
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 3, AUGUST 2000 293

Multiobjective Programming Using Uniform Design
and Genetic Algorithm

Yiu-Wing Leung, Senior Member, IEEE,and Yuping Wang

Abstract—The notion of Pareto-optimality is one of the major
approaches to multiobjective programming. While it is desirable
to find more Pareto-optimal solutions, it is also desirable to find
the ones scattered uniformly over the Pareto frontier in order to
provide a variety of compromise solutions to the decision maker.
In this paper, we design a genetic algorithm for this purpose. We
compose multiple fitness functions to guide the search, where each
fitness function is equal to a weighted sum of the normalized objec-
tive functions and we apply an experimental design method called
uniform designto select the weights. As a result, the search direc-
tions guided by these fitness functions are scattered uniformly to-
ward the Pareto frontier in the objective space. With multiple fit-
ness functions, we design a selection scheme to maintain a good
and diverse population. In addition, we apply the uniform design
to generate a good initial population and design a new crossover
operator for searching the Pareto-optimal solutions. The numer-
ical results demonstrate that the proposed algorithm can find the
Pareto-optimal solutions scattered uniformly over the Pareto fron-
tier.

Index Terms—Experimental design methods, genetic algo-
rithms, multiobjective programming, Pareto-optimality, uniform
array, uniform design.

I. INTRODUCTION

WE consider the following multiobjective programming
problem:

Minimize (1)

where is a variable vector in a real
and -dimensional space, is the feasible solution space,
and there are objective functions .
Many real-world decision problems can be formulated as the
above problem (e.g., see [1]–[3]). Very often, the objective
functions are noncommensurable and they cannot be optimized
simultaneously, and the decision maker has to find a compro-
mise solution.

The notion of Pareto-optimality is one of the major ap-
proaches to multiobjective programming [1]–[7]. For any two
points and in , if the following conditions hold:

for all
for some

(2)

Manuscript received June 18, 1999; revised August 7, 2000. This work was
supported by the HKBU FRG under Research Grant FRG/98-99/II-62.

Y.-W. Leung is with the Department of Computer Science,
Hong Kong Baptist University, Kowloon Tong, Hong Kong
(http://www.comp.hkbu.edu.hk/~ywleung).

Y. Wang is with the Department of Applied Mathematics, Xidian University,
Xi’an 710071, China.

Publisher Item Identifier S 1094-6977(00)09082-9.

then is at least as good as with respect to all the ob-
jectives (the first condition), and is strictly better than
with respect to at least one objective (the second condition).
Therefore, is strictly better than . If no other solution is
strictly better than , then is called aPareto-optimal solu-
tion. A multiobjective programming problem may have multiple
Pareto-optimal solutions, and these solutions can be regarded as
the best compromise solutions. Different decision makers with
different preference may select different Pareto-optimal solu-
tions. It may be desirable to find all the Pareto-optimal solutions,
so that the decision maker can select the best one based on his
preference. The set of all possible Pareto-optimal solutions con-
stitutes aPareto frontierin the objective space. Fig. 1 shows an
example.

Many multiobjective programming problems have very large
or infinite numbers of Pareto-optimal solutions. When it is not
possible to find all these solutions, it may be desirable to find as
many solutions as possible in order to provide more choices to
the decision maker.

Genetic algorithm (GA) is a promising approach to finding
Pareto-optimal solutions [1]–[6], [8]–[10]. It evolves and im-
proves a population of potential solutions iteratively using bi-
ologically inspired operators such as selection, crossover and
mutation [11]–[14]. In this evolution, it uses a fitness function
to guide the population members to converge toward the Pareto
frontier. A well-known fitness function is the weighted sum of
objective function

�tness (3)

where are nonnegative weights such that
. We call a weight

vector.
If a GA uses one weight vector to compose one fitness func-

tion, there is only one search direction. For example, if
is used for a two-objective programming problem, the

search direction in the objective space is shown in Fig. 2. Along
this search direction, it may be easy to find the Pareto-optimal
solutions and , but it is difficult to find the other Pareto-op-
timal solutions such as and . To overcome this shortcoming,
multiple weight vectors can be used to compose multiple fitness
functions, so that there are multiple search directions [1], [9],
[10]. Three specific methods were proposed in the literature.

1) Schaffer [9] proposed to divide the population into
sub-populations, and adopt fitness functions where the
first fitness function is , the second fitness function
is , etc. Each sub-population is guided by one fit-
ness function, and hence there arefixed search direc-
tions. Fig. 2 shows the search directions in the objective

1094–6977/00$10.00 © 2000 IEEE

294 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 3, AUGUST 2000

(a) (b)

Fig. 1. Pareto-optimal solutions for a two-objective programming problem over a 2-D solution space.

Fig. 2. Search directions toward the Pareto-optimal solutions.

space (denoted by and) for a two-objective pro-
gramming problem. Along these two directions, it may be
easy to find the Pareto-optimal solutionsand , but it
is difficult to find the other Pareto-optimal solutions such
as and .

2) Kursawe [10] proposed a variant of the above method.
The decision maker has to specify a probability for each
objective function. When a fitness function is needed for
selection, one of the objective functions is selected as
the fitness function based on this probability distribution.
Similar to the Schaffer’s method, this method provides
fixed search directions.

3) Ishibuchi and Murata [1] recently proposed an interesting
method. When a fitness function is needed for selection,
a weighted sum of the objective functions is composed as
the fitness function where the weights are randomly gen-
erated. Therefore, this method can provide multiple and
randomly generated search directions toward the Pareto
frontier.

The Ishibuchi–Murata method [1] can find the solutions
that are randomly scattered over the Pareto frontier. It is
possible that some solutions are close to each other in the
objective space (e.g., see Fig. 3). If the solutions are close to

each other, they are nearly the same choice. For example, if
is the cost and is the reliability, then the solutions

and are nearly the same choice.
It is desirable to find the Pareto-optimal solutions scattered
uniformly over the Pareto frontier, so that the decision maker
can have a variety of choices (e.g., see Fig. 4).

In this paper, we design a genetic algorithm to determine
the Pareto-optimal solutions scattered uniformly over the Pareto
frontier. We apply an experimental design method calleduni-
form designto compose multiple fitness functions and we de-
sign a selection scheme using these fitness functions, so that
the resulting search directions are scattered uniformly toward
the Pareto frontier. In addition, we apply the uniform design to
generate a good initial population and design a new crossover
operator. We demonstrate the effectiveness of the proposed al-
gorithm by numerical experiments.

II. UNIFORM DESIGN

Experimental design method is a sophisticated branch of sta-
tistics [15], [16]. In this section, we briefly describe an experi-
mental design method calleduniform design. The main objec-
tive of uniform design is to sample a small set of points from a
given set of points, such that the sampled points are uniformly
scattered. We describe the main features of uniform design in
the following, and we refer the readers to [17]–[21] for more
details.

Suppose the yield of a chemical depends on the temperature,
the amount of catalyst, and the duration of the chemical process.
These three quantities are called thefactorsof the experiment.
If each factor has ten possible values, we say that each factor has
ten levels. There are combinations of levels. To
find the best combination for a maximum yield, it is necessary
to do 1000 experiments. When it is not possible or cost-effective
to do all these experiments, it is desirable to select a small but
representative sample of experiments. The uniform design was
developed for this purpose [17]–[21].

Let there be factors and levels per factor. When and
are given, the uniform design selectscombinations out of

LEUNG AND WANG: MULTIOBJECTIVE PROGRAMMING 295

(a) (b)

Fig. 3. When the weight vectors are randomly generated, the resulting Pareto-optimal solutions are scattered randomly over the Pareto frontier.

Fig. 4. Ideally, the Pareto-optimal solutions are scattered uniformly over the
Pareto frontier.

possible combinations, such that thesecombinations are
scattered uniformly over the space of all possible combinations.
The selected combinations are expressed in terms of auniform
array , where is the level of the th
factor in the th combination.

Uniform arrays can be constructed as follows. Consider a unit
hypercube over an-dimensional space. We denote this hyper-
cube by the set of points in it

for (4)

Consider any point in , say . We form a
hyper-rectangle betweenand , and we denote it by the set of
points in it

for
(5)

We select a sample of points such that they are scattered
uniformly in the hypercube. Suppose of these points are
in the hyper-rectangle . Then the fraction of points in the
hyper-rectangle is . The volume of the unit hypercube is
1, and hence the fraction of volume of this hyper-rectangle is

. The uniform design is to determinepoints in
such that the followingdiscrepancyis minimized:

(6)

Then we map thesepoints in the unit hypercube to the space
with factors and levels. When is prime and , it has
been proved that is given by [17]–[21]

(7)

where is a parameter given in Table I.
Example 1: We construct a uniform array with five factors

and seven levels as follows. From Table I, we see thatis equal
to 3. We compute based on (7) and we get

(8)

In the first combination, the five factors have respective levels
2, 4, 3, 7, 5; in the second combination, the five factors have
respective levels 3, 7, 5, 6, 2, etc.

III. D ESIGN OFGENETIC ALGORITHM FOR MULTIOBJECTIVE

PROGRAMMING

We let the feasible range of be , and we call this
range thedomainof . We let and

, and we denote the feasible solution space by
. We define to be a chromosome.

The problem is to find a set of chromosomes that are scattered
uniformly over the Pareto frontier in the objective space.

A. Fitness Functions

Here, we apply the uniform design to compose multiple fit-
ness functions, such that their search directions are scattered
uniformly toward the Pareto frontier in the objective space.

296 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 3, AUGUST 2000

TABLE I
VALUES OF THEPARAMETER � FOR DIFFERENTNUMBER OF FACTORS AND

DIFFERENTNUMBER OF LEVELS PER FACTOR

The values of different objective functions may have different
order of magnitude. If a fitness function is equal to a weighted
sum of objective functions, it may be dominated by the objective
functions with large values. For example, if represents the
cost with and represents the
reliability with , then may be
dominated by . To overcome this problem, we normalize
each objective function as follows:

(9)

where is a set of points in the current population and is
the normalized objective function.

We compose fitness functions for any given , where the
th fitness function is given by

�tness

(10)

Let . We apply the uniform design
to select the weight vectors as follows. In the
objective space, we treat each objective function as one factor
and hence there are factors. We need weight vectors and
hence there are levels. We apply the uniform array
to determine for any and as
follows:

(11)

where the denominator ensures that the weights for each fitness
function must sum to one.

Example 2: We let and . We apply the uniform
array [given by (8)] to select seven weight vectors, and
then compose the seven fitness functions shown in the equation
at the bottom of the page.

B. Generation of Initial Population

Before we solve a multiobjective optimization problem, we
have no information about the location of the Pareto-optimal
solutions in the solution space [see Fig. 1(a)]. We generate an
initial population in which the population members are scattered
uniformly over the feasible solution space, so that the genetic al-
gorithm can explore the whole solution space evenly. For this
purpose, we quantize the feasible solution space into a large
number of points, and then apply the uniform design and a se-
lection scheme to select points as the initial population where

is a design parameter.
When the solution space is large, it is desirable to sample

more points for a better coverage. In principle, we can apply
the uniform array with a larger number of levels. However, only
the uniform arrays with at most 37 levels have been tabulated
in the literature [20], and it is very time consuming to compute
the larger uniform arrays. To bypass this difficulty, we divide
the solution space into multiple subspaces, and then apply the
uniform array to sample some points in each subspace.

We divide into subspaces
, where

the design parameter can assume the values 2, or, or ,
etc. First, we divide the solution space into two subspaces as
follows. We select the dimension with the largest domain,

�tness

�tness

�tness

�tness

�tness

�tness

�tness

LEUNG AND WANG: MULTIOBJECTIVE PROGRAMMING 297

and divide the solution space into two equal subspaces along
this dimension. Then we divide the two subspaces into four
subspaces as follows. For any subspace, say ,
we select the dimension with the largest domain, and then
divide the two subspaces along this dimension into four equal
subspaces. We repeat this step in a similar manner, until the
solution space has been divided intosubspaces. The details
are as follows:
Algor ithm 1: Dividing the Solution Space

Step 1) Let and . Repeat the following computa-
tion times: select theth dimension such that

, and then compute
.

Step 2) Compute and
for all . Then compute the subspace

for all and as
follows:

where
.

After dividing the solution space into subspaces, we select
a sample of points from each subspace as follows. Consider any
subspace, say theth subspace, and denote it by

In this subspace, we quantize the domain of
into levels where the design
parameter is prime and is given by

(12)

In other words, the difference between any two successive levels
is the same. We let .
After quantization, the subspace consists of points. We
apply the uniform array to sample the following
points:

(13)

We repeat the above steps for each of thesubspaces, so that
we get a total of points.

Among the points, we select of them to form the ini-
tial population. In this selection, we adopt fitness functions
in order to realize search directions, where is a design
parameter and it is prime. Based on each fitness function, we
evaluate the quality of each of the points and then select
the best or points. Overall, we select a total

of points to form the initial population. The details for gener-
ating an initial population are as follows:
Algor ithm 2: Generation of Initial Population

Step 1) Execute Algorithm 1 to divide the fea-
sible solution space into subspaces

.
Step 2) Quantize each subspace based on (12), and then

apply the uniform array to sample
points based on (13).

Step 3) Based on each fitness function, evaluate the quality
of each of the points generated in step 2, and
then select the best or points.
Overall, a total of points are selected to form the
initial population.

Example 3: Consider a three dimensional solution
space. Suppose , and

, and hence the feasible solution space is
. We choose ,

and . We executeAlgorithm 1 to divide the solution
space into four subspaces as follows.

Step 1) and are found to be and ,
respectively.

Step 2) ; and
. The four subspaces are found to be

(14)

We executeAlgorithm 2to generate an initial population as fol-
lows.

Step 1) Divide the solution space into four subspaces, which
are given by (14).

Step 2) Quantize the first subspace
based on (12) to get

Adopt the uniform array

and select the following five points based on (13)

Proceed in a similar manner for the other three sub-
spaces.

Step 3) Based on each of the first three fitness functions,
evaluate the quality of each of the 20 points and then

298 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 3, AUGUST 2000

select the best points. Based on each
of the fourth and fifth fitness functions, evaluate the
quality of each of the 20 points and then select the
best point. Overall, a total of 8 points are
selected to form the initial population.

C. Crossover

We apply the uniform design to design a crossover operator.
This operator acts on two parents. It quantizes the solution space
defined by these parents into a finite number of points, and then
applies the uniform design to select a small sample of uniformly
scattered points as the potential offspring.

Consider any two parents and
. They define the solution space

as shown in (15) at the bottom of the page.
We quantize each domain of into levels

, where is a design parameter and
is given by as shown in (16) at the bottom of the page. In other
words, the difference between any two successive levels is the
same. We denote . As the population
is being evolved and improved, the population members are get-
ting closer to each other, so that the solution space defined by
two parents is becoming smaller. Since is fixed, the quan-
tized points are getting closer and hence we can get more and
more precise results.

After quantizing , we apply the uniform de-
sign to select a sample of points as the potential offspring. These
potential offspring will undergo a selection process, and the de-
tails are described in Section III-D. Each pair of parents should
not produce too many potential offspring in order to avoid a
large number of function evaluations during selection. For this
purpose, we divide the variables into groups
where is a small design parameter, and each group is treated
as one factor. Consequently, the corresponding uniform array
has a small number of combinations and hence a small number
of potential offspring are generated. Specifically, we randomly
generate integers such that

, and then create the following factors
for any chromosome

(17)

TABLE II
SUMMARY OF DESIGNPARAMETERS AND THEIR FEASIBLE VALUES

Since have been quantized, we define the fol-
lowing levels for the th factor :

(18)

We apply the uniform array to select the following
sample of chromosomes as the potential offspring:

(19)

The details of the proposed crossover operator are given as
follows:
Algor ithm 3: Crossover Operation

Step 1) Quantize based on (15).
Step 2) Randomly generate integers

such that . Create
factors based on (17).

Step 3) Apply the uniform array to generate
potential offspring based on (19).

Example 4: Consider a five-dimensional multiobjec-
tive programming problem. Let the two parents be

and .
These parents define the solution space

. Based on (7)

(15)

(16)

LEUNG AND WANG: MULTIOBJECTIVE PROGRAMMING 299

(a)

(b)

(c)

(d)

(e)

Fig. 5. Pareto-optimal solutions in the objective space for the first test problem.

and Table I, can be found to be

(20)

The execution ofAlgorithm 3is as follows.

Step 1) Quantize into

300 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 3, AUGUST 2000

Step 2) Suppose , and .
Create the following four factors:

Step 3) Apply to get the following five potential off-
spring:

D. Selection Scheme for Population Evolution

We evolve the population by crossover and mutation. To pro-
duce a new generation of population, it is necessary to select
the parents for crossover and then select some of the potential
offspring to form the new generation. In this subsection, we de-
scribe how to perform selection.

We adopt fitness functions to provide search direc-
tions, where is a design parameter. is smaller than ,
because the solution space defined by two parents is usually
much smaller than the feasible solution space and we adopt a
smaller number of fitness functions to reduce the computation
time.

To evolve a new generation, we execute the crossover oper-
ation times. In the th execution, we select the best parent
based on theth fitness function, select another parent randomly,
and then perform crossover on these two parents.

After performing crossover and mutation, a set of potential
offspring are generated. Among these potential offspring and
the parents, we select of them to form the next generation.
Based on each of the fitness functions, we select the best

or chromosomes, such that the total number
of selected chromosomes is.

E. Genetic Algorithm for Multiobjective Programming

We executeAlgorithm 2to generate a good initial population
with chromosomes. Then we evolve and improve the popula-
tion iteratively using the proposed crossover operator, the mu-
tation operator, and the proposed selection scheme.

We let be a population of chromosomes in theth gen-
eration. The details of the genetic algorithm for multiobjective
programming are as follows.
Genetic Algorithm for Multiobjective Programming

Step 1) Generation of Initial Population
Step 1.1) Determine the uniform arrays and

based on (7).
Step 1.2) Compose fitness functions based on

and (10)–(11).
Step 1.3) ExecuteAlgorithm 2 to generate an initial pop-

ulation . Initialize the generation numbergen
to 0.

Step 2) Initialization for Population Evolution
Step 2.1) Determine the uniform array and

based on (7).
Step 2.2) Compose fitness functions based on

and (10)–(11).

TABLE III
NUMBER OF PARETO-OPTIMAL SOLUTIONS FOUND AND THE NUMBER OF

FUNCTION EVALUATION REQUIRED FORTEST PROBLEM 1

Step 3) Population Evolution
WHILE (stopping condition is not met)DO
BEGIN

Step 3.1) Crossover
Execute the crossover operation times. In
the th execution, select the best parent based
on the th fitness function, select another parent
randomly, and executeAlgorithm 3 to perform
crossover on these two parents.

Step 3.2) Mutation
Each chromosome in undergoes mutation
with probability . To perform mutation on a
chromosome, randomly generate an integer

and a real number and then
replace the th component of the chosen chro-
mosome by to get a new chromosome.

Step 3.3) Selection
Consider the chromosomes in and those
generated by crossover and mutation. Adopt
each of the fitness functions to select the
best or chromosomes for the
next generation, such that the total number of
selected chromosomes is.

Step 3.4) Increment the generation numbergenby 1.

END
In step 3, the population is evolved and improved iteratively

until a stopping condition is met. Similar to the other genetic al-
gorithms, there can be many possible stopping conditions. For
example, one possible stopping condition is to stop when the
best chromosome based on each of the fitness functions
cannot be further improved in a certain number of generation.

The above algorithm has several design parameters. In
Table II, we summarize these design parameters and their fea-
sible values. We remind that some of these design parameters
correspond to the number of levels in the uniform design.
Since only those uniform arrays with prime number of levels
have been found and tabulated in the literature, these design
parameters are prime.

IV. NUMERICAL RESULTS

We execute the proposed algorithm and the hybrid genetic
algorithm [1] to solve three test problems, and we compare their
performance.

LEUNG AND WANG: MULTIOBJECTIVE PROGRAMMING 301

(a)

(b)

(c)

(d)

(e)

Fig. 6. Pareto-optimal solutions in the objective space for the second test problem.

A. Test Problems

1) Test Problem 1 [1]:

Minimize
Minimize
Subject to:

where . This problem was tested in [1], but we
enlarge the domain of from to in order to

increase the number of Pareto-optimal solutions. The resulting
problem is more challenging.

2) Test Problem 2 [22]:

Minimize

Minimize
Subject to:

302 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 3, AUGUST 2000

where . This problem was tested in [22], but we
enlarge the domain of from to in order to
increase the number of Pareto-optimal solutions. The resulting
problem is more challenging.

3) Test Problem 3 [7]: See the equation at the bottom of the
page where . This problem is the well-known beam
design problem. The first objective is to minimize the volume
of the beam, and the second objective is to minimize the static
compliance of the beam [7].

B. Parameter Values

We adopt the following parameter values.

• Population size: The population size is 200.
• Parameters for generating initial population and selec-

tion: The feasible solution space is divided into
subspaces. We adopt fitness functions and

levels per domain.
• Parameters for crossover and mutation: We adopt

, and .
• Stopping condition: The execution is stopped after 20 gen-

erations.
For the hybrid genetic algorithm, we adopt the following pa-

rameter values: the population size is 200, the number of exam-
ined neighborhood solutions per chromosome is 2, the number
of elite solutions is 2, and the probability of mutation is 0.02.
For more details about these parameters, see [1].

C. Results

For each test problem, we perform five independent execu-
tions. We record the following data for each execution:

• all Pareto-optimal solutions;
• number of Pareto-optimal solutions found;
• number of function evaluations required.

For convenience, the proposed genetic algorithm using uniform
design is referred to as UGA, and the hybrid genetic algorithm
[1] is referred to as HGA.

Fig. 5 shows the Pareto-optimal solutions in the objective
space for the first test problem. Compared with the hybrid ge-
netic algorithm, the proposed algorithm can find significantly
more Pareto-optimal solutions and these solutions are scattered
more uniformly over the entire Pareto frontier. This demon-
strates that the proposed fitness functions using uniform de-
sign are effective in guiding the search toward the entire Pareto
frontier. Nevertheless, Table III shows that the proposed algo-
rithm requires significantly smaller number of function evalua-

TABLE IV
NUMBER OF PARETO-OPTIMAL SOLUTIONS FOUND AND THE NUMBER OF

FUNCTION EVALUATION REQUIRED FORTEST PROBLEM 2

tions. On average for the five executions, the proposed algorithm
requires 1668 function evaluations to find 234 Pareto-optimal
solutions, while the hybrid genetic algorithm requires 11 974
function evaluations to find 31 Pareto-optimal solutions. This
demonstrates that the proposed genetic algorithm using uniform
design can effectively search the solution space.

Fig. 6 shows the Pareto-optimal solutions in the objective
space for the second test problem. Compared with the hybrid
genetic algorithm, the proposed algorithm can find significantly
more Pareto-optimal solutions which are scattered more uni-
formly over the entire Pareto frontier. Nevertheless, Table IV
shows that the proposed algorithm requires significantly smaller
number of function evaluations. On average, the proposed al-
gorithm requires 1868 function evaluations to find 288 Pareto-
optimal solutions, while the hybrid genetic algorithm requires
11 976 function evaluations to find 82 Pareto-optimal solutions.

Fig. 7 and Table V show the results for the third test
problem. These results confirm the competence of the proposed
algorithm. Compared with the hybrid genetic algorithm, the
proposed algorithm can find significantly more Pareto-optimal
solutions using significantly fewer function evaluations, while
these solutions are scattered more uniformly over the entire
Pareto frontier.

V. CONCLUSION

We designed a genetic algorithm to find the Pareto-optimal
solutions scattered uniformly over the Pareto frontier, so that
it can provide a variety of compromise solutions to the deci-
sion maker. We applied the uniform design to compose mul-
tiple fitness functions and designed a selection scheme using
these fitness functions, so that the resulting search directions
are scattered uniformly toward the Pareto frontier in the objec-

Minimize

Minimize

Subject to:

LEUNG AND WANG: MULTIOBJECTIVE PROGRAMMING 303

(a)

(b)

(c)

(d)

(e)

Fig. 7. Pareto-optimal solutions in the objective space for the third test problem.

tive space. In addition, we applied the uniform design to gen-
erate a good initial population and design a new crossover op-
erator for searching the Pareto-optimal solutions. We executed

the proposed algorithm and the hybrid genetic algorithm [1] to
solve three test problems. The results demonstrated that the pro-
posed algorithm can find larger numbers of Pareto-optimal so-

304 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 3, AUGUST 2000

TABLE V
NUMBER OF PARETO-OPTIMAL SOLUTIONS FOUND AND THE NUMBER OF

FUNCTION EVALUATION REQUIRED FORTEST PROBLEM 3

lutions using smaller numbers of function evaluations, and these
Pareto-optimal solutions are scattered more uniformly over the
Pareto frontier.

REFERENCES

[1] H. Ishibuchi and T. Murata, “A multi-objective genetic local search al-
gorithm and its application to flowshop scheduling,”IEEE Trans. Syst.,
Man, Cybern. C, vol. 28, pp. 392–403, Aug. 1998.

[2] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and mul-
tiple constraint handling with evolutionary algorithms—Part I: Unified
formulation,” IEEE Trans. Syst., Man, Cybern. A, vol. 28, pp. 26–37,
Jan. 1998.

[3] , “Multiobjective optimization and multiple constraint handling
with evolutionary algorithms—Part II: Application example,”IEEE
Trans. Syst., Man, Cybern. A, vol. 28, pp. 38–47, Jan. 1998.

[4] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic
algorithm for multiobjective optimization,” inProc. 1st IEEE Int. Conf.
Evolutionary Computation, 1994, pp. 82–87.

[5] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithms,”Evol. Comput., vol. 2, no. 3, pp.
221–248, 1994.

[6] J. Horn and N. Nafpliotis, “Multiobjective optimization using the niched
Pareto genetic algorithm,” Univ. Illinois, Urbana-Champaign, IlliGAL
Rep. 93 005, 1993.

[7] A. M. Sultan and A. B. Templeman, “Generation of Pareto solutions
by entropy-based methods,” inMultiobjective Programming and Goal
Programming: Theories and Applications, M. Tamiz, Ed. Berlin, Ger-
many: Springer-Verlag, 1996, pp. 164–195.

[8] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algo-
rithms for multiobjective optimization,”Evol. Comput., vol. 3, no. 1,
pp. 1–16, 1995.

[9] J. D. Schaffer, “Multi-objective optimization with vector evaluated ge-
netic algorithms,” inProc. 1st Int. Conf. Genetic Algorithms, 1985, pp.
93–100.

[10] F. Kursawe, “A variant of evolution strategies for vector quantization,”
in Parallel Problem Solving from Nature, H. P. Schwefel and R. Manner,
Eds. Berlin, Germany: Springer-Verlag, 1991, pp. 193–197.

[11] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1996.

[12] D. B. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Trans. Neural Networks, vol. 5, pp. 3–14, Jan. 1994.

[13] D. Beasley, D. R. Bull, and R. R. Martin, “An overview of genetic algo-
rithms: Part 1, fundamentals,”Univ. Comput., vol. 15, pp. 58–69, 1993.

[14] , “An overview of genetic algorithms: Part 2, research topics,”Univ.
Comput., vol. 15, pp. 170–181, 1993.

[15] D. C. Montgomery,Design and Analysis of Experiments, 3rd ed. New
York: Wiley, 1991.

[16] C. R. Hicks,Fundamental Concepts in the Design of Experiments, 4th
ed. New York: Saunders, 1993.

[17] Y. Wang and K. T. Fang, “A note on uniform distribution and experi-
mental design,”KEXUE TONGBAO, vol. 26, no. 6, pp. 485–489, 1981.
In Chinese.

[18] K. T. Fang and J. K. Li, “Some New Uniform Designs,” Hong Kong
Baptist Univ., Hong Kong, Tech. Rep. Math-042, 1994.

[19] K. T. Fang and Y. Wang,Number-Theoretic Methods in Statistics,
London, U.K.: Chapman & Hall, 1994.

[20] K. T. Fang,Uniform Design and Design Tables, Beijing, China: Science,
1994. in Chinese.

[21] P. Winker and K. T. Fang, “Application of threshold accepting to the
evaluation of the discrepancy of a set of points,”SIAM J. Numer. Anal.,
vol. 34, pp. 2038–2042, 1998.

[22] V. R. Manuel and U. C. Eduardo, “A nongenerational genetic algorithm
for multiobjective optimization,” inProc. 7th Int. Conf. Genetic Algo-
rithms, 1997, pp. 658–665.

[23] Y. W. Leung and Q. Zhang, “Evolutionary algorithms+experimental de-
sign methods: A hybrid approach for hard optimization and search prob-
lems,” Res. Grant Prop., 1997.

[24] Q. Zhang and Y. W. Leung, “An orthogonal genetic algorithm for multi-
media multicast routing,” Dept. Comput. Sci., Hong Kong Baptist Univ.,
Tech. Rep., 1998.

[25] Y. W. Leung and Y. Wang, “An orthogonal genetic algorithm for global
numerical optimization,” Dept. Comput. Sci., Hong Kong Baptist Univ.,
Hong Kong, Tech. Rep., 1998.

Yiu-Wing Leung (M’92–SM’96) received the B.Sc.
and Ph.D. degrees from the Chinese University of
Hong Kong, Hong Kong, in 1989 and 1992, respec-
tively.

He was with the Hong Kong Polytechnic Univer-
sity until 1997, when he joined the Department of
Computer Science, Hong Kong Baptist University,
where he is now an Associate Professor. His current
research interests are in two major areas: informa-
tion networks and systems and cybernetics. He has
published more than 50 journal papers in these areas,

most of which appear in various IEEE publications.

Yuping Wang received the B.Sc. degree in mathe-
matics from Northwest University, China, in 1983,
and the Ph.D. degree in computational mathematics
from Xi’an Jiaotong University, China, in 1993.

He is currently a Professor with the Department
of Applied Mathematics, Xidian University, Xi’an,
China. He was a Visiting Research Scholar with
the Chinese University of Hong Kong from January
1997 to July 1997, and at Hong Kong Baptist
University from April 1998 to December 1998.
His current research interests include evolutionary

computation, optimization theory, algorithms, and applications.

