325, 5.000, 6.700) 3rd 237 39 1680 11982
(7.500,3.575,1.425,3.750, 3.850) 4th 252 26 1669 11959
(2.700, 0.200, —1.200, 2.500, 1.000). 5th 155 35 1636 11979

D. Selection Scheme for Population Evolution

We evolve the population by crossover and mutation. To pro-
duce a new generation of population, it is necessary to select
the parents for crossover and then select some of the potentiabtep 3.1)
offspring to form the new generation. In this subsection, we de-
scribe how to perform selection.

We adoptD; fitness functions to providé); search direc-
tions, whereD; is a design parametel; is smaller thanD,,
because the solution space defined by two parents is usually
much smaller than the feasible solution space and we adopt &tep 3.2)
smaller number of fithess functions to reduce the computation
time.

To evolve a new generation, we execute the crossover oper-
ation D, times. In theith execution, we select the best parent
based on théh fitness function, select another parent randomly,
and then perform crossover on these two parents.

After performing crossover and mutation, a set of potential Step 3.3)
offspring are generated. Among these potential offspring and
the parents, we selec¢t of them to form the next generation.

Based on each of th®, fitness functions, we select the best
|G/Dy| or [G/Dy] chromosomes, such that the total number
of selected chromosomesas

E. Genetic Algorithm for Multiobjective Programming Step 3.4)

We executedlgorithm 2to generate a good initial population
with G chromosomes. Then we evolve and improve the popula-

Step 3) Population Evolution
WHILE (stopping condition is not mef)O
BEGIN

Crossover

Execute the crossover operatidp, times. In
the ith execution, select the best parent based
on theith fithess function, select another parent
randomly, and executalgorithm 3to perform
crossover on these two parents.

Mutation

Each chromosome i, undergoes mutation
with probability p,,,. To perform mutation on a
chromosome, randomly generate an integer
[1,N] and a real number < [l;, ;] and then
replace thejth component of the chosen chro-
mosome by to get a new chromosome.
Selection

Consider the chromosomes P, and those
generated by crossover and mutation. Adopt
each of theD, fitness functions to select the
best|G/Dgy] or [G/Dgy] chromosomes for the
next generation, such that the total number of
selected chromosomesas

Increment the generation numgpenby 1.

END

tion iteratively using the proposed crossover operator, the muJn step 3, the population is evolved and improved iteratively
tation Operator, and the proposed selection scheme. until a StOppIng condition is met. Similar to the other geneUC al-
We letP,., be a population of chromosomes in tiie gen- gorithms, there can be many possible stopping conditions. For

eration. The details of the genetic algorithm for multiobjectivé*ample, one possible stopping condition is to stop when the
programming are as follows. best chromosome based on each of thefitness functions

Genetic Algorithm for Multiobjective Programming cannot be further improved in a certain number of generation.
Step 1) Generation of Initial Population The above aIgoriFhm has sev_eral design parameter.s. In
Step1.1) Determine the uniform array&(M, Do) and Tgble I, we summarize these design parameter§ and their fea-

U(N, Do) based on (7). sible values. We remind that some of 'Fhese des!gn param_eters
ComposeD, fitness functions based Oncqrrespond to the r_1umber of Ieve_zls in the uniform design.
U(M, Dy) and (10)(11). Since only those uniform arrays Wlth prime number of Ievel_s
Executdlgorithm 2to generate an initial pop- have been found and tabulated in the literature, these design

ulation Py. Initialize the generation numbgen Parameters are prime.
to O.
Step 2) Initialization for Population Evolution

Step 1.2)

Step 1.3)

IV. NUMERICAL RESULTS

Step 2.1) Determine the uniform arrdy(, D;) and
U(F, 1) based on (7). We execute the proposed algorithm and the hybrid genetic
Step 2.2) ComposeD; fitness functions based onalgorithm [1]to solve three test problems, and we compare their

U(M, D;) and (10)—(11). performance.
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Fig. 6. Pareto-optimal solutions in the objective space for the second test problem.

A. Test Problems

1) Test Problem 1 [1]:

Minimize
Minimize
Subject to:

wherex = (z1,x2). This problem was tested in [1], but we
enlarge the domain of, from [1, 2] to [-20, 10] in order to

fi(x) = 2y/x1

fQ(X) I]J1(1—$2)+5
1 S T S 4

—-20< 2, <10

increase the number of Pareto-optimal solutions. The resulting

problem is more challenging.
2) Test Problem 2 [22]:

Minimize
Minimize
Subject to:

X

Ji(
falx
3

—

m
=23 +323+1
1 <3

T2 <D

~—

I/\ IA
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wherex = (x1,22). This problem was tested in [22], but we TABLE IV
emarge the domain of, from [_373] to [_57 5] in order to NUMBER OF PARETO-OPTIMAL SOLUTIONS FOUND AND THE NUMBER OF

. . . . FUNCTION EVALUATION REQUIRED FORTEST PROBLEM 2
increase the number of Pareto-optimal solutions. The resulting

Df0b|em is more Cha”enging- Execution Number of Pareto-optimal Number of function evaluations
3) Test Problem 3 [7]: See the equation at the bottom of the solutions found

page where = (x1, z2). This problem is the well-known beam UGA HGA UGA HGA

design problem. The first objective is to minimize the volume  1st 290 63 1867 11966

of the beam, and the second objective is to minimize the stat 2nd 298 112 1842 11975

compliance of the beam [7]. 3rd 303 78 1899 11982
4th 267 75 1878 11981

B. Parameter Values oy Sea v 852 1975

We adopt the following parameter values.

 Population sizeThe population sizé& is 200.
« Parameters for generating initial population and selections. On average for the five executions, the proposed algorithm
tion: The feasible solution space is divided irffo= 16 requires 1668 function evaluations to find 234 Pareto-optimal

subspaces. We adopl = 31 fitness functions an@, = solutions, while the hybrid genetic algorithm requires 11974
31 levels per domain. function evaluations to find 31 Pareto-optimal solutions. This
» Parameters for crossover and mutatioWe adoptF’ = demonstrates that the proposed genetic algorithm using uniform
N,D; =7,Q; = 5, andp,, = 0.02. design can effectively search the solution space.
« Stopping conditionThe execution is stopped after 20 gen- Fig. 6 shows the Pareto-optimal solutions in the objective
erations. space for the second test problem. Compared with the hybrid

For the hybrid genetic algorithm, we adopt the following pagenetic algorithm, the proposed algorithm can find significantly
rameter values: the population size is 200, the number of exaffore Pareto-optimal solutions which are scattered more uni-
ined neighborhood solutions per chromosome is 2, the numieimly over the entire Pareto frontier. Nevertheless, Table IV
of elite solutions is 2, and the probability of mutation is 0.08hows that the proposed algorithm requires significantly smaller

For more details about these parameters, see [1]. number of function evaluations. On average, the proposed al-
gorithm requires 1868 function evaluations to find 288 Pareto-

C. Results optimal solutions, while the hybrid genetic algorithm requires

tions. We record the following data for each execution: Fig. 7 and Table V show the results for the third test

problem. These results confirm the competence of the proposed
algorithm. Compared with the hybrid genetic algorithm, the
proposed algorithm can find significantly more Pareto-optimal
solutions using significantly fewer function evaluations, while
tkse solutions are scattered more uniformly over the entire
B1areto frontier.

« all Pareto-optimal solutions;

» number of Pareto-optimal solutions found,;

» number of function evaluations required.
For convenience, the proposed genetic algorithm using unifo
design is referred to as UGA, and the hybrid genetic algorith
[1] is referred to as HGA.

Fig. 5 shows the Pareto-optimal solutions in the objective
space for the first test problem. Compared with the hybrid ge-
netic algorithm, the proposed algorithm can find significantly We designed a genetic algorithm to find the Pareto-optimal
more Pareto-optimal solutions and these solutions are scattesellitions scattered uniformly over the Pareto frontier, so that
more uniformly over the entire Pareto frontier. This demorit can provide a variety of compromise solutions to the deci-
strates that the proposed fitness functions using uniform d#en maker. We applied the uniform design to compose mul-
sign are effective in guiding the search toward the entire Pargige fithess functions and designed a selection scheme using
frontier. Nevertheless, Table Il shows that the proposed algihiese fitness functions, so that the resulting search directions
rithm requires significantly smaller number of function evalueaare scattered uniformly toward the Pareto frontier in the objec-

V. CONCLUSION

(Minimize  fi(x) = 0.758 [z1 (6.4 x 10° — 23) + (10® — z1) (10* — 23)]

. . . =4 9
Minimize  fa(x) = 3.298 x 10~? [(4.09&1107_1,; - logl_mg) z3+ loéo_mg}

Subjectto: 40 < 25 < 75.2

1805 (4.096x 107 —=3)

0<x < 9.78 % 10°
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Fig. 7. Pareto-optimal solutions in the objective space for the third test problem.

tive space. In addition, we applied the uniform design to gethe proposed algorithm and the hybrid genetic algorithm [1] to
erate a good initial population and design a new crossover give three test problems. The results demonstrated that the pro-
erator for searching the Pareto-optimal solutions. We execufgaked algorithm can find larger numbers of Pareto-optimal so-
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TABLE V [14]
NUMBER OF PARETO-OPTIMAL SOLUTIONS FOUND AND THE NUMBER OF
FUNCTION EVALUATION REQUIRED FORTEST PROBLEM 3 [15]
Execution Number of Pareto-optimal Number of function evaluations [16]
solutions found

UGA HGA UGA HGA [17]

1st 864 35 1687 11970
2nd 858 54 1674 11982 [18]
3rd 865 49 1658 11969 [19]

4th 855 40 1684 11977
5th 849 27 1683 11983 [20]
[21]

lutions using smaller numbers of function evaluations, and these
Pareto-optimal solutions are scattered more uniformly over th&?]
Pareto frontier.
[23]
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