Multi-spacecraft Trajectory Optimization and Control
Using Genetic Algorithm Techniques®

Seereeram, Li, Ravichandran, Mehra
Scientific Systems Company
500 West Cummings Park, Ste 3000
Woburn, MA 01801
(781) 933-5355
sanjeev@ssci.com

Abstract— This paper presents an approach for multi-
spacecraft trajectory planning, optimization and con-
trol. Maneuver planning as a global optimization prob-
lem is solved using Genetic Algorithms (GA). Meth-
ods were devised to reduce the dimensionality of the
decision space, yet retain adequate generality of ma-~
neuver possibilities. A compact formulation based on
thruster switching-times was used for generic point-to-
point spacecraft maneuvers. Optimal control is implic-
itly satisfied by “bang-coast-bang” actuation schemes.
Maneuver profiles, including line-of-sight and orthogo-
nal collision avoidance, were developed. A GA opti-
mizer selects the optimal parameter set for each scenario.
Simulation case studies were performed for 2, 3 and 5-
spacecraft formation initialization tasks. Objective cri-
teria used in the evaluation function included: endpoint
errors; collision avoidance; path lengths; maneuvering
times; fuel usage and equalization. In all cases, a nomi-
nal GA computed feasible trajectories. Objective crite-
ria trade-offs were demonstrated by selective weighting.
Ongoing work includes multi-objective optimization of
multiple spacecraft trajectories using Niched-Pareto Ge-
netic Algorithms.
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1. INTRODUCTION

Multiple-spacecraft missions, under either centralized or
coordinated control, are rapidly emerging as a princi-
pal component of current and future planned space mis-
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sions. Using relatively low-cost “micro-spacecraft” archi-
tectures, they offer enhanced mission robustness (elimi-
nating single-point failures) with reduced overall mission
costs. Programs such as NASA’s ST-3 Separated Space-
craft Interferometer and the TPF (Planet Finder) mis-
sions, highlight the immediate need for effective multi-
spacecraft control and autonomy technologies. Forma-
tion Flying introduces new challenges in control technol-
ogy in order to meet desired specifications for successful
mission completion.

This paper addresses the multiple spacecraft trajectory
optimization and control problem by using Genetics-
based (evolutionary) techniques for solving the implicit
global trajectory optimization problem. Initial study
used Genetic Algorithms to find and tabulate sets of con-
trol policies for various constellation initialization prob-
lems. These strategies can be used to form a closed-loop
feedback policy which dynamically optimizes the next
applicable control in the presence of dynamic uncertain-
ties and changes in model and environment information.
By using genetics-based techniques, families of control
policies can be encoded and maintained during closed-
loop operation as “ordered populations”, from which the
feedback controller can select optimal strategies accord-
ing to its current state. By genetic exploration of the
global space of control policies, disparate solutions can
be analyzed, and alternate feedback strategies made dy-
namically available to meet sudden or gradual changes
in environment variables.

Various encoding schemes were investigated for embed-
ding the control of multiple spacecraft as an optimization
decision variable. Because of the high-dimensionality of
the multiple spacecraft control problem, methods were
devised to reduce the size of the decision space, yet re-
tain the full generality of maneuver possibilities. The
main idea used was to avoid optimization of temporally-
discretized actuator control variables - which leads to a
computationally intractable problem. Instead, formula-
tions based on switching-times were used to cast the deci-



sion space in terms of control switches - generically a low
number for initialization-type maneuvers. This formula-
tion is directly applicable to thrusters, and generically
applicable to other saturation-type actuators. A critical
advantage of this approach is that the basic objectives
of optimal control are implicitly satisfied by selection of
these “bang-coast-bang” actuation schemes.

Several maneuver profile components were developed, in-
cluding line-of-sight and orthogonal collision avoidance
components. A GA optimizer selects the optimal param-
eter set for each scenario. Simulation case studies were
performed for 2, 3 and 5-spacecraft formation initial-
ization tasks. Objective criteria used in the evaluation
function included: position/orientation endpoint errors;
collision avoidance; minimization of path lengths; mini-
mization of maneuvering times; minimization of fuel us-
age; and equalization of fuel loads across multiple space-
craft. In all cases, a nominal application of the GA
method resulted in feasible trajectories for all space-
craft. Various trade-offs among the objective criteria
were demonstrated by selective weighting of their respec-
tive penalty functions.

2. MULTI-SPACECRAFT MOTION PLANNING
AND CONTROL

Several control scenarios for multi-spacecraft constella-
tions can be identified, including: initialization, pre-
cision station-keeping, reorientation, rotation, expan-
sion/contraction and maneuvering. Several of these sce-
narios consider constellations with fixed inter-spacecraft
relative locations, collectively called constellation ma-
neuvering, and have been investigated in current re-
search [1]. Various approaches have been applied to the
constellation maneuvering problems, ranging from de-
centralized control of each micro-spacecraft [2] coordi-
nated via inter-spacecraft communications, to constella-
tion control based on the concept of a virtual rigid body,
interfaced with control laws for formation keeping and
relative attitude alignment [3].

In contrast, the constellation initialization problem has
received comparatively little attention. There are sev-
eral instances when a constellation must be initialized
- for example: (1) immediately after the spacecraft are
deployed from a launch vehicle, (2) when one spacecraft
in the constellation experiences catastrophic failure, and
(3) when the overall task of the fleet of spacecraft dra-
matically changes.

Several considerations complicate the spacecraft initial-
ization problem: (1) The constellation may be a het-
erogeneous collection. (2) The spacecraft must position
themselves without colliding with other spacecraft. (3)
Each spacecraft will be equipped with sensors that de-
tect the position of other spacecraft in its near vicinity,
but that sensor will be limited in its range. Hence it may
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not be possible for any given spacecraft to know the rel-
ative, or inertial positions of all the other spacecraft. (4)
Spacecraft may not be able to communicate with each
other. (5) Spacecraft life is limited by fuel.

In its most general form, multi-spacecraft trajectory op-
timization and control leads to an extremely difficult
dynamic programming problem. Practical issues such
as collision avoidance and minimum fuel usage result in
highly nonlinear, multi-modal and ill-conditioned global
optimization problems, which cannot be solved by an-
alytic techniques (such as gradient descent or calculus
of variations-based optimal control). Given the poten-
tial difficulties of computing collision-free paths for N
spacecraft in a dynamic environment, it is unreason-
able to expect to find general solutions for motion plan-
ning and trajectory generation of N spacecraft. In-
stead, methodologies applied to multiple spacecraft ma-
neuvering within a common workspace should incorpo-
rate facets of both optimal control of actuator resources
together with generic collision avoidance and constraint-
satisfaction considerations.

Autonomous Control Architecture

For autonomous multiple spacecraft trajectory optimiza-
tion, we propose a hybrid architecture (Figure 1), in
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Figure 1: Supervisory Planning/Control Architecture

which global (mission and task level) supervisory plan-
ning is performed in a centralized manner, but local
execution of each agent’s command set is performed
in distributed fashion. Off-line pre-planning of coordi-
nated maneuvers will be done by the planner, resulting
in open-loop instructions for each spacecraft to follow.
During real-time maneuver execution, open-loop instruc-
tions are sequenced, scheduled and transmitted by the
coordinator to each spacecraft’s local closed-loop con-
trollers. Open-loop instructions may comprise kinematic
(positions/velocities), dynamic (forces/torques) and/or



direct actuation (thruster switching) commands as ap-
propriate to the task. Real-time control of each space-
craft in accordance with open-loop commands is per-
formed by each spacecraft (de-centralized) under the
coordination of the supervisory levels. The coordina-
tor adds in timing information to the high-level instruc-
tions to produce synchronous trajectory commands to
be followed. During execution, the planner monitors the

evolution of the formation by interpretation of sensory

and environment feedback, and instructs modifications
or gross alterations to the maneuver(s) as updated envi-
ronment and spacecraft interaction information becomes
available.

Our current research is developing a comprehensive au-
tonomous trajectory optimizer for multiple spacecraft. It
includes open-loop trajectory optimization, and closed-
loop control with trajectory modifications to account for
dynamic uncertainties and/or unforeseen events. In this
paper, we report on off-line global trajectory optimiza-
tion using GA techniques, typically performed by the su-
pervisory planner module. Closed-loop tracking of the
off-line trajectories, together with real-time (pro-active
or reactive) trajectory modifications will be developed
in follow-on research. In the remainder of this paper,
we present details on the Genetic Algorithm technique
used for global optimization, and indicate the direction
of current research into developing an autonomous mul-
tiple spacecraft trajectory optimizer.

Global Optimization

For space-based applications, globally efficient solutions
for motion planning and control have the highest prior-
ity, given the limited on-board fuel, power, processing
and control authority available. It is clear that find-
ing solutions to the multi-spacecraft trajectory planning
problem requires the use of an optimization-based strat-
egy. However, it is difficult, if not infeasible, to find ana-
lytic solutions to the constrained trajectory optimization
problem. Additionally, multiple objectives mean that
the problem may not have unique solutions which simul-
taneously optimize all criteria. Our research has demon-
strated that even for low numbers of spacecraft (~3), the
topology of a typical objective space is multi-modal and
possibly discontinuous. To address this problem, we pro-
pose the use of Genetic Algorithms (GA) as a suitable
global optimizer.

3. GENETIC ALGORITHMS

The field of global optimization has generated signifi-
cant interest in the past decade, mainly because of the
importance of finding global optima as well as the diffi-
culty of the problem in general. Genetic Algorithms are
a class of search procedures whose mechanics are based
on those of natural genetics. These algorithms represent
a new approach to search and optimization that avoid

most of the problems encountered by conventional ap-
proaches. No preconditions are applied to the behavior
of the systems modeled, and solutions can be generated
for broad sets of problems. GAs are global searches,
with less sensitivity to the initial point of the search
than calculus-based approaches. As a result, GAs can
potentially locate effective solutions which are beyond
the reach of conventional methods.

Although the evolutionary analogy on which GAs are
based has an intuitive appeal, GAs are also supported
by a substantial body of theoretical understanding. Key
observations of GA theory are: (1) GA operators lead
to the propagation of building blocks of genetic code
that correlate to high fitness throughout the population.
(2) The GA yields efficient, implicitly parallel evalua-
tion of many building blocks, through the GA’s popula-
tion basis. (3) The GA yields near-optimal exploitation
of stochastically obtained information on building block
fitness [5].

Implementing a genetic algorithm requires the design of
three components: representation, fitness, and re-
production. The most basic form of GA starts with a
population of individuals (simple data structures, often
bit strings), each representing a potential problem solu-
tion, or a portion of a potential problem solution. Some
function, procedure, or simulation is used to evaluate the
utility (called fitness) for each individual of this popula-
tion. Then, a sequence of new populations is generated
and evaluated using a set of simple, genetically inspired
operators. These operators fit into three categories: se-
lection (survival of the fittest individuals), recombina-
tion (mating of two or more individuals), and mutation
(small, random changes to new individuals).

Tuning a genetic algorithm involves the selection of a
number of parameters that specify the size of the popula-
tion, and rates of crossover and mutation, methods that
specify initialization, parent selection, and replacement.
A cursory glance may leave the impression that GAs are
simple to implement. Conceptually, the description of a
GA is indeed simple. However, it is often difficult to se-
lect GA representations and tuning parameters in order
for the resulting solutions to be useful.

For practical applications, the choice of representation
is a crucial one. Relative efficiency of the optimization
procedure relies on representing decision variables in a
compact form, without losing generality and/or overly
restricting the search space. Representational compact-
ness (short bit-strings) is desirable because of its di-
rect influence on the efficiency of the search procedure
- the global optimizer is better equipped to rapidly ex-
plore disparate and disjoint regions of the decision space.
However, sufficient discretization must be maintained if
the decision variables are to retain generality and de-
velop high-quality solutions (low errors). This trade-off
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must be explored in the context of each individual GA
application to find adequate representation(s).

4. MULTIPLE SPACECRAFT TRAJECTORY
OPTIMIZATION

For our initial study, spacecraft are modeled by rigid
body Newton/Euler six degree-of-freedom dynamics
with fixed centers of mass. Given the emphasis on small
(10 — 50 kg) spacecraft in many proposed missions, this
is not an unrealistic assumption for first principles’ anal-
ysis. In this study, cases are presented for two, three and
five-spacecraft initialization tasks, each fully six degree-
of-freedom actuated using on-off type actuators (eg. gas-
jet RCS thrusters, PPTs, etc.). For spacecraft trajectory
control, decision variables correspond to the control ac-
tuation applied to all the spacecraft in the constellation.
It is imperative to encode possible and desirable ma-
neuvers with as few parameters as possible. A prior:
system and engineering knowledge can provide parame-
terizations of quantitatively (and qualitatively) “good”
control schemes, in a compact form.

Maneuver Parameterization

For point-to-point maneuvers, open-loop optimal trajec-
tory control using gas-jet thrusters can be character-
ized in terms of a “bang-coast-bang” switching control.
For the constellation initialization, we assume that each
spacecraft’s maneuver can be decomposed into one (or
more) point-to-point maneuvers. Thrusters are assumed
to provide fixed magnitude forces/torques. Typically,
formation initialization involves re-positioning and/or
re-orientation of several spacecraft from a given initial
configuration to a specified goal configuration. With-
out loss of generality, we consider the problem of coordi-
nated maneuvering of several free-flying spacecraft with
specified starting and ending positions/orientations. We
assume that each spacecraft can provide independent
forces/torques along each principal axis. Arbitrary
thrust vectors are scaled by the orthogonal components
available from body-attached thrusters with respect to
inertial coordinates. Each spacecraft has an assigned
spherical collision radius, which defines its “collision”
zone for gross maneuvering.

For this class of problems, the optimal path for each
spacecraft (in isolation) is a straight-line, or line-of-sight
(LOS), trajectory from start to goal, using a “bang-
coast-bang” control profile for on-off thrusters. However,
to provide for path modifications an orthogonal com-
plement, the Collision Avoidance (CA), component is
added to the LOS trajectory (Figure 2). Collision avoid-
ance is achieved by describing a bounding sphere around
each spacecraft, sufficiently large to contain the space-
craft at arbitrary orientation. In this manner, collision
avoidance maneuvers can be generated by translational
motion planning of the N bounding spheres, resulting in
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Figure 2: Line-Of-Sight and Collision-Avoidance Path
Components

significant simplifications in the planning algorithm’s im-
plementation - collision checking is now reduced to the
calculation of the Euclidean distance between any two
bounding spheres. For the proposed miniature space-
craft missions, this represents a practical representa-
tional convenience, considerably reducing the geometric
computations required for motion planning algorithms.

In the following, we rotate each spacecraft from ini-
tial to final orientation independently along the attitude
geodesic on the orientation manifold SO(3), while the
spacecraft is in (translational) flight from starting to fi-
nal locations. For open-loop trajectory planning, switch-
ing times are directly related to the LOS coast speeds v,
and CA avoidance speeds v, (parametric speeds along
and perpendicular to the LOS path direction shown in
Figure 2). For any given task, coast speeds will be lim-
ited by the maximum attainable velocities in the LOS
directions (for minimum-time path traversal), and the
minimum velocity which is consistent with reaching the
goal position in a finite time T (minimum-fuel path
traversal). Any coast speed v, within these limits, can
then be used for a given task, subject to collision avoid-
ance and other constraints. Collision avoidance speeds
v are limited by the maximum achievable force in the
avoidance direction. For each spacecraft, v, and v, vari-
able limits are pre-computed from actuator properties
and spacecraft orientations. Figure 3 illustrates the ba-
sic force, velocity and displacement profiles along the
LOS and CA directions respectively.

Objective Functions

Given a LOS and CA trajectory parameterizations
above, the entire open-loop motion of each spacecraft
is completely specified by two parameters v, and v,.
Trajectory optimization for NV spacecraft is represented
in terms of 2N optimization parameters. For typical
constellation initialization problems, this parameteriza-
tion affords a rich set of trajectory variations, sufficient
for many representative point-to-point motion planning
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tasks. Importantly, the optimization variable grows lin-
early with N, resulting in a computationally efficient
procedure for solution of N-spacecraft trajectory opti-
mization.

For the N-spacecraft problem, our Phase I investigation
considered trajectory optimization subject to the follow-
ing requirements: (1) Collision free, (2) Shortest path,
(3) Minimum time, (4) Minimum fuel usage, and (5) Uni-
form fuel distribution at the end of the maneuver. Note
that some requirements may conflict with each other - eg.
a collision-free path may not be the shortest (Euclidean
distance) possible, and a trajectory that uses minimum-
fuel may result in highly non-uniform fuel distribution.

The objective J used in the GA optimization problem
is:

J = > Jeliy5) + wpdp + wrTmas

i#]
N

+wy Z(fi(tO) — fi(ts))
N

S SN filty) SN filty)

where (2, j) are spacecraft indices for an N-constellation.

Collision Penalty , J.(¢,j), is assigned to any can-
didate solution which contains potential collisions.
The entire set of IV trajectories is checked pairwise
for collisions.

Path Length Penalty This term represents a mini-

mum distance cost:
N
Jp =Y (&) =) (2)
=1

where [(Z;) is the Euclidean length of actual tra-
jectory Z;, and r; is the length of the line of sight
(LOS) trajectory from the starting point to the end
point of the trajectory. Note that J, = 0 if and only
if the spacecraft travels along its LOS trajectory (ie.
vg = 0).

Execution Time Penalty The third term represents
a minimum time cost:

Trezr = max T (3)

where T; is the time taken by the it spacecraft to
reach its goal position.

Fuel Consumption Penalty In (1), fi(t) is the
amount of fuel contained on the ** spacecraft at
time ¢. Its dynamics is assumed to be

f; :{ =Y(|Fail + |Fyel + |Fzil); fi(t) >0
¢ 0; otherwise,

(4)
where 7 is a positive constant, and Fy;, Fy;, F; are
the forces exerted by the three thrusters along the
z,y, z axes of the body frame of the spacecraft.

Fuel Distribution Penalty The fourth term in (1)
represent the costs associated with overall fuel usage
and uniform fuel distribution after the maneuver re-
spectively. This term is motivated by the negative
entropy of a probability distribution, which is min-
imum for a uniform distribution.

Objective weights wp, wr,ws, wqg > 0 determine the
relative importance of each factor in a particular sce-
nario/task.

5. SAMPLE RESuULTS

In each of the cases below, the global optimization prob-
lem was formulated and a family of candidate solutions
found using the GENESIS [6] GA software implementa-
tion. Model parameters are listed below:

Spacecraft Parameter | Value
Mass | 10 kg
Moment of inertia | 1 Nm

Bounding Sphere Diameter | 3 m
Maximum turn rate | 10 deg/s
Maximum thrust | 0.01 N

Typical GA algorithm settings were used to facilitate
easy comparisons. A small number of function evalua-
tions (Total Trials = 1000 ~ 5000) was used in or-
der to ensure that solutions were found with a limited

103



amount of computation. Population Sizes (50 ~ 100)
are chosen to be larger than the number of bits per
structure. Structure Length (28 ~ 42)is comprised of
2 x N x b, where N is the number of spacecraft, and b
is the number of bits used to represent the range of each
decision variable. The Crossover (0.75) and Mutation
(0.001) rates are generic GA settings for general-purpose
optimization. They can be varied according to the de-
sired trade-off between ezploration of the decision space
vs. exploitation (or convergence) to any neighboring op-
tima. Relatively little was done to tweak GA software
settings.

Case 1: Constellation Re-orientation

This scenario represents a typical three-spacecraft con-
stellation reorientation. Three spacecraft are modeled,
representing a combiner (diameter 5 m), and two col-
lectors (diameter 3 m), with specified initial orientation.
The constellation is required to point in specific direc-
tions to collect interferometry data. In this scenario
we consider two consecutive multi-spacecraft maneuvers.
The first maneuver starts at ty = 0, and represents an
initial cluster of all three spacecraft executing a separa-
tion to the first formation orientation. The second ma-
neuver follows at ¢; = 400...t2 = 1200, and represents
a re-pointing of the formation to the opposite direction.
For the new formation, the combiner spacecraft must be
moved to the opposing side of the formation, while the
flanking collectors swap places.

&
T

‘separaton dstances (m)

Figure 4: Case 1: Separation distances.

The overall maneuvers are collision-free, and meet the
task specifications desired. Figure 4 shows the separa-
tion distances between all spacecraft pairs for the entire
time history. It can be seen that the separation distances
between all pairs of spacecraft remain greater than their
safe distance. Snapshots of an animation sequence of the
second formation re-orientation maneuver are shown in
Figure 6.

This simulation requires all three spacecraft to cross
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speed(3)

Figure 5: Case 1: Variation of J(z) vs. decision variables
(z2,25).

paths during a re-configuration maneuver. No a pri-
ort information is provided about which units should
avoid each other - although this can be influenced by
the choice of optimization penalty weights for each unit.
The “best” solution returned by the initial GA appli-
cation is shown. Note, however, that other solutions
returned may have differing roles for each spacecraft
along the way. This is reflected in the fact that the
topology of the objective function for multiple space-
craft and multiple criteria turns out to be highly multi-
modal (see Figure 5 for an example of J(z)) and possibly
discontinuous. Clearly, any multi-variable optimization
technique which progresses using gradient information,
and/or hill-climbing techniques will rapidly converge to
the nearest local minimum. This multi-modality of the
objective function space almost requires a covering tech-
nique which can generate diverse and distributed can-
didate search vectors, in order to effectively explore the
majority of the decision space.

Case 2: Fuel Equalization

In Case 2, we require a fuel usage pattern resulting in
equalization of the final fuel loads for both spacecraft.
Each spacecraft starts out with an uneven fuel load.
(Figure 8). The objective weights are adjusted to achieve
fuel equalization. The lowest-cost solution generated by
a preliminary GENESIS GA application is:

0.2783 Spacecraft 1 LOS coast speed

v = 0.0998 Spacecraft 2 LOS coast speed (5)
0.0256 Spacecraft 1 CA (perp.) speed
0.0185 Spacecraft 2 CA (perp.) speed

Figure 7 shows the resulting trajectories of both space-
craft. The coast speeds determined by the optimizer in-
dicate that Spacecraft 1 travels substantially faster than
Spacecraft 2, thus expending more fuel. Initial and final
fuel levels of the two spacecraft are shown in Figure 8.
Using the optimized trajectories, both spacecraft are left



Figure 6: Case 1: Three-spacecraft Constellation Re-orientation.
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with approximately the same amount of fuel at the end
of the maneuver.

Figure 7: Case 2: Two Spacecraft with Fuel Equalization
- 3-D View.

Figure 8: Case 2: Equalized Fuel Usage: yellow = initial,
blue = final.

Case 8: N-spacecraft Collision Avoidance

Here, the number of spacecraft is increased to N = 5.
Spacecraft tasks are to either exchange positions with
one another or perform a maneuver with potential colli-
sions with other spacecraft. Due to the number of space-
craft under consideration, this problem is fairly compli-
cated and a good solution cannot be easily found by
inspection. The lowest-cost solution generated by a pre-
liminary GENESIS GA application is:

ve = [ 01058 00824 0.0684 0.2257 0.1369 |

vy = [0.0295 00406 0.0020 —0.0319 —0.0232 ]

Note that the solutions are indeed a combination of vary-
ing speeds, both along the LOS trajectories, and in the
CA directions. Figure 9 shows the trajectories of all
spacecraft. Distances between all spacecraft pairs s:;(t)
for ¢ # j (Figure 10) are sufficiently far away from each
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other to avoid collisions throughout the entire constella-
tion maneuver.

Figure 9: Case 3: N = 5 Spacecraft Maneuver Opti-
mization - 3-D View.

sepasotion istances (m)
7

Figure 10: Case 3: Inter-spacecraft Separation distances.

6. MisSION AND TASK PLANNING USING
GAs

The studies presented above use Genetic Algorithms pri-
marily to solve a global optimization problem. However,
the real advantage of GAs is in generating and refining
a diverse population of solutions from which a higher-
level decision maker can select. Realistically, the mul-
tiple spacecraft trajectory problem is a multi-objective
optimization problem, and frequently several disparate
solutions will need to be reviewed and evaluated prior to
selecting a maneuver plan. Indeed, even after an initial
plan has been executed, the possibility of dynamic un-
certainties and system/environment changes means that
a currently operational maneuver will often need to be
modified or re-planned in order for a particular mission
task to be achieved. Alternatively, disparate and often



conflicting optimality criteria mandates trade-off evalua-
tion of distinct solutions. In many cases, it is neither ob-
vious nor apparent how a mission planner should weigh
various optimality criteria in constructing a single objec-
tive function for a nominal optimization strategy. Our
current research focuses on the development of Genetic
Algorithms for multi-objective optimization in such mis-
sion and task-planning. In the following sections, we
describe the basic concepts which we are currently in-
vestigating to implement multi-spacecraft mission and
task optimization.

The Niched-Pareto GA

In the initial experiments presented above, the GA pop-
ulation is primarily as an artifact of the search process.
That is, the population is a data structure exploited dur-
ing the search, but, as the GA converges towards a sin-
gle type of individual, the population becomes unim-
portant. Certainly, some remaining diversity in the GA
population can provide several alternative solutions, but
selective pressure in a typical GA often eliminates this
diversity.

The Niched-Pareto GA is a slightly modified version of
the standard GA, in which a diverse, steady state pop-
ulation is maintained as the final outcome of the search
process. Importantly, the end population is steered to
find disparate solution families, each being “optimal”
with respect to one or a subset of all of the optimality cri-
teria. Effectively, this type of GA simultaneously solves
the multi-objective optimization problem with respect
to each and every criterion. Population niching based
on optimality criteria means that the solution is not in-
fluenced by an ad hoc choice of optimization weights.
Instead, final results encapsulate multiple disparate so-
lutions, which can be maintained and selected by higher
level (perhaps non-deterministic) supervisory planners.
When niching is exploited to maintain a diverse pop-
ulation of solutions, other GA possibilities open them-
selves up. In particular, one has the opportunity to con-
sider several objective criteria simultaneously, through
the concept of Pareto optimality.

Pareto Optimization

As an illustrative example, consider the familiar task of
selecting a personal computer for purchase. Typically,
such a selection involves at least two criteria: perfor-
mance and price. Assume that there are a large number
of PCs available, and that a price and quantified perfor-
mance measure (e.g. FLOPS) are available for each PC.
How might one to proceed to select the optimal PC, in
terms of these criteria 7

Two approaches present themselves immediately. One is
to select the PC with the highest “bang per buck” (e.g.,
FLOPS/dollar). Another is to optimize on a weighted
combination of the two criteria (e.g., to assign a dollar

value to FLOPS). Both approaches involve combining
the two performance measures into one. In practice, such
approaches prove inadequate, due to the complex inter-
action of performance needs and economic constraints on
the purchaser. In other words, performance and price are
criteria of distinct types, which are not easily combined.
Multi-objective optimization problems with irreconcil-
able objectives are commonplace. Ultimately, a human
being, not an automated process, usually resolves such
problems. However, one must consider what optimiza-
tion concepts can help in making this decision.

Pareto Optimal
Front

Performance

Affordability

Figure 11: (Hypothetical) PC performance versus afford-
ability (1/price).

From Figure 11, one can intuitively identify a limited set
of points that should be considered as potential solutions
(indicated by arrows), while eliminating the remaining
alternatives. This is defined as the non-dominated so-
lution set. Non-domination implies there are no other
solutions that are superior in all criteria. When all pos-
sible solutions have been considered in such a problem,
the complete set of non-dominated solutions is said to
be on the Pareto optimal front.

The concept of Pareto optimization (that is, automati-
cally searching for the Pareto optimal front) is particu-
larly relevant to multi-spacecraft mission and task plan-
ning. Consider the previous formulation of objective cri-
teria for the GA, which combined position/orientation
endpoint errors; collision avoidance; minimization of
path lengths; minimization of maneuvering times; min-
imization of fuel usage; and equalization of fuel loads
across multiple spacecraft. In a Pareto optimization ap-
proach, each of these criteria could be considered sep-
arately (searching for a 6-dimensional Pareto optimal
front), or in various, logically weighted combinations.
Once the Pareto front is found, a mission planner could
decide amongst the alternatives.

Using GAs in Pareto Optimization

A variety of GAs have been designed to address the
Pareto optimization problem [7] The most promising
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schemes incorporate two features: a niched GA (to main-
tain population diversity) and a domination-based fit-
ness function (to push the population towards the Pareto
optimal front). Niching in a GA maintains a diverse pop-
ulation (while simultaneously searching for high-quality
solutions) by using the biological analogy of resource
sharing [5]. Simply stated, each individual in the pop-
ulation is forced to share its fitness with “neighboring”
individuals. A GA designed in this fashion can be ex-
pected to drive a diverse population to the Pareto op-
timal front. Although there are careful considerations
that must be taken into account in designing the exact
operation of such GAs (for instance, the design of the
sharing function), they show great promise at providing
a set of Pareto optimal solutions, from amongst which a
designer (e.g., mission planner) can select alternatives.

Clearly, an important area for future consideration in
multi-spacecraft mission and task planning is Pareto op-
timization. Given its population basis, the GA is partic-
ularly well suited to this investigation.

7. CONCLUSIONS

This paper presents initial results of an investigation
into using Genetic Algorithms for multiple spacecraft
trajectory optimization. For the constellation initializa-
tion problem, a compact representation of point-to-point
maneuvers was developed, which is directly applicable
to thrusters and other saturation-type actuators. Pre-
liminary results of applying standard GA algorithms to
the N-spacecraft initialization problem have indicated
the efficacy of GAs for global optimization. However,
the multi-objective nature of this problem highlights the
need for further development of techniques which ade-
quately address the disparate and often conflicting na-
ture of various mission and task objectives. The Niched-
Pareto GA is identified as a candidate extension of the
GA methodology, which is currently being used for devel-
opment of a multiple-criterion global trajectory and re-
source optimizer for multiple spacecraft trajectory plan-
ning.
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