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Abstract. This paper presents a new search procedure to tackle multi-objective 
traveling salesman problem (TSP). This procedure constructs the solution at-
tractor for each of the objectives respectively. Each attractor contains the best 
solutions found for the corresponding objective. Then, these attractors are 
merged to find the Pareto-optimal solutions. The goal of this procedure is not 
only to generate a set of Pareto-optimal solutions, but also to provide the in-
formation about these solutions that will allow a decision-maker to choose a 
good compromise solution. 

1   Introduction 

A multi-objective optimization seeks to optimize a vector of non-commensurable and 
often competing objectives. In other words, we whish to find a set of values for the 
decision variables that optimizes a set of objective functions. The general multi-
objective combinatorial optimization problem can be formulated as: 
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where x is the decision vector, or solution, and X∈ℜn is the n-dimensional decision 
space, consisting of a finite set of feasible solutions. The objective function f(x) maps 
x into Z∈ℜk, the k-dimensional objective space, where k is the number of objectives. 
Whereas a single-objective problem is typically studied in decision space, multi-
objective optimization is mostly studied in objective space. The image of a solution in 
the objective space is a point, z = [z1, z2, …, zk]. A point, z, is attainable if there exists 
a solution x∈X such that z = f(x). The set of all attainable points is denoted as Z. The 
ideal objective vector z* is defined as z* = [optf1(x), optf2(x), …, optfk(x)], which is 
obtained by optimizing each of the objective functions individually. Normally, the 
ideal objective vector is not attainable because of the conflict among the objectives. 



Therefore, there will not exist a single optimal solution to the multi-objective combi-
natorial problem. Instead, we must look for “trade-off” solutions when dealing with a 
multi-objective optimization problem.  

Objective vectors are compared according to the concept of Pareto-optimality and 
dominance relation. A partial ordering can be applied to solutions to the problem by 
the dominance criterion. A solution xa∈X is said to dominate a solution xb∈X if xa is 
superior or equal in all objectives and at least superior in one objective. Mathemati-
cally, the concept of Pareto optimality is as follows [21]: assume, without loss of 
generality, a minimization problem, and consider two decision vectors, xa, xb ∈X, then 
xa is said to dominate xb (often written as ba xx f ) if and only if 
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The solution xa is said to be indifferent to a solution xb, if neither solution is domi-
nating the other one. When no a priori preference is defined among the objectives, 
dominance is the only way to determine if one solution performs better than the other 
does. The concept of Pareto optimality almost gives us a set of solutions called the 
Pareto-optimal set. The solutions in the Pareto-optimal set are also called nondomi-
nated, characterized by the fact that starting from a solution within the set, one objec-
tive can only be improved at the expense of at least one other objective being deterio-
rated. The curve formed by joining the Pareto-optimal solutions is known as a 
Pareto-optimal front. The goal of solving multi-objective problem is to find the 
Pareto-optimal set for the decision-maker to choose the most preferred solution. A 
solution selected by the decision-maker always represents a compromise between the 
different objectives. 

The bounds on the Pareto-optimal set in the objective space can be defined by the 
ideal point and the nadir point [16]. The ideal objective vector, z*, denotes an array of 
the lower bound of all objective functions. For each of the k conflicting objectives, 
there exists one different optimal solution. An objective vector constructed with these 
individual optimal objective values constitutes the ideal objective vector z*. In gen-
eral, the ideal objective vector corresponds to a non-existent solution. This is because 
the optimal solution for each objective function need not be the same solution. The 
nadir objective vector, znad, represents the upper bounds of each objective in the entire 
Pareto-optimal set. 

The problem of finding the true Pareto-optimal set is NP-hard [5]. Thus, the goal 
of the multi-objective combinatorial optimization is to approximate the Pareto-
optimal set. Over the years, the work of a considerable number of researchers has 
produced an important number of techniques to deal with multi-objective optimiza-
tion problems [4], [7], [16], [22]. 

The TSP is the most well-known of all NP-hard combinatorial optimization prob-
lems. Multi-objective TSP is even harder than its corresponding single-objective 
version. Some researches have specifically treated the multi-objective TSP. Fischer 
and Richter [8] used a branch and bound approach to solve a TSP with two (sum) 
criteria. Gupta and Warburton [9] used the 2- and 3-opt heuristics for the max-
ordering TSP. Sigal [20] proposed a decomposition approach for solving the TSP 



with respect to the two criteria of the route length and bottlenecking, where both 
objectives are obtained from the same cost matrix. Tung [23] used a branch and 
bound method with a multiple labeling scheme to keep track of possible Pareto-
optimal tours.  Melamed and Sigal [14] suggested an e-constrained-based algorithm 
for bi-objective TSP. Ehrgott [6] proposed an approximation algorithm with worst 
case performance bound. Hansen [10] applied the tabu search algorithm to multi-
objective TSP. Borges and Hansen [2] used the weighted sums program to study the 
global convexity for multi-objective TSP. Jaszkiewicz [11] proposed the genetic local 
search which combines ideas from evolutionary algorithms, local search with modifi-
cations of the aggregation of the objective functions. Paquete and Stützle [18] pro-
posed the two-phase local search procedure to tackle bi-objective TSP. During the 
first phase, a good solution to one single objective is found by using an effective 
single objective algorithm. This solution provides the starting point for the second 
phase, in which a local search algorithm is applied to a sequence of different aggrega-
tions of the objectives, where each aggregation converts the bi-objective problem into 
a single objective one. Yan et al. [24] used an evolutionary algorithm to solve multi-
objective TSP. Angel, Bampis and Gourvès [1] proposed the dynasearch algorithm 
which uses local search with an exponential sized neighborhood that can be searched 
in polynomial time using dynamic programming and a rounding technique. Paquete, 
Chiarandini and Stützle [17] suggested a Pareto local search method which extends 
local search algorithm for the single objective TSP to bi-objective case. This method 
uses an archive to hold non-dominated solutions found in the search process. 

This study proposes a new search procedure to tackle multi-objective TSP. Fig. 1 
sketches the schematic of the search procedure. This procedure incorporates the rela-
tionship between the problem presentation and data structure into the algorithm de-
sign. For a TSP with k objectives, this procedure first constructs the solution attractor 
for each of objectives individually. The solution attractor contains a set of the best 
solutions found for the corresponding objective. It is also reasonable to believe that 
the attractor consists of a large proportion of low-cost edges for the objective. These 
edges are in the extreme for that objective function. Then the procedure combines 
these k attractors in order to mix the edges contained in these attractors. Finally, the 
Pareto-optimal solutions can be found from these mixed edges.  

 
 
 
 
 
 
 
 
 
  

Fig. 1. Schematic of the search procedure 
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The remaining of the paper is organized as follows. Next section introduces a 
method for constructing a solution attractor for a single-objective TSP. Section 3 
describes the proposed procedure for finding the Pareto-optimal solutions for multi-
objective TSP and presents the computational results for a bi-objective TSP instance. 
The goal of this procedure is not only to generate a set of Pareto-optimal solutions 
effectively, but also to provide information about these solutions that will allow a 
decision-maker to choose a good compromise solution. The final section concludes 
this paper. 

2   Constructing Solution Attractor for TSP 

Local search heuristics is a widely used general approach to find reasonable solutions 
to hard combinatorial optimization problems. Local search algorithms are simple to 
implement and quick to execute, but they have the main disadvantage that they are 
locally convergent. 

When we apply a local search algorithm to the TSP, the common opinion about lo-
cal optima is that the set of local optima forms a “big valley” structure in the solution 
space [3], [13], [15], [19]. In fact, it is a solution attractor, i.e., a set of fixed points, 
that drives the local search trajectories into the small region of the solution space 
[12]. The attractor is formed by the set of all local optimal tours. Since the global 
solution is a special case of local optimal solutions, the global tour is expected to be 
included in the attractor. 

Li [12] suggests a procedure for constructing a solution attractor for single-
objective TSP. For a TSP instance, the solution space contains the tours that the 
salesman may traverse. Li's procedure uses an n×n matrix E, called hit-frequency 
matrix, to record the number of hits on each edge by a set of local optimal tours. The 
hit-frequency matrix explores the information on edges and thus stores rich informa-
tion about the solution attractor for the TSP instance. If we use a local search algo-
rithm and generate all possible search trajectories for the TSP instance, when all 
search trajectories reach their local optima we could obtain the real attractor for the 
problem. Then, when all involved edges are recorded in the hit-frequency matrix, we 
should immediately recognize the attractor and easily identify the global optimal tour. 
Unfortunately, this "all possible search trajectories" scenario is unrealistic, due to the 
enormous amount experimental data required. A more realistic goal would be gather-
ing a moderate sample of local optima to construct the solution attractor and infer 
statistical properties of the attractor. 

We denote all edges that are contained in the global optimal tour as G-edges. 
When a local search process searches for an optimal solution, the search trajectory is 
constantly adjusting itself by disregarding unfavorable edges and trying to collect G-
edges. If it successfully collects all of the G-edges, the final tour is the global optimal 
tour. If it only collects some of the G-edges, it ends up at a local optimum. If a tour 
contains none of the G-edges, the search process can always improve the tour by 
exchanging edges. Local heuristic algorithms cause individual search trajectories 
explore only a tiny fraction of the enormous solution space when n is large. Thus, it is 
difficult for a particular search trajectory to select G-edges globally, and a search 



trajectory often ends at a local optimum which contains most G-edges and some un-
favorable edges. The more G-edges a local optimal tour contains, the closer to the 
global optimum it is. Local optimal tours are actually linked together by sharing the 
G-edges. When a solution attractor is constructed by a large number of local optimal 
tours, the attractor should consist of all G-edges and some unfavorable edges, called 
noise. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The procedure for contracting solution attractor of local search in TSP 

Fig. 2 presents the procedure for constructing solution attractor for TSP. The pro-
cedure is very straightforward: randomly generating a sample of local optimal solu-
tions to construct the attractor, and then removing the noise contained in the attractor 
to identify the core of the attractor. In the procedure, Q is a TSP instance. si is an 
initial solution generated by Initial_Tour(). sj is a local optimum outputted by 
a local search process Local_Search(). E is the hit-frequency matrix to record M 
local optima. Each time when a search trajectory reach a local optimal solution sj, the 
function Update() records the edges contained in sj into E. Since a solution attrac-
tor contains G-edges and noise, the function Find_Core() is used to try to remove 
the noise. The remaining edges form the core of the attractor and are recorded into the 
matrix A. Finally, the matrix A is searched by an exhausted enumeration process Ex-
hausted_Search() to generate all solutions in the attractor core. The hit-
frequency matrix E plays an important role for collecting all information about the 
solution attractor. It acts as an input/output data table where the entry eij records the 
number of times that the corresponding edge is hit by the set of local optimal tours. 

A solution representation is a mapping from the solution space of a possible solu-
tion to a solution space of encoded configuration within a particular data structure. 
For a TSP with n cities, there are many ways to represent a tour in the computer. One 
way is to make an ordered list of the cities to visit, with a return to the home city 
being implied. Another way is with an n×n matrix E = [eij], such that eij = 1 if and 
only if city j follows city i in the tour. A tour therefore must always have exactly one 
"1" in every row and every column. The matrix E is an effective data structure that 
allows the local search process to maintain a functional link among the local optimal 
tours. The basic idea of the hit-frequency matrix E used in the procedure is to build a 
probabilistic representation of the solution attractor based on the M local optimal 
tours and then generate new candidate solutions based on the knowledge contained in 
the attractor. 

procedure TSP-Attractor(Q) 
begin 
 repeat 
 si = Initial_tour(); 
 sj = Local_Search(si); 
 Update(E(sj)); 
 until StoppingCriterion = M; 
 A = Find_Core(E); 
   Exhausted_Search(A) 
end 



The hit-frequency value in eij represents the probability that the corresponding 
edge in the TSP will be hit by a local optimal tour. If M is large enough, this value 
also can be viewed as the probability that the corresponding edge is a G-edge. For 
example, if an edge is hit by 73 percent of M local optimal tours, although each local 
optimum selects the edge based on its neighborhood structure, the edge is globally 
superior since the edge is reached by these individual optima from different search 
trajectories. The hit-frequency matrix gives us important insights into the nature of 
the search space and provides an opportunity for us to concentrate the search in the 
region that contains the most promising solutions. When we restrict our attention to a 
smaller solution space represented by the attractor, the number of possibilities is no 
longer prohibitive. 

The hit-frequency matrix E has capacity of learning. The basis of learning in the 
matrix is the generation of long-lived memory and statistics-based pattern. The matrix 
not only plays a fundamental role in the organization of memory, but also provides a 
powerful way of discovering the pattern in the searched edges. We can exploit this 
information to generate more local optimal tours, and even the global optimal tour. 

Fig. 3 uses a simple 20-city TSP example to explain the attractor-construction pro-
cedure. This example generates M = 100 random initial tours. Since these initial tours 
are randomly produced, the edges should have an equal probability to be selected. 
The darkened elements in the matrix shown in Fig. 3(a) represents the union of the 
edges found in these initial tours. After applying the 2-opt local search algorithm to 
the initial tours, we obtain 100 local optimal tours. Fig. 3(b) marks the union of the 
edges hit by these 100 local optimal tours. Each of these marked elements also con-
tains a value which is the number of hit by the local optimal tours. 

It is interesting to see how the search space is reduced. During the local search 
process, the only thing the process is doing on a particular search trajectory is to re-
place bad edges with good ones. As result, the search process causes the elements in 
the matrix E to have unequal hit frequency. Good edges are selected by many search 
trajectories; bad edges are displaced and therefore contain low or zero hit frequency. 
After search trajectories reach their local optimal points, they leave their "final foot-
prints" in E. The darken area in Fig. 3(a) is reduced to the one shown in Fig. 3(b), 
which exhibits the structure of solution attractor for the TSP. Comparing to the full 
solution space, the size of the attractor is very small.  

The attractor constructed by local optima contains G-edges and noise. The function 
Find_Core() groups the edges into clusters in an attempt to remove the noise. A 
cluster is defined here as a set of edges that contain the hit frequency within a certain 
range. The cluster with the highest range of hit frequency constitutes the core of the 
attractor, while the cluster with the lowest range can be regarded as noise. In each 
column (or row) of the hit-frequency matrix E, the value of the maximum hit MaxV is 
identified. Knowing that the range of possible value for an edge in that column can 
vary from zero to MaxV, we could divide this range into r equal portions. Our exam-
ple chooses r = 3 to cluster the edges in each column. Fig. 3(c) illustrates the cluster-
ing process for the column 18 in E. Fig. 3(d) displays the cluster in which the edges 
are within the highest range of hit frequency. The darkened elements form the attrac-
tor core. In this way the attractor is further reduced into a core, an even smaller re-
gion. The most-hit edges in the core form the most promising region for search. Now 



it is possible to use an exhausted-enumeration algorithm to find all solutions in the 
core.  In our example, the function Exhausted_Search() found 32 solutions in 
the core. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A 20-city TSP example for illustrating attractor construction. (a) presents the union of 
the edges in the initial tours; (b) marks the union of the edges hit by the local optimal tours; (c) 
illustrates the clustering process for the column 18 of E; and (d) displays the attractor core. 

3   Finding Pareto-Optimal Set for a Bi-Objective TSP 

3.1   The TSP and Search Procedure 

In a multi-objective setting, the TSP becomes even more difficult and complex. The 
general multi-objective TSP can be formulated as follows: 
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where n is the number of cities, cq(i, j) is the cost between city i and j according to the 
q-th objective, q = 1,…k, and the decision variable x holds a cyclic permutation of the 
n cities. In practical applications the cost factors may correspond to distance, travel 
time, expenses, tourist attractiveness, energy consumed, degree of risk, or other rele-
vant considerations for the tour. The goal is to find the "minimal" Hamiltonian circuit 
of the graph in terms of Pareto optimality. In a TSP, if the cost weights of the edges 
satisfy the triangle inequality, the problem is called the metric TSP. A special case is 
when the cities are points on the plan, and the cost weights are the Euclidean dis-
tances between the points. When the cost weights satisfy c(i, j)=c(j, i), it is called the 
symmetric TSP, which has many practical applications. 

The design of a test problem is always important in designing any new search al-
gorithm. The context of problem difficulty naturally depends on the nature of prob-
lems that the underlying algorithm is trying to solve. In the context of solving multi-
objective optimization problems, we are interested in designing the features that 
makes a problem difficult for the proposed multi-objective optimization algorithm. In 
this study, the test problem instance is designed based on several considerations. 
First, the size of problem should be large, since the TSP instances as small as 200 
cities must now be considered to be well within the state of the global optimization 
art. The instance must be considerably larger than this for this study to be sure that 
the proposed approach is really called for. Second, the instance should be multi-
modal, that is, with many local Pareto-optimal regions. Third, there is no any pre-
known information related to the result of the experiment, since in a real-world prob-
lem one does not usually have any knowledge of the Pareto-optimal front. Fourth, the 
problem instance should be general, understandable and easy to formulate so that the 
experiments are repeatable and verifiable, but difficult to solve. 

This study generates a general symmetric TSP instance, which consists of n = 1000 
cities with two cost matrixes c1 and c2. The cost matrices are generated at random, 
where each cost element c(i, j) = c(j, i) is assigned a random number in the interval 
[1, 1000]. This study uses two objectives primarily because of the ease in which two-
dimensional Pareto-optimal front can be visually demonstrated. 

Fig. 4 presents a general search procedure used in this study. Q is a TSP instance 
with a set of cost matrices {c1, c2,…, ck} with respect to objective f1, …, fk. The func-
tion TSP_Attractor() finds the core of the attractor for each of objective func-
tions respectively. This study uses the 2-opt algorithm [13], which is one of the earli-
est local search algorithms for the TSP.  



 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4. The procedure for searching Pareto-optimal set in multi-objective TSP 

The information about the attractor core for objective q (q = 1,…, k) is stored in 
matrix Eq, in which we mark the elements to represent the corresponding edges that 
are hit by the core. In this study, only 15 best solutions in each attractor core are se-
lected and stored in Eq. And also the objective vector values Zq(z1,…,zk) for the best 
solution in the Eq is calculated. The vector Zq(z1,…,zk) can help us to determine the 
ideal objective vector z* and nadir objective vector znad.  After k attractor cores with 
respect to objective f1, …, fk are constructed, the function Merge() stores the union 
of all marked elements in the matrixes E1,…,Ek into the matrix E. Then the function 
Find_Pareto-Set() finds all solutions in E through an exhausted search 
method, and outputs all non-dominated solutions into list L. Finally, the function 
Analize_Paroto_Set() analyzes the Pareto set and generate the information 
about each of the solutions. 

This procedure intuitively reflects the idea of finding solutions around the extreme 
ends of the Pareto-optimal front and then mixing their characteristics (edges) to find 
other trade-off solutions in the Pareto-optimal region. By considering each of objec-
tive functions separately, this procedure generates high-quality solutions in the solu-
tion attractor corresponding to that objective. The merge of these attractors will form 
a well-distributed set of the Pareto-optimal solutions, each of which takes part of 
high-quality edges from each of the attractors. Fig. 5 illustrates examples. Suppose 
that there are two local optimal tours (1,2,3,4,5,6) and (5,1,2,4,3,6) in the attractor 1 
that corresponds to objective f1 (see Fig. 5(a)), and there is one local optimum 
(5,3,1,4,2,6) in the attractor 2 corresponding to objective f2 (Fig. 5(b)). If we merge 
these two attractors into one matrix, as illustrated in Fig. 5(c), we can identify other 
two solutions (1,2,4,5,3,6) and (1,4,2,3,6,5). The first solution takes four edges from 
attractor 1, one edge from attractor 2 and one common edge shared by both attractors. 
The second solution takes three edges from attractor 1, one edge from attractor 2 and 
two common edges. Even in the case in which two objectives are mutually exclusive 
(i.e., the two cost matrixes are mutually disjunctive), we will see that solutions in 
different attractors do not share edges, but we still can find the solutions that mix 
edges from attractor 1 and 2. For example, suppose that there are two solutions 
(1,3,5,2,6,4) and (1,3,6,4,2,5) in attractor 1 (Fig. 5(d)) and one solution (1,2,3,4,5,6) 
in attractor 2 (Fig. 5(e)). When we merge these two attractors into a matrix, as shown 

procedure TSP_Pareto_Set(Q) 
begin 
 q = 1; 
 while (q ≤ k) do 
  Eq = TSP_Attractor(cq); 
  q = q + 1; 
 end while 
 E = Merge(E1,…,Ek); 
 L = Find_Pareto_Set(E); 
 Analize_Pareto_Set(L); 
end 



in Fig. 5(f), it is easy to see that no common edge is shared by both attractors. In 
addition to the three original solutions, we can find other four new solutions 
(1,2,3,5,6,4), (1,2,3,6,4,5), (1,3,4,2,5,6) and (1,3,4,5,2,6), each of them combines 
three edges from attractor 1 and three edges from attractor 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Examples of merging two attractors 

3.2   The Experiment Results 

To guarantee the diversity of the sample of local optima, this study generated M = 
2000 initial points, and, as a result, generated 2000 local optima for each objective. 
This experiment also relied heavily on randomization. All initial tours were randomly 
constructed. In the 2-opt local search, the algorithm randomly generated a solution in 
the neighborhood of the current solution. A move that gave the first improvement was 
chosen. The great advantage of first-improvement pivoting rule is to produce random-
ized local optima. The local search process on each search trajectory terminated when 
no improvement had been achieved during 1000 iterations. 

This study used two 1000×1000 matrixes, E1 and E2, to store 15 best solutions 
taken from each of the attractor cores, respectively. Of course, the number of solu-
tions selected from the attractor core affects the size of the Pareto-optimal set, the 
coverage of the set, and the computational resources needed to generate the set. Fig. 6 
illustrates the solution points from each objective in the objective space. This figure 
also indicates the lower bound z* and upper bound znad on the Pareto-optimal set to 
display the topology of the set. 

Then these solutions were combined into the matrix E, in which 40.4% of the 
marked edges belong to attractor 1, 41.1% to attractor 2, and 18.5% are shared by 
both attractors. The fraction of edges that are common to both attractors can be de-
fined as the overlap between the two attractors. This study then used an exhausted 
search algorithm to find all solutions in E. After discarding all dominated solutions, 
we obtained 31 Pareto-optimal solutions, as illustrated in Fig. 7.  

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Solutions in each of the attractor core 

For the purpose of comparison, this study also applied the aggregation approach to 
the same TSP instance. This study varied systematically the weights in the fashion of 
[0, 1], [0.04, 0.96], [0.08, 0.92], …, [1, 0], and then use the 2-opt algorithm to search 
on the aggregated objective function. The search process in each run terminated when 
no improvement had been made during 1500 iterations. These multiple runs gener-
ated 26 points, among which 23 points were nondominated. These nondominated 
points are also displayed in Fig. 7. It is clear that the solutions generated by the pro-
posed procedure maintain good properties of convergence and diversity. These solu-
tions probably provide a more accurate description of the true Pareto-optimal set.  

Mathematically, the multi-objective optimization problem is considered to be 
solved when the Pareto-optimal set is found, and all the Pareto-optimal points are 
equally acceptable solutions to the problem. However, it is not enough in many prac-
tical cases. The ultimate goal is to select the single best compromise solution. Select-
ing one solution out of the Pareto-optimal set calls for a decision-maker, who has 
better insight into the problem and can express preference relations between different 
objectives. However, finding a reliable important solution is difficult in the absence 
of any knowledge about the Pareto-optimal solutions. An important question related 
to this issue is how to present the Pareto-optimal solutions to the decision-maker in a 
meaningful way. This requires a multi-objective optimization algorithm not only to be 
capable of finding multiple and diverse Pareto-optimal (or near Pareto-optimal) solu-
tions, but also to be able to provide necessary information about the obtained solu-
tions. In our case, what would be more desirable is the information about each ob-
tained tour. More specifically, we want to know that in a particular tour, what per-
centage of edges comes from attractor 1, what percentage from attractor 2, and what 
percentage are shared by both attractors. This kind of information can aid the deci-

z1(7421, 24287) 

z2(23209, 7512) z*(7421, 7512) 

znad(23209, 24287) 



sion-maker in arriving at a final decision. The characteristics of the solutions are 
essential decision elements when people look for the best compromise solution, and 
they are implicitly included in the common-sense notion of optimality. 

The function Analize_Pareto_Set() calculated the distribution of edges for 
each obtained tour, as illustrated in Table 1. For instance, among 1000 edges in the 
tour 1, 28 edges are shared by both attractors, and other 972 edges are taken from 
attractor 1. For the tour 12, 164 edges are shared by both attractors, and among other 
edges, 574 edges are taken from attractor 1 and 262 edges are taken from attractor 2. 
It can be interpreted as: If we choose the tour 12, it will correspond to 57.4% prefer-
ence of the objective f1, 26.2% preference of the objective f2, and 16.4% preference of 
both objectives at same time. However, if we choose the tour 1, 97.2% of this solu-
tion will satisfy the objective f1, and 2.8% will satisfy both objectives simultaneously. 
No doubt, such information is useful to the decision makers for comparing multiple 
optimal solutions and choosing the best compromise solution, as and when required. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The Pareto-optimal sets for the test TSP 
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Table 1. Characteristics of the obtained Pareto-optimal set 

Solution Value for Edges from  
Tour # Objective 1 Objective 2 Attractor 1 Attractor 2 Shared 

1 7421 24287 972 0 28 
2 7435 23731 967 0 33 
3 7465 22343 934 0 66 
4 7529 22060 919 0 81 
5 7551 21838 906 0 94 
6 7645 20629 893 0 107 
7 9285 18021 744 97 159 
8 9698 16001 698 153 149 
9 9963 15530 661 172 167 
10 10205 15120 634 214 152 
11 10648 14205 587 248 165 
12 10720 13789 574 262 164 
13 10978 13075 531 312 157 
14 11054 12775 512 334 154 
15 11155 12335 495 353 152 
16 11674 12001 446 399 155 
17 11973 11847 433 401 166 
18 12456 11007 409 425 166 
19 12986 10548 374 452 174 
20 13099 10048 329 507 164 
21 13294 10001 286 552 162 
22 13455 9987 260 577 163 
23 14976 9877 227 615 158 
24 15987 9645 205 644 151 
25 17654 9465 147 702 151 
26 20101 8073 14 871 115 
27 20170 7719 0 901 99 
28 20651 7697 0 906 94 
29 21644 7639 0 917 83 
30 21675 7553 0 933 67 
31 23209 7512 0 964 36 

 

4   Conclusion 

The multi-objective nature of most real-world problems makes multi-objective opti-
mization a very important research topic. The increasing complexity of typical search 
space demands new strategies in solving multi-objective optimization problems. This 
study provides one possibility. This study shows that the use of simple local search, 
together with an effective data structure, can identify high quality Pareto-optimal 
solutions. Although the procedure was applied to a bi-objective TSP in this study, it 
can be expected that, with little modification, this procedure can be used to deal with 



the TSP with three or more objectives. Even if generalization cannot be claimed, this 
work provides a new search strategy that casts new light into multiple-objective opti-
mization and might serve as a basis to build new algorithm for solving other multiple 
objective problems. 
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