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Abstract. The multiple criteria aggregation methods allow us to construct a 
recommendation from a set of alternatives based on the preferences of a deci-
sion maker. In some approaches, the recommendation is immediately deduced 
from the preferences aggregation process. When the aggregation model of pref-
erences is based on the outranking approach, a special treatment is required, but 
some non-rational violations of the explicit global model of preferences could 
happen. In this case, the exploitation phase could then be treated as a multiob-
jective optimization problem. In this paper a new multiobjective evolutionary 
algorithm, which allows exploiting a known fuzzy outranking relation, is intro-
duced with the purpose of constructing a recommendation for ranking prob-
lems. The performance of our algorithm is evaluated on a set of test problems. 
Computational results show that the multiobjective genetic algorithm-based 
heuristic is capable of producing high-quality recommendations. 

1   Introduction 

Multiple Criteria Decision Analysis provides two major approaches of constructing a 
global preference model from an actor involved in the decision process. The first one 
is the functional model, which has been widely used within the framework of multi-
attribute utility theory (e.g. [10, 17, 30]). The second one is the relational model, 
which has its most known representation in the form of a fuzzy or crisp outranking re-
lation (e.g. [26]). This paper is concerned with the outranking approach to Multiple 
Criteria Decision Aid. Methods related to this approach, including the well-known 
family of ELECTRE methods, are often presented as the combination of two phases: 
aggregation (or construction) and exploitation. The aggregation process corresponds 
to the operation, which transforms the marginal evaluations of separate criteria into a 
global outranking relation between every pair of alternatives, which is generally nei-
ther transitive nor complete. Outranking relations, in most methods, are built using a 
concordance-discordance principle. 

It is well known that this principle does not, in general, lead to binary relations 
possessing “remarkable properties” such as transitivity and completeness [2]. The ex-
ploitation process deals with the outranking relation in order to clarify the decision 



through a partial or total preordering reflecting some of the irreducible indifferences 
and incomparabilities [8]. ELECTRE-III, PROMETHEE and other methods for deci-
sion aid (e.g. [25, 1, 8] build and exploit a fuzzy outranking relation. 

Let A be the set of decision alternatives or potential actions and let us consider a 

fuzzy outranking relation σ
AS defined on AXA ; this means that we associate with each 

ordered pair AXAba ∈),(  a real number )1),(0(),( ≤≤ baba σσ reflecting the de-

gree of strength of the arguments favoring the crisp outranking aSb . The exploitation 

phase transforms the global information included in σ
AS into a global ranking of the 

elements of A. Usually; three different ways are used [8]: 

1:  transform σ
AS into another valued relation R that presents some interesting prop-

erty needed for ranking purposes, i.e. transitivity, 

2: determine a crisp binary relation, close to σ
AS which presents crisp properties 

needed for ordering, 
3: use a ranking method to obtain a score function. 
Way 1 includes the process of finding the transitive closure or the intersection of 

traces. Way 3 is most commonly used in classical procedures like ELECTRE-III and 
PROMETHEE.  But the main difficulty consists in finding reasonable ways of dealing 
with the intransitivities without losing too much of the contents of the outranking rela-
tion. In this sense, the methods included in ways 1 and 2 lose information coming 

from σ
AS when exploiting a not so close transitive valued relation R, or a crisp binary 

relation with desirable properties for ranking purposes. On the other hand, the meth-
ods based in score functions do not perform well in presence of irrelevant alternatives 
or in case of complex graphs with many circuits. Nonrational situations could happen 
when the prescription is constructed. Most significant is the following: Suppose that 

ia and ja are two actions such that λσ ≥),( ji aa and )0(,),( >−≤ ββλσ ij aa ; if 

c≥λ  and t≥β (c and t representing consensus and threshold levels respectively), we 

should accept that “ ia outranks ja ” )( ji aSa λ and“ ja does not outrank ia ” 

)( ij anSa λ ; in this case the global preference model captured in outranking relation 

is giving a presumed preference favoring ia . However, a score function or any other 

similar method could lead to a final ordering in which ja is ranked better. ELECTRE 

and PROMETHEE methods do not have a way to minimize this kind of irregularity. 
In any case, the exploitation phase could then be treated as a multiobjective optimiza-
tion problem [19]. In this way, a number of solutions can be found which provide the 
decision maker with insight into the characteristics of the problem before a final solu-
tion is chosen. 

Evolutionary Multiobjective Optimization (EMOO) seeks to optimize the compo-
nents of a vector-valued cost function. Unlike single objective optimization, the solu-
tion to this problem is not a single point, but a family of points known as the Pareto-
optimal set. Each point in this surface is optimal in the sense that no improvement can 
be achieved in one cost vector component that does not lead to degradation in at least 
one of the remaining components. Assuming, without loss of generality, a minimiza-
tion problem, each element in the Pareto-optimal set constitutes a non-inferior solu-



tion to the EMOO problem. Non-inferior solutions have been obtained by solving ap-
propriately formulated ranking problems. Methods used include the contained in the 
ways (1), (2) and (3) and recently a method based on a genetic algorithm [19, 7]. 

By maintaining a population of solutions, multiobjective evolutionary algorithms 
(MOEAs) can search for many non-inferior solutions in parallel. This characteristic 
makes MOEAs very attractive for solving EMOO problems. 

In this paper, we propose a multiobjective evolutionary algorithm for improving 
the quality of recommendation when a fuzzy outranking relation is exploited, which is 
of particular interest for solving the Multiple Criteria Ranking Problem. This ap-
proach rests on the main idea of reducing differences between the global model of 
preferences and final ranking. In the next section the exploitation of a fuzzy outrank-
ing relation formulated as a multiobjective optimization problem is described, and on 
this background we present our proposal in section 3. A test problem and computa-
tional result is given in section 4, and finally, in section 5 some conclusions are dis-
cussed. 

2   The Exploitation of a Fuzzy Outranking Relation as a 
Multiobjective Combinatorial Optimization Problem 

Let A be a finite set of decision alternatives, which is the object of the decision proc-
ess. This set is not the universe of the potentially feasible alternatives; it is only the set 
under consideration in a specific decision problem. Let ),( baσ be a valued binary 

relation defined on AXA  with image in [0,1]. Note that the fuzzy outranking relation 
σ
AS of the past section is a particular case of ),( baσ . ),( baσ can be interpreted  as 

the credibility degree of the predicate “a is at least as good as b”. Let  λ be a cut level 
such that if λσ ≥),( ba , we say that a outranks b with credibility λ, denoted by baS λ . 

Otherwise, the outranking is rejected banS λ . 

We assume the existence of a threshold 0>β such that if baS λ and also 

)(),( βλσ −≤ab , then there is an asymmetric preference relation favoring a that will 

be denoted by baP βλ , . One can agree that for some values of λ and β, the conditions 

defining βλ ,P are good arguments for justifying a strict preference relation in the 
sense proposed by Roy (cf. [24]). 

Let E be a way of exploiting σ and AR  the complete ranking derived from apply-

ing E to σ.  E is a function assigning a ranking AR to each σ defined on AXA. AR de-

fines a weak order R on A. AXAba ∈∀ ),( , aRb  if and only if b is not ranked before 

a in AR . We think that the quality of a final ranking should be judged according to 

the number of its discrepancies and concordances with σ and the crisp relations λS , 

and βλ ,P . Let V be the set of strong discrepancies (violations) defined as  

:AXAbaV ∈= ),{( baP βλ , , bRa }  and )(VofycardinalitnV = . Note that Vn is a 

function of R, λ, and β. 



We propose to consider the best ordering as the best compromise solution of the 
following multiple objective optimization problem: 
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Where f is a measure counting the number of incomparable pairs i.e. counting all 

the pairs AXAba ∈),(  such that banS λ  and abnS λ . 

The minimization of Vn can be seen as a process of reducing the magnitude of the 
arguments against R. The minimization of f can be seen as a process of increasing the 

number of comparable pair of alternatives in λS .  Increasing λ improves the credibil-

ity of βλ ,P  and λS , relations on which the ranking is based. The most important ob-
jective is Vn . A value of λ between 0.65 and 0.75 is often considered good and no 
further increments are necessary. The structure of (1) strongly suggests the use of 
evolutionary algorithms. 

3   Multiobjective Evolutionary Algorithm for Exploiting a Fuzzy 
Outranking Relation 

This section presents an evolutionary algorithm that solves (1) overcoming the limita-
tions of the genetic algorithm presented by [19] by taking advantage of the structure 
of the objective space. 

3.1   Multiobjective Evolutionary Optimization 

Evolutionary algorithms are stochastic search techniques that mimic the natural selec-
tion process. The goal of evolutionary algorithms is to obtain better individuals (i.e., 
solutions) as the algorithm progresses. In any given generation (i.e., iteration), the 
population of individuals is combined and altered to obtain a children population. The 
parents and children undergo an evaluation and selection process, where the better in-
dividuals have a higher chance of survival. Algorithms sharing the same spirit and 
based on the same natural selection principle have been proposed in the fields of evo-
lutionary strategies [28], evolutionary programming [9], and genetic algorithms [14]. 

Evolutionary algorithms have been applied to solve complex problems where tradi-
tional optimization methods have failed to provide a good solution. Solving optimiza-
tion problems with multiple objectives is, generally, a very difficult task. Evolution-
ary algorithms are particularly well suited for multiobjective optimization due to their 
ability to explore a vast set of alternatives, partially because they are population-based 
and can evaluate several solutions in parallel [33]. Evolutionary algorithms can also 
be designed to search for the efficient frontier in a single run, without making as-



sumptions about the shape and mathematical properties of the frontier [3]. Moreover, 
there are few competitive alternatives to multiobjective optimization with noise and 
uncertain objective functions [15]. 

Multiobjective evolutionary algorithms have become an active line of research 
since the first algorithm was proposed in the mid eighties [27]. Taxonomy of multiob-
jective evolutionary algorithms is possible based on the decision maker’s preferences 
being made before, during, or after the optimization process. [32], present such a clas-
sification of multiobjective evolutionary algorithms based on prior, progressive, and 
posterior articulation of preferences. In the latter years, the algorithms based on poste-
rior articulation of preferences have received the most attention. These evolutionary 
algorithms move the population of solutions toward and efficient frontier. Among 
these algorithms, the most prominent are the Multiobjective Genetic Algorithm 
(MOGA) [11], the Niched Pareto Genetic Algorithm (NPGA) [16], the Nondominated 
Sorting Genetic Algorithm (NSGA) [29, 6], the Strength Pareto Evolutionary Algo-
rithm (SPEA2) [33], and the Pareto Archived Evolution Strategy (PAES) [18]. For a 
thorough exposition of multiobjective evolutionary algorithms the reader is referred to 
[3, 4, 32, 5]. 

3.2   The Multiobjective Evolutionary Algorithm 

In this section we present a multiobjective evolutionary algorithm based on posterior 
articulation of preferences, able to exploit a known fuzzy outranking relation with the 
purpose of constructing a recommendation for the multiple criteria ranking problem. 
The algorithm borrows fundamental elements from MOGA [11], which has become 
one of the leading multiobjective evolutionary algorithms. 

In the following subsections we present further detail on the fundamental aspects 
of the Multiobjective evolutionary algorithm. 

Encoding the Solutions. A potential solution of a ranking problem is represented as 
an ordinal representation. In general, a potential solution is a ranking of the set of 
decision alternatives or actions by decreasing order of preference. These actions 
(known as genes) are joined together forming a string of values (known as 
chromosome). Any symbol in this string is refereed to as an allele [13, 20]. The 
chromosome is represented as the string of m-ary alphabet where m is the number of 
actions into the decision problem. In such representation, each action is coded into m-
ary form. Actions are then linked together to produce one long m-ary string or 
chromosome. An action coded with value 

ika  in the i-th entry of the string means that 

the action coded with value 
ika is ranked in the i-th place of the ordering and 

ika is 

preferred to 
jka  if i<j, where },...,,{ 21 mk aaaAa

i
=∈ , mi ,...,2,1= , and 

],...,,[ 21 mkkk  is a permutation of ]...,,2,1[ m . 



Objective functions f, u and λ. Each potential solution or individual in the 
population is associated with a number λ  (0≤ λ ≤1), which will be connected with the 
credibility level of a crisp outranking relation defined on the set of genes. The fitness 
of an individual with credibility level λ is calculated according to a given fitness 
procedure. The approach for defining individual’s fitness involves the non dominated 
solutions in a similar form of MOGA [11]. In accordance with (1), we define the 
objective function f of an individual p)  with credibility level λ as follows: Let 

mkkk aaap ...
21

=)  be the schematic representation of an individual’s chromosome and 

suppose that given 
ika and 

jka , two actions such that λσ ≥),(
ji kk aa and 

βλσ −≤),(
ij kk aa  ( 0>β , representing a threshold level), we accept that 

“
ika outranks 

jka ” )(
ji kk aSa λ and “

jka does not outrank 
ika ” )(

ij kk anSa λ . In 

this case, into the crisp outranking relation generated by λ, λ
AS , a presumed 

preference favoring 
ika , holds. Then: 

{ }jimjminSaaandnSaaaapf
ijjiji kkkkkk <=−== ,,...,3,2,1...,,2,1;:),()( )  (2) 

where ],...,,[ 21 mkkk  is a permutation of ],...,2,1[ m  

)( pf )  is the number of incomparabilities between pairs of actions ),(
ji kk aa into 

the individual 
mkkk aaap ...

21
=) in the sense of the crisp relation λ

AS . Note that the 

quality of solution increases with decreasing f score. 
The objective function u of an individual p) measures the amount of unfeasibility 

(in relative terms) and we chose to define it as: 

{ }jimjminSaaandSaaaapu
ijjiji kkkkkk >=== ,...,,2,1,...,,2,1;:),()( )

 

(3) 

)( pu ) is the number of preferences between actions into the individual p) which are 

not “well-ordered” in the sense of λ
AS . 

An individual p) is feasible if 0)( =pu ) and infeasible if 0)( >pu ) . Defining the ob-
jective function u taking the zero minimum value if and only if the solution is feasible 
seems a natural approach. Each individual p) can then be represented by a triad of 
values f, u, and λ . 

We are interested in: 
i) Individuals whose objective function u value is equal to zero. This assures us 

that the ordering represented by the individual is transitive; this is one of two  
characteristics that should be exhibited by all recommendation (solution) of 
ranking problems [31]. 



ii) Individuals whose objective function f value is equal (or near) to zero. This 
objective improves the comparability of S on A. 

iii) Individuals whose credibility level λ is near to 1. This indicates us that the 
ordering represented by the individual with credibility level λ is trustier 
whenever the objective functions u and f values are zero or near to zero. In 
practice, the requirement connected to function f does not permit that λ val-
ues approach to 1 because in this case we could have many incomparable 
genes. 

Then, we use an evolutionary search for solving the multiobjective problem: 

)
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We can see that the objective function u coincides with Vn , (see (1) of section 2). 

Fitness Assignment Procedure. Most of the approaches of the multiobjective 

decision making seek elements of all the Pareto optimal set *P which in the jargon of 
Multiobjective Evolutionary Algorithms (MOEA) it is often denoted as trueP  [4]. 
During MOEA execution, a “current” set of Pareto optimal solutions is determined at 
each EA generation and termed )(tPcurrent , where t represents the generation number. 
Many MOEA implementations also use a secondary population storing nondominated 
solutions found through the generations. This secondary population is named 

)(tPknown . This term is also annotated with t to reflect its possible changes in 

membership during MOEA execution. )0(knownP  is defined as the empty set (φ ) and 

knownP  only as the final set of solutions returned by the MOEA at termination. 

)(tPcurrent , knownP , and trueP  are sets of MOEA genotypes; each set’s corresponding 
phenotypes form an approximated Pareto front. The associated approximated Pareto 
front for each of these solution sets is called )(tPFcurrent , knownPF , and truePF . 
Most of the methods based on MOEA attempt to evolve a population toward the true 
Pareto frontier truePF . The hope is that by the end of the run, trueknown PP = , 

trueknown PP ⊂ , or { }ε<∀∀∈∈ )],([,:, jitruejknowni uudistanceminjiPFuPFu rrrr , 

where distance is defined over some norm (of course in an open problem we generally 
have no way of knowing trueP ). 

For solving the multicriteria ranking problem using a MOEA it is not necessary 

seek all the Pareto optimal set trueP  or the associated Pareto front truePF  because of 

the fact that a lot of nondominated solutions are not of interest for the decision maker, 
we will use the strategy of attempting to find in each EA generation the most promis-
ing and attractive solutions for the decision maker which in our case are those indi-
viduals of which u, f score are near to value zero and has a sufficiently high value of 



λ. Is sufficient to seek a restricted Pareto optimal set, which for our purpose it is de-
fined as following. 

{ }numbernegativenosmallaiswherepfpuPpP true
restricted

true −≤∈= ∞ εε ,))(),((: )))  (5) 

Based on this strategy, the proposed method attempt to evolve a population toward 

the true restricted Pareto frontier )( restricted
truePF , by mean of a succession of re-

stricted nondominated solutions subset }...,,,{)( )()(
2

)(
1

t
n

ttrestricted
known PPPtPF = . Note that 

the concepts restricted Pareto optimal set and locally Pareto optimal set are different 
[5]. 

Fitness Assignment Procedure. Main steps: 
Step1. Let N be the population size. Choose a shareσ  (a dynamically updated pro-

cedure for fixing shareσ  is described later (Step 5)). Initialize jj c=λ , ( jc  randomly 

chosen between 0 and 1), 0)( =jµ  for all possible ranks, Nj ...,,2,1= . Set solution 
counter 1=i . 

Step2. Calculate the number of solutions )( in  that dominates solution i . Compute 

the rank of the i-th solution as ii nr +=1 . Increment the count for the number of solu-

tions in rank ir  by one, that is, .1)()( += ii rr µµ  
Step3. if Ni < , increment i  by one and go to step 2. Otherwise, go to step 4. 
Step4. Identify the maximum rank *r  by checking the largest ir , which has 

0)( >irµ . The sorting according to rank and fitness-averaging yields the following 

assignment of the average fitness iF  to any solution Ni ,...2,1= : 

∑
−

=
−−−=

1

1

*

)1)((5.0)(
ir

k
ii rkNF µµ  

(6) 

To each solution i with rank 1=ir , the above equation assigns a fitness equal to 

)1)1((5.0 −−= µNFi  (7) 

which is the average value of )1(µ  consecutive integers from N to 1)1( +− µN . 
Set a rank counter 1=r . 

Step5. For each solution i in rank r, calculate the distance count idc  by using the 

equation: 
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where  

}...,,,{, )(21
)()()( r

r
rrrrCMrCMr

share PPPPsettheofMassofCenterPP µσ ===
∞

 of solu-

tions in rank r. The Center of Mass of a group of points is defined as the weighted 
mean of the points’ positions. The weight applied to each point is the point’s mass. 

∞
•  is the maximum holder metric. Note that restricted

currentPP =)1( . 

Calculate the shared fitness using 
j

j
j dc

FF =' . 

To preserve the same average fitness, scale the shared fitness as follows: 
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Step6. Increment jλ  by ε  )( ελλ +← while [ ])()( ελλ += uu  and 

[ ])()( ελλ += ff . 

Step7. If *rr < , increment r by one and go to Step 5. Otherwise, the process is 
complete. 

Crossover and Mutation Operators. Many crossover techniques exist in the 
literature (e.g. [21]), but, when working with ordinal (permutation) encoding, it is 
necessary to create both crossover and mutation operators that are specifics to this 
form of encoding. In this paper we make use of the crossover operator UX2 (Union 
Crossover #2) first introduced in [23]. The mutation operator works by interchanging 
two pairs of randomly chosen genes (actions), at each iteration under certain rules, in 
an individual. 

Parent Selection Method. We developed a Complement Selection (CS) method for 
selecting parents that attempts to improve comparability as well as feasibility. The CS 
method is designed specifically for our problem and it takes into account the 
credibility level λ of the candidate parents.  



In a complement selection, a parent )( ji pp )) is first (second) selected using a k-ary 

tournament based on the u (f) function and credibility level; the rule is as follow: We 
selected the individual )( ji pp )) which has lowest u (f) score and its credibility level 

)(
ji pp )) λλ  is greater than Gλ  or Kλ , where Gλ  is the average credibility level of the 

population and Kλ is the average credibility level of the tournament. If i (j) is not 
unique, then we select the individual with higher credibility level score. If there is not 
such i (j) we tried the rule with the individual lp) , which has next lower u(f) score; 
continue until the rule is satisfied. The logic here is that we would like the two parents 
together to cover as few amount of preference violations and incomparabilities 
between actions as possible, i.e. a low )( ipu )  and )( jpf )  with as high credibility 

level values 
ip)λ  and 

jp)λ  as possible. 

Population Replacement Scheme. This MOEA part defines how new chromosomes 
will be put into the existing population. It is updating the current population 
continuously during the mating process, allowing new chromosomes act like parents 
to children in their own generation. 
After that the child has been produced through the MOEA operators, it will replace 
the "less fitting" member of the population. The average of the population will im-
prove if the child solution has lower scores than those of the solutions being replaced. 
In this algorithm, every new offspring is replacing the worst chromosome in the popu-
lation. Each time that we replace a new offspring by the worst individual, the new 
population is sorted with the same criterion. 

4 Computational Example 

In order to benchmark the algorithm performance, some test problems were selected 
for numerical experiments. Here, only one test problem is shown. The proposed algo-
rithm was coded in C++ and tested on a PC with processor Intel Pentium IV (1.5 
GHz). In our computational study, 1 test problem instance of the MOEA heuristic was 
generated for solving the following test problem. The algorithm stopped when 10,000 
populations had been generated. The population size was set to 40. The crossover 
probability was chosen 0.85 and the mutation probability was 0.30. 

4.1 Test Problem 1 

The fuzzy outranking relation is given by the following credibility matrix(10x10) be-

tween actions 9876543210 ,,,,,,,,, AAAAAAAAAA  (Table 1). 



Table 1. Credibility Matrix between actions 90 ,..., AA . 

 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 
A0 1.0 0.6 0.3 0.5 0.2 0.7 0.9 0.3 0.7 0.8 

A1 0.2 1.0 0.4 0.3 0.4 0.5 0.5 0.5 0.6 0.3 

A2 0.7 0.9 1.0 0.6 0.4 0.7 0.8 0.9 0.7 0.7 

A3 0.6 0.8 0.3 1.0 0.4 0.7 0.8 0.4 0.3 0.8 

A4 0.6 0.8 0.7 0.9 1.0 0.7 0.8 0.5 0.7 0.9 

A5 0.4 0.65 0.4 0.4 0.2 1.0 0.4 0.3 0.5 0.5 

A6 0.5 0.4 0.3 0.2 0.5 0.6 1.0 0.4 0.3 0.2 

A7 0.6 0.8 0.3 0.8 0.2 0.8 0.9 1.0 0.8 0.7 

A8 0.4 0.6 0.5 0.4 0.4 0.3 0.9 0.3 1.0 0.5 

A9 0.5 0.8 0.3 0.6 0.3 0.5 0.4 0.3 0.7 1.0 

 

Table 2. Restricted Pareto front found and the associated individual of the solutions space 

1p)  2p)  3p) 4p) 5p) 6p) 7p) 8p)  9p)  
4 2 4 4 4 4 4 4 4 
2 7 2 7 2 7 2 0 2 
7 4 3 5 0 2 0 2 7 
3 3 7 2 7 0 7 7 0 
0 0 0 0 3 3 3 3 3 
9 9 9 3 5 9 9 9 9 
8 5 8 9 9 8 5 8 8 
1 1 1 8 8 1 1 1 1 
6 8 5 6 1 5 8 5 5 
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5 6 6 1 6 6 6 6 6 
 

Function u 01 02 03 07 00 02 00 01 00 

Function f 06 06 06 06 13 13 14 14 26 

    
Lambda 0.5992 0.5998 0.5999 0.6000 0.6497 0.6500 0.6997 0.7000 0.8000 

Fitness value 41.44 41.44 41.44 41.44 31.30 31.30 29.06 29.06 15.65 

 
Table 1 was processed with the proposal of section 3. The Restricted Pareto front 

restricted
knownPF  found and the associated final set of solutions returned by the MOEA at 

termination restricted
knownP  are presented in Table 2. 

The number ),1(),,( mjijiT ≤≤ , of times that an alternative was found at a cer-
tain place in the ranking of the individual associated to the members of the final re-
stricted Pareto front is given in table 3. Based on the table 3 we found a compromise 
solution following the next procedure: as the ranking of the alternatives is of signifi-
cant importance, the number of times that an alternative is found at a certain place in 
the ranking is weighted according to the importance of the alternatives to be ranked. It 
is reasonable to conclude that in certain cases, the rank of the alternatives would not 
be of equal importance. 



Table 3. The number of times that an alternative was found at a certain place in the ranking 

Weight wi Rank A4 A2 A7 A0 A3 A9 A8 A5 A1 A6 

10 1 8 1 0 0 0 0 0 0 0 0
9 2 0 5 3 1 0 0 0 0 0 0
8 3 1 2 2 2 1 0 0 1 0 0
7 4 0 1 4 2 2 0 0 0 0 0
6 5 0 0 0 4 5 0 0 0 0 0
5 6 0 0 0 0 1 7 0 1 0 0
4 7 0 0 0 0 0 2 5 2 0 0
3 8 0 0 0 0 0 0 2 0 7 0
2 9 0 0 0 0 0 0 2 4 1 2
1 10 0 0 0 0 0 0 0 1 1 7

            

∑
=

m

i
i jiTw

1
),(  

88 78 71 63 57 43 30 30 24 11
Minimum 

Lamda= 0.5992 
 
Relative importance could be reflected in a weighting 1+−= imwi of each rank i, 

where m is the length of an individual. After that, we calculate the weighted sum 

∑
=

m

i
i jiTw

1
),( , j=1,2, …, m. Finally, we obtaining a succession in decreasing order of 

preference, generating of this manner, a recommendation for the decision maker. 
Table 3 suggests the following final ranking 

6158930724 AAAAAAAAAA fffffffff  (10) 

where BA f means that “alternative “A” is preferred to alternative “B””. 
The Genetic algorithm of [19] obtains the following results: The number of times 

that an alternative was found at a certain place in the ranking is given in table 4 with 
respect to 100 variations in the seed parameter. 

Table 4. Results of the Genetic Algorithm of [19]. 

 A4 A2 A7 A0 A3 A8 A5 A9 A6 A1 
1 81 12 0 4 0 2 0 0 0 0 
2 4 86 6 2 0 2 0 0 0 0 
3 8 0 54 36 0 2 0 0 0 0 
4 4 0 34 28 18 6 4 6 0 0 
5 2 0 2 18 46 20 4 8 0 0 
6 0 2 2 10 20 22 22 20 0 2 
7 0 0 2 2 14 20 30 22 8 2 
8 0 0 0 0 0 16 12 34 14 24 
9 0 0 0 0 0 10 20 8 36 26 
10 0 0 0 0 2 0 8 2 42 46 



The best compromise solutions were individuals in which ,0=u  

,13=f 69.0=λ  mostly corresponding to rankings 6158930724 AAAAAAAAAA    

and 6518937024 AAAAAAAAAA . These results, combined with Table 4, suggest 

the final ranking: 

6158930724 AAAAAAAAAA fffffffff  (11) 

Although without a clear preference between 5A  and 1A . 

ELECTRE-III suggest the following ranking: 

6158930724 ),(),( AAAAAAAAAA fffffff  (12) 

In this ordering, we have 0=u  with 69.0=λ , but we can hardly agree with the 

fact that 2A  and 7A  are posed in the same position. It is clear that 72 ASA λ  and 

the contrary is false. The net flow score associated to 2A  is higher, and also, if we 

consider the set }{ 4A−A , 2A  is the best alternative in the sense of [22]. 

5 Conclusions 

This paper presents a Multiobjective Evolutionary Algorithm suitable for exploiting 
fuzzy outranking relations. The basic concepts and formulations of the new method 
were given with an improved technique to handle the Pareto front. The intrinsic ad-
vantages of the method are that it is not sensitive to the shape of the Pareto front and 
that it is partially adaptive to inadequate input from a user as a complex graph with 
several cycles. The most similar method, the genetic algorithm of [19], was bench-
marked against the new MOEA. The comparison study contrasted both methods in 
generation of efficient solutions and in the final recommendation. The MOEA present 
a wide area of efficient solutions whilst the other generates only one. Moreover, the 
recommendation for decision maker is obtained with only one run whilst the genetic 
algorithm procedure should be run n times for obtaining a final recommendation. In 
the numerical experiments carried out, our proposal performed very well, in the sense 
of quality of solution as well in the sense of computational effort. The Multiobjective 
Evolutionary Algorithm procedure also looks more effective than other approaches 
that exploit a fuzzy outranking relation; it could work easily with preference graphs of 
considerable size and it looks more robust than other dealing with irrelevant alterna-
tives. Approaches based on a function score do not have a way to reduce nonrational 
violations of explicit preferences, while the evolutionary one may identify this kind of 
irregularity and try to control and minimize it. 
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