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Abstract

In many engineering applications including multidisci-
plinary optimization (MDO) problems, a decision maker
often tends to evaluate and optimize multiple criteria at
the same time to carry out a tradeoff study. Neverthe-
less, solving an multi-criteria optimization (MCO) prob-
lem, in general, is a difficult practice. Numerous meth-
ods have been proposed and applied to various applica-
tions over the past few decades. This paper introduces
a new MCO method suitable for continuous, nonlinear
MCO problems. The concept of the proposed method, a
spotlight search method (SSM), is easily comprehendible
and its implementation is simple and straightforward.
Mathematical formulations show that this method can be
considered as a variation of the goal attainment method
(GAM). Five test problems are selected and numerical
experiments are presented to demonstrate the usefulness
of SSM with comparison to GAM. It is observed that
SSM finds the Pareto front more efficiently for all test
problems.

Nomenclature

R
m m-dimensional Euclidean space

Θ design space
Ω criterion (objective) space
∂Ω boundary of Ω
X design vector
F(X), Y criterion (objective) vector
N dimension of a design space
n dimension of a criterion space
fi(X) i-th criterion (objective) function
G(X) inequality constraint vector function
H(X) equality constraint vector function
B(X ,δ) open ball centered at X
P Pareto front (Pareto optimal set) in Ω
F̂ goal vector
‖ ‖p Lp–norm
ν search (spotlight) vector
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1 Introduction

Every decision-making problem involves multiple crite-
ria by nature. Engineering problems are no exception;
they often require addressing multiple objectives which
usually contradict one another. For instance, an aircraft
manufacturer may want to build a new vehicle that incurs
low R&D cost yet possesses good performance charac-
teristics. However, lower R&D cost compromises per-
formance, necessitating a design tradeoff.

While optimization with a single objective is a fun-
damental technique and can be found ubiquitously in
practice, there are increasing demands of research on
multi-criteria decision making (MCDM) techniques in
academia, industry and government. A designer can
make a ‘better quality’ decision when multiple crite-
ria are considered simultaneously. This contributes to
expanding the knowledge boundary on complex design
space in or even before the conceptual design phase. For
this reason, it is forecasted that MCDM techniques will
be more regularly exercised on practical problems in ev-
ery domain.1, 2

MCDM can be divided into two branches3, 4: multi-
attribute decision making (MADM) and multi-criteria
optimization (MCO). In general, MADM relates to tech-
niques that aid a decision maker in choosing the best de-
sign from a small number of alternatives. MCO is also
known as multi-objective optimization or vector opti-
mization. Its task is to present a set of designs that are the
most appealing alternatives to a decision maker. To do
this task efficiently, numerous MCO methods have been
developed for the past few decades.5, 6, 7 But one can-
not judge that a particular method is superior to others.
This is mainly because characteristics of MCO problems
are diverse depending on problem-specific situations. It
is next to impossible to come up with a generic method
that works evenly well for every MCO problem. There-
fore, the key criteria in choosing from various methods
should be based on the practicability. In other words, a
user should look into not only whether the method fits
their specific needs appropriately, but also the difficulty
or simplicity of numerical implementation.

The purpose of the present work is to propose a new
MCO method suitable for continuous, nonlinear MCO
problems. The concept of the proposed method, called
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a spotlight search method (SSM), is very easily under-
standable and its implementation is simple and straight-
forward.

The rest of this paper is organized as follows. Section
2 briefly overviews background information on MCO. In
the succeeding section, SSM is introduced in detail with
a constraint handling technique. A comparison study
to the most similar method, the goal attainment method
(GAM) by Gembicki, is then presented. Section 4 pro-
vides the results of numerical experiments performed
with comparison to those from GAM. This is followed
by conclusion.

2 Multi-Criteria Optimization

2.1 Fundamentals

Envision an N-dimensional design space Θ ⊂ R
N , a de-

sign vector X ∈ Θ, an n-dimensional criterion space
Ω ⊂ R

n, a criterion vector Y ∈ Ω, and a mapping
F : X ∈ Θ 7−→ Y ∈ Ω. This is illustrated in Figure 1 as
an example taking N = 3 and n = 2. If the task is op-
timizing either f1 or f2, one simply needs to employ a
single objective optimization method. Then the solution
would end up to point P or P′ in this particular example.
However, the core of MCO is to minimize both functions
at the same time. It might no longer be as simple a task
as before. Mathematically, a general form of an MCO
problem is stated as follows:

“Minimize” F(X) = [ f1(X), f2(X), · · · , fn(X)]T

Subject to: G(X) ≤ O, H(X) = O (1)

The scalar function fi(X) denotes an i-th criterion that
is an element of the criterion vector F(X). The vector
function G(X) and H(X) indicate inequality and equal-
ity constraints respectively that bound a feasible design
space Θ, i.e., Θ = {X |G(X) ≤ O, H(X) = O}. The sym-
bol O simply indicates a zero vector.

The difficulty comes in due to the nature of F(X).
Since F(X) is an n-dimensional vector function, unlike
single objective optimization problems, the solution of
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Problem (1) would be a set of optima rather than a sin-
gle optimum. For example, any point on the thick curve
P̃P′ ⊂ Ω in Figure 1 can be presented as the solution
of the MCO problem. This is called a non-inferior so-
lution, nondominated solution, efficient point, or Pareto
optimum. The mathematical definition of a Pareto opti-
mum is given as follows3:

Definition 1. (Global) Pareto optimum
A design vector X∗ ∈ Θ is called a Pareto optimum
if there does not exist another design vector X ∈ Θ
such that fi(X) ≤ fi(X∗) for all i = 1,2, · · · ,n and
f j(X) < f j(X∗) for at least one index j.

A criterion vector Y ∗ ∈ Ω is a Pareto optimum if the
design vector corresponding to it is a Pareto opti-
mum.

Now, Pareto front P can be defined as a set of all Pareto
optima in Ω. In a two criteria case, for example, it can
be visualized by drawing a curve as in Figure 1; in a
three criteria case, a surface. A very similar term, a local
Pareto optimum, is defined for later use.

Definition 2. Local Pareto optimum
A design vector X∗ ∈ Θ is called a local Pareto op-
timum if there exists δ > 0 such that X ∗ is a Pareto
optimum in Θ∩B(X∗,δ).

An objective vector Y ∗ ∈ Ω is a local Pareto op-
timum if the design vector corresponding to it is a
local Pareto optimum.

It is obvious that X∗ being a global Pareto optimum im-
plies that X∗ is a local Pareto optimum. The converse
does not always hold, which imposes another difficulty
in solving MCO problems. Lastly, another useful term is
introduced.

Definition 3. Utopian vector
A utopian vector Y ? ∈ R

n is defined such that
Y ? , [min f1,min f2, · · · ,min fn]

T . Each minimiza-
tion is required to satisfy the original constraints,
i.e., X ∈ Θ.

The utopian vector Y ? is marked in Figure 1. It can be
perceived as a goal or an aspiration point. An MCO
problem collapses to a single objective optimization
problem when a utopian vector sits on P.

Note that the names and definitions throughout this pa-
per, including this section, may differ in literature. The
reader is encouraged to check the terms whenever refer-
ring to literature related to MCO topics.

2.2 MCO Methods

The objective of MCO methods is to locate Pareto op-
tima and from that, to generate a complete Pareto front
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P. Numerous methods have been developed to do this
task efficiently, so certain classification of the methods
are helpful. However, even the ways of the classification
are shaky and numerous; no classification is absolute.
For example, Hwang and Masud5 categorized the meth-
ods according to the decision maker’s participation in the
optimization process; namely, no-preference, a posteri-
ori, a priori and interactive methods. Carmichael8 did
so into three bases: a composite single criterion, a sin-
gle criterion with constraints and many single criteria. In
the present research, the classification is made based on
whether a single solution or a set of solutions is gener-
ated at a single execution of the method.

2.2.1 One-by-one Strategy

This strategy begins with switching an MCO problem to
a single objective optimization problem by introducing
a surrogate function F s : X s ×α 7→ R

1. The new design
vector X s consists of the original design vector X and an
extra design vector λ if needed. The parameter vector
α is a necessary input to coordinate a search procedure.
Now Problem (1) will be converted as follows:

Minimize F s = F s(X s;α)
X ∈ Θ

Subject to: Gs(X ,λ;α) ≤ O, Hs(X ,λ;α) = O
(2)

where Gs and Hs are additional constraints. These ex-
tra entities, including λ, may or may not be present to
complete the conversion process depending on a method.
Now that Problem (1) has changed to a surrogate Prob-
lem (2), only a single Pareto optimum would be searched
at a single execution if the solution converged success-
fully. Changing in the value of α will entail a new Pareto
optimum. Through this sequential process, the Pareto
front P would be formed by accumulating the Pareto op-
tima. An outline of three basic approaches adopting the
one-by-one strategy follows.

• Weighted Sum Method

This method is based on a naı̈ve idea. F s is simply de-
fined as a composite of each criterion.

F s , W ·F(X) =
n

∑
i=1

wi fi(X) (3)

Here, W = [w1,w2, · · · ,wn] (usually ∑wi = 1) corre-
sponds to the parameter vector α in Problem (2). By
perturbing parameter vector W or weights, each opti-
mization process will produce a different Pareto opti-
mum. The serious drawback of the method is that the
method cannot generate complete description of a Pareto
front that is not convex. This situation is depicted in Fig-
ure 2(a). No matter how W is altered, the portion of the
Pareto front between Y ∗

a and Y ∗
b can never be obtained.

• ε-Constraint Method

The ε-constraint method is also based on a simple idea
which has become a routine for single objective opti-
mization process. The most important criterion function
is chosen and optimized taking the remaining criterion
functions as constraints. Hence, F s is defined as follows
without loss of generality:

F s , fn(X) (4)

The other criteria are incorporated into Gs. This ex-
tra constraint vector has (n–1) inequality constraints and
they are:

fi(X)− εi ≤ 0 (i = 1,2, · · · ,n–1) (5)

Specific εi values (for i = 1, · · · ,n–1) need to be deter-
mined before the optimization. The optimization pro-
cess is illustrated in Figure 2(b) taking F s = f2(X). The
Pareto optimum Y ∗

0 would be obtained with given value
ε1 = ξ0. If the optimization is repeated with ε1 = ξ1,
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the Pareto optimum Y ∗
1 , which could not be obtained by

the previous method, can be searched. The major draw-
back of this method is that it is time consuming to figure
out appropriate numeric values for εi, especially when
n = dimΩ becomes larger.

• Distance Metric Method

In this method, F s is defined as follows:

F s , ‖F(X)− F̂‖p =
( n

∑
i=1

| fi(X)− f̂i|
p
) 1

p
(6)

where F̂ = [ f̂1, f̂2, · · · , f̂n]
T is a goal vector which is a pre-

determined vector by a user. The parameter p is usually
1, 2 or infinity. The basic idea behind this method is
described in Figure 2(c). The function F s measures dis-
tance from F(X) to F̂ . If the optimizer minimizes the
distance from F̂1, the point Y ∗

1 will be obtained. Moving
a goal to F̂2 will make the optimizer search the point Y ∗

2 .
However, this method is sensitive to the position of F̂ .
For example, starting from F̂3 ∈ Ω will do nothing. Fur-
thermore, if F̂4 is chosen, a meaningless point on ∂Ω will
be the final outcome.

2.2.2 All-at-once Strategy

Even though various methods adopting the one-by-one
strategy have been successfully applied to many appli-
cations, there exist a number of weaknesses. First, as
the name implies, many repetitions are required to have
the entire Pareto front. Second, some methods are very
sensitive to the shape of the Pareto front. Last but not
least, in order to do an effective search, the one-by-one
strategy requires some degree of a priori knowledge
about the criterion space. These limitations can be
resolved through the all-at-once strategy also known
as multiobjective evolutionary algorithms (MOEAs) or
multiobjective genetic algorithms (MOGAs). These
GA-based MCO techniques have gained much attention
over the past decade since they have intriguing concepts
and a lot of potential to tackle MCO problems.

A genetic algorithm (GA) is a stochastic optimization
method mimicking the evolutionary process. Its useful-
ness is notably growing in accordance with the current
escalating trend of computing power. Genetic algorithms
utilize a set of chromosomes referred as a population.
A chromosome, typically represented in the form of bi-
nary string, is a pointer to a particular design vector in
a (discrete) design space. Three genetic operations (se-
lection, crossover and mutation) play a role in generating
the next population. This process continues until a user
commands to stop.

Genetic algorithms (GAs) are sharply distinguished
from calculus-based optimization algorithms in that they
do not call for analytic information from an objective
function. Thus, they can deal with objective functions
that need not be differentiable or continuous. This
feature makes GAs a versatile optimization method.
However, GAs should work on a discrete design space
(except the real GAs). Also, unlike calculus-based
optimization algorithms, it is difficult to check whether
the final outcome is a converged one. The most serious
issue of a GA is that it requires much more function
calls than any other optimization algorithms does.

In what follows, two specific ways to combine a GA
and MCO will be introduced. One is called nondomi-
nated sorting procedure proposed by Goldberg.9 Among
the population, the nondominated individuals are ranked
1 then they are removed. The next nondominated in-
dividuals are ranked 2 and also removed. This process
will be repeated and is illustrated in Figure 3(a). Fonseca
and Flemming10 presented a different scheme focusing
on each individual, which is depicted in Figure 3(b). If
an individual is dominated by R other individuals, then
(R + 1) is assigned for its rank. Under the Darwinian
principle, the survival of the fittest, top-ranking individ-
uals are likely to be chosen to reproduce their offspring
for the next generation. A hypothetical snapshot of the
GA evolution is shown in Figure 4. While the initial pop-
ulation is scattered randomly in Ω, the final generation
individuals are gathered near the Pareto front.
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GA-based MCO methods rely on aforementioned
strengths from GAs. It is possible to find multiple Pareto
optimum at a single execution. Also, one does not need
to worry about the shape of the Pareto front. More im-
portantly, it is not necessarily required to have a priori
knowledge for a given problem. The knowledge nat-
urally grows from evolutionary process. On the other
hand, GA-based MCO methods inherit the disadvantages
from GAs as well. Due to the stochastic nature, repeti-
tive executions are needed to ensure reliable solutions. It
is again emphasized that GAs require a lot of function
calls. In the end, a user often experiences a situation that
advantages of a GA-based methods quickly become di-
luted after recognizing huge amount of function calls.

Therefore, a user should be familiar with the advan-
tages and disadvantages from one-by-one and all-at-once
strategy so that (s)he may choose the best strategy and
the best method. In some occasions, it may be worth-
while to think of a potential benefit from combining both
strategies wisely.

3 Spotlight Search Method

3.1 The Concept and Formulations

The key concept of a spotlight search method (SSM) is
illustrated in Figure 5. In this 2-D example, Ω is shown
with the boundary ∂Ω in an arbitrary shape. Suppose a
unit vector ν = [ν1,ν2]

T with ν1 ·ν2 6= 0 and a line aligned
to ν through the origin O. It is shown that the line makes
two points A and B intersecting ∂Ω. Then, a criterion
vector F(X) lying on the line AB should satisfy the fol-
lowing equality constraint.

F(X) = t ·ν or f1(X)
ν1

=
f2(X)

ν2
= t ∈ R

1 (7)

Obviously, the point A with minimum distance from the
origin is a Pareto optimum. From this observation, a
crude formulation of SSM can be given as follows by
substituting a generalized form of Equation (7) to deal
with n criteria.

Minimize F s = ‖F(X)‖2
X ∈ Θ

Subject to: f1(X)
ν1

=
f2(X)

ν2
= · · · =

fn(X)
νn

(8)

If a user rotates the spotlight vector ν from f1 axis to f2
axis, a subset of ∂Ω facing the origin O can be obtained.
It will be called the front throughout this paper. In this
particular example, the front is portrayed as the separate
black curves, Ỹ1Y2 and Ỹ3Y5. The dashed curves are the
remaining portions of ∂Ω which are invisible from the
point O. It can be proven that the Pareto front is always
a subset of the front. After the front is identified in a
criterion space, a user is able to quickly discard a portion

which is not the Pareto front such as the curve Ỹ3Y4. This
is the basic mechanism of an SSM.

SSM offers another parameter vector to guide a search.
It will locate a different intersecting points when the ori-
gin of the vector ν is moved from O to another point F̂ .
This is equivalent to translating the reference axes. To
do so, a function F̃(X) is introduced with a goal vector
F̂ = [ f̂i]

T .

F̃(X) = F(X)− F̂ (9)

Consequently, the surrogate function and the equality
constraints in Problem (8) are substituted respectively
by:

Fs = ‖F̃(X)‖2 (10a)

f̃1(X)
ν1

=
f̃2(X)

ν2
= · · · =

f̃n(X)
νn

(10b)

where f̃i(X) indicates the i-th element of F̃(X).

A further improvement can be made. Suppose the goal
is pivoted on F̂w in Figure 5. Then, SSM will search
the point B like the distance metric method does as ex-
plained in Section 2.2.1. To avoid this, the L2-norm is
now dropped and F s will be substituted with f̂k(X). The
index k can be any number from 1 to n. Equation (10b)
needs to be rearranged to fit into a computing code. In-
corporating the above modifications will bring the final
formulation for SSM as follows:

Minimize f̃k(X)
X ∈ Θ

Subject to: f̃i νi+1 − f̃i+1 νi = 0
for i = 1,2, · · · ,n–1

(11)

By using this formulation, the point A can be searched
even if the goal is set mistakenly to F̂w. In fact, the out-
come is the same as long as the goal sits on the line −→OA.
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3.2 Constraint Handling

In all optimization practice, it is an important issue to
represent constraints appropriately in a computing code.
Obviously, better constraint handling methods result in
faster and better solutions. The SSM calls for (n− 1)
equality constraints which can be presented in a differ-
ent form by algebraic manipulation. Through a pilot test,
it was found that the constraint representation shown in
Problem (11) worked well in most cases but numerical
instability was encountered when the search vector ν was
close to the reference axes. Thus, as a subproblem for
this research, an empirical study in 2-D cases was car-
ried out to find the best way to improve numerical stabil-
ity. The result was simple; if the search vector is close
to f1 axis, then Fs = f1(X) and the equality constraint
Hs takes f2(X)

f1(X)
ν1
ν2
−1 = 0, which is described in Figure 6.

When the search vector is very close to f1 axis it follows
that ν1

ν2
� 1. The optimizer is minimizing f1(X), which

forces f2(X) to decrease even more because the equality
constraint requires f2(X)

f1(X) � 1. This scheme conceivably
contributes to stabilize numerical calculation in a com-
puter and was adopted for all numerical experiments. A
generalized SSM problem incorporating the constraint
handling technique can be induced to replace Problem
(11) as follows:

Minimize f̃k(X)
X ∈ Θ

Subject to: f̃i
f̃k

νk
νi

−1 = 0

for i = 1,2, · · · ,n (i 6= k)

(12)

where k is an index for the reference axis f̃k and deter-
mined from the following simple steps.

i. Let e j be a unit vector for the reference axis f̃ j.
ii. Find k such that maximize |e j ·ν|.

Note that special treatment is needed to use Prob-
lem (12) when any of ν j equals to zero. The remedy is
quite simple: set f j(X) = 0.
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3.3 Comparison to GAM

The goal attainment method (GAM), proposed by Gem-
bicki,11 employs the very similar scheme to SSM. A
weight vector W = [w1,w2, · · · ,wn]

T should be predeter-
mined by a decision maker in addition to a goal vector
F̂ . The following problem will be solved to generate a
Pareto optimum.

Minimize λ
λ ∈ R

1, X ∈ Θ

Subject to: fi(X)−λwi ≤ f̂i

for i = 1,2, · · · ,n

(13)

where λ is a scalar variable whose sign tells the goal F̂ is
attainable or not. The initial value of λ was set to zero in
the forthcoming numerical experiments described in Sec-
tion 4. The vector W exactly corresponds to the spotlight
vector ν. Instead of the equality constraints from SSM,
GAM has inequality constraints. Even though the two
methods share mathematically equivalent elements, they
are not exactly the same. In Figure 7, the mechanisms
by which these methods operate are portrayed. The goal
is set to the origin for simplicity. While SSM will end
up with the point YS on the front, it is possible for GAM
to find the point YG. In addition, SSM and GAM differ
mathematically in the dimension of the problem. They
are contrasted as shown in Table 1.

Table 1: Dimension Comparison

SSM GAM
dimX s N N +1
dimGs 0 n
dimHs n−1 0
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Table 2: Description of Test Problems

Criterion functions Constraints Feature

P1 : f1 = 10 x1; f2 =
10+(x2−5)2

10x1

0.1 < x1 < 1
0 < x2 < 1

Convex Pareto front

P2 :
f1 = 1− exp{−(x1 −1)2 − (x2 +1)2}

f2 = 1− exp{−(x1 +1)2 − (x2 −1)2}

−4 < x1 < 4
−4 < x2 < 4

Concave Pareto front

P3 :
f1 = b cosa; f2 = b sina

a = π
180{50+40 sin2πx1 +40 sin2πx2}

b = 1+0.6 cos2πx1

0 < x1 < 1
0 < x2 < 1

Compound Pareto front

P4 :
f1 = x1; f2 = a

x1

a = 2− exp{−(x2−0.2)2

0.08 }−0.8exp{−(x2−0.6)2

0.4 }

0.1 < x1 < 1
0 < x2 < 1

Local Pareto front

P5 :
f1 = x1; f2 = a ·b

a = 1+10 x2; b = 1− ( f1
a )2 − f1

a sin8π f1
0 < x1 < 1
0 < x2 < 1

Discontinuous Pareto front

4 Numerical Experiments

4.1 Test Problems

In order to benchmark the performance of SSM, five
test problems were selected for numerical experiments.
These are listed on Table 2. Since the imminent task for
this research is to prove the concept of SSM, all test prob-
lems were in the simplest form. They each have two cri-
teria and two design variables with side constraints only.
However, each problem has been carefully selected to
represent diverse features of MCO problems.

Test problem P1 was found in Deb.12 It features a con-
vex Pareto front. Test problem P2 was introduced in Fon-
seca and Fleming.13 It has a symmetric concave Pareto
front bounded in a region [0,1]×[0,1]. Test problem P3
comes from Hillermeier.14 The Pareto front of this prob-
lem is composed of a concave part in the center and con-
vex parts at both ends. These three problems are rela-
tively easy to solve and called Group I.

Group II consists of the problem P4 and P5. Test
problem P4 was used in Andersson.15 This problem
is a very deceptive one. It has an easy-to-find local
Pareto front and a difficult-to-find global Pareto front
since f2(X) has a local optimum at x2 ' 0.6 and global
optimum at x2 ' 0.2 indicated in Figure 8. Test problem
P5 was formulated by Deb.16 This problems is also
difficult to solve since it has a set of discontinuous
Pareto front. The feasible criterion space was shown in
a shaded region in Figure 9.

The experimental setup is now being described. The
optimizer used in the experiments was a built-in func-
tion fmincon in MATLABr. From this tool, useful infor-
mation on the optimization process was readily obtained
such as the total number of function calls, active con-
straints and convergence status. The numerical experi-

ment for each test problem went through the following
steps.

First, an initial guess for fmincon was set to the mid
point of each design variable. Next, a goal vector F̂ was
determined. Then, the optimizer runs SSM and GAM
respectively with the vector ν = W that was given as
[cosθ,sinθ]T , θ = 1◦,2◦, · · · ,89◦.
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Figure 10: Test Result Summary for P1,P2,P3

4.2 Results

4.2.1 Group I: P1, P2, and P3

The problem P1, P2 and P3 were easy to solve. SSM
and GAM successfully found the corresponding Pareto
fronts. The criterion spaces for all three problems are
shown in Figure 10(a), 10(b) and 10(c). In the figures,
the circles and the crosses denote converged data points
from SSM and GAM respectively. The ×+ symbols were
marked to indicate the location of the goals. For test
problem P1, the goal vector was located at [2.5,2.5]T .
The goal vector for P2 was set to the utopian vector,
Y ? = [0,0]T . However, the goal of P3 was intentionally
given at the ‘wrong’ place [1,1]T , simulating a decision
maker’s inadequate input due to insufficient knowledge
about the criterion space. The result clearly shows that
SSM and GAM found the same Pareto optimum and sub-
sequently the identical Pareto fronts regardless of their
shape. Under the given result, it is fair to compare the

performances of both methods based on the number of
function calls. The comparison data is shown in Table
3 and is plotted in Figure 10(d). Throughout all cases,
SSM requires fewer number of function calls. Table 4
shows SSM has stable variations as opposed to GAM.
Therefore, it is concluded that SSM outperforms GAM
for the test problems P1, P2 and P3, which may imply
that SSM is invariant with the shapes of Pareto fronts.

Table 3: Average Function Calls
Problem SSM GAM Ratio (SSM/GAM)

P1 19.97 22.35 89.3 %
P2 16.24 31.70 51.2 %
P3 32.10 46.62 68.9 %

Table 4: Standard Deviations
Problem SSM GAM Ratio (SSM/GAM)

P1 4.20 2.59 162.5 %
P2 2.40 16.49 14.6 %
P3 8.01 8.33 96.1 %
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4.2.2 Group II: P4

The test problem P4 is more deceptive due to the presence
of a local Pareto front. Here, one can start to feel a fine
distinction between SSM and GAM. The result is plot-
ted in Figure 11. For SSM test, eighty-five executions
numerically converged. It is shown in Figure 11(a) that
thirty-two solutions correctly indicated the true Pareto
front. The remaining fifty-three solutions were located in
the local Pareto front. On the other hand, although GAM
had no problem in numerical convergence, there was an
excessive duplicated solution point; thirty-two solutions
out of eighty-nine solutions indicated the same data point
[1.0,1.2]T . Furthermore, all solutions were gathered on
the local Pareto front except one solution which can be
found at f1 ' 0.4 in Figure 11(b). This may mislead a de-
cision maker. Hence, it can be concluded that the SSM
is superior to GAM if one recalled the objective of MCO
methods.
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Figure 11: P4 Result Summary

4.2.3 Group II: P5

Another intriguing result was found in this problem.
First, all the converged solutions from both method are
shown in Figure 12(a). For GAM, all executions numer-
ically converged. But an excessive duplication was iden-
tified again; forty-two solutions are on the same point
[0.568,0.115]T . In contrast, seventy-six executions of
SSM numerically converged. The converged solutions
were located, at least, on ∂Ω for this problem.

To contrast the results even clearer, solutions on P

were selected and plotted in Figure 12(b) and 12(c). SSM
found all four segments of the Pareto front very well. The
data points were evenly distributed except the top part of
the second segment from the right. However, GAM’s re-
sult was satisfactory only on the second segment only.
More notably, it completely missed the first segment of
the Pareto front from the right, which again may mislead
a decision maker. Therefore, it is concluded that SSM
outperforms GAM for this problem.

5 Conclusion

This paper presented the spotlight search method (SSM)
suitable for continuous, nonlinear MCO problems. The
basic concept and formulations of SSM were given with
an improved technique to handle the additional equal-
ity constraints. The intrinsic advantages of the method
are that SSM is not sensitive to the shape of the Pareto
front and that it is partially adaptive to inadequate input
from a user such as a wrong goal point. The most similar
method, the goal attainment method, was identified and
benchmarked against SSM. The comparison study con-
trasted both method in operation mechanism and in the
dimension of the problem. SSM has fewer design vari-
ables and constraints. Since the equality constraints are
more strict than inequality constraints, it is interpreted
that GAM may be more robust in terms of numerical con-
vergence but may mislead a decision maker. Numerical
experiments concluded that SSM was superior to GAM
in all five test problems. Despite the fact that the test
cases were restricted in 2-D, SSM showed a lot of po-
tential to search a design space more efficiently. Fur-
ther study will attempt to deal with higher-dimensional
problems. As a future work direction, it is proposed that
an investigation on potential benefits from incorporating
SSM within the framework of multiobjective genetic al-
gorithms (MOGAs).
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