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Abstract 

Epistemic uncertainty has been a subject heavily discussed in recent years. Where 
uncertainty of estimations for long time has been disregarded, it is now viewed as an 
inherent property of the system model. This work demonstrates how different data 
types like expert estimations and manufacturer’s data with various degrees of epis-
temic uncertainty are acquired and aggregated in a coherent framework. Using this 
model we show how to improve reliability using multi-objective optimization. A 
Pareto-based evolutionary algorithm is applied to find a choice of nondominated 
solutions. A new strategy for biasing the search to desired objectives without loosing 
diversity is presented. The user can select a posteriori between solutions covering a 
wide range of the objective space but clustering in the specified area. 

Keywords: Dempster-Shafer theory of evidence, epistemic uncertainty, evolutionary 
algorithms, multi-objective optimization, nondominated repository 

1 Introduction 

Early product development phases are characterized by fundamental uncertainties in 
the reliability modeling process. Such uncertainties may have several reasons: uncer-
tain or incomplete component data, uncertainty about the influencing factors, vague 
estimations of failure functions and coarse-grained system models. On the other hand, 
just this phase allows design changes without the loss of a substantial amount of time 
and money. Methods that help to calculate system reliability from sparse and uncer-
tain data therefore can be a great support for product designers. 

At least two types of uncertainty have to be distinguished because of their difference 
in origin, modeling and effects: Aleatory and epistemic uncertainty. Oberkampf et al. 
define aleatory uncertainty as the "…inherent variation associated with the physical 
system or the environment under consideration" [1]. Aleatory uncertainty of a quan-
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tity may be expressed by its characterization as a ran-
dom value with known distribution. The exact value will 
change but is expected to follow the distribution. 

On the contrary, epistemic uncertainty describes not 
uncertainty about the outcome of some random event 
due to system variance but the uncertainty of the out-
come due to "…any lack of knowledge or information in 
any phase or activity of the modeling process" [1]. This 
shows the important difference between both types of 
uncertainty. Epistemic uncertainty is not an inherent 
property of the system. A gain of information about the 
system or environmental factors can lead to a reduction 
of epistemic uncertainty. But before this information is 
received, the analyst has to live with this uncertainty. 

Using the example of an ALDURO walking machine 
this work shows step by step how reliability modeling 
and design optimization may be carried out in early de-
velopment stages (Figure 1). The probabilistic frame-
work chosen is the Dempster-Shafer theory of evidence 
allowing representation of aleatory and epistemic uncer-
tainties and flexible methods to handle them. 

In section 2 we introduce the mechatronic system ana-
lyzed and its representation as a reliability block dia-
gram. Section 3 illustrates the different forms of compo-
nent data available and their representation. Section 4 
introduces the Dempster-Shafer theory, different ways 
of data aggregation and the system reliability calculation. Section 5 provides a 
method to optimize the design for reliability using a multi-objective evolutionary al-
gorithm (MOEA) with priorization possibility. 

2 System and component definition 

The system investigated is the hydraulically driven four-legged walking machine 
ALDURO (Anthropomorphically Legged and Wheeled Duisburg Robot) [2]. Its op-
erational areas are heavily unstructured or steep terrain or terrains where 
wheeled/tracked vehicles would cause too much damage to the soil. An important 
feature of the two tonnes prototype currently being built at the Mechatronics Labora-
tory is its anthropomorphic leg geometry (Figure 3). The topology and workspace are 
similar to a human leg and allow high mobility. The spherical hip joint with its three 
degrees of freedom is actuated with three hydraulic cylinders, the one d.o.f. revolute 
joint of the knee with a fourth cylinder. Each cylinder is equipped with a linear sensor 
and two pressure sensors. The coordination of the movement of all 16 actuators is 
done by the central computer which translates the operator commands to cylinder 
motions. 
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Figure 1. Process diagram of 
the Alduro analysis. 
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In cooperation with the engineers of the ALDURO team it was decided to separate 
the components into three different groups: Electronics, mechanics and hydraulics. As 
each group differs in its failure characteristics, reliability templates were defined that 
are the base for the used failure functions. All measurements are denoted in operating 
hours. 

2.1 The concept of failure templates 

There are two general data types to derive a failure function F(t) of a component: 
Raw data (accelerated lifetime testing, field failures,…) and processed data (manufac-
turer’s data, expert estimations). For this study, only preprocessed data was available. 
This data type has some condensed form that is either preprocessed from raw data or 
estimated and often expressed as some statistical property (e.g. MTTF). We have to 
define a model or “failure template” which needs only the given property as a pa-
rameter to produce a failure function. 

As failure templates, we chose functions that map preprocessed date to uncertain fail-
ure distributions expressed as discrete Dempster-Shafer structure. Templates are cre-
ated through modeling experience or similarities to building parts with known failure 
functions. All manufacturing data available had MTTF form which was also what the 
engineers desired to estimate. The following templates were used: 

2.1.1 Electronics 
Electronic failures were modeled by exponential distributions which are applicable 
for components that don’t suffer from degradation and burn-in failures [3]. 

2.1.2 Mechanics 
Mechanical failures were modeled by a Weibull-shaped template. Weibull distribu-
tions are commonly used for mechanic components and allow the modeling of wear-
out failures. The mechanics template fixes the shape parameter β=[1,4] which repre-
sents an uncertainty in wear-out characteristics. 

2.1.3 Hydraulics 
Hydraulics, like mechanical parts may suffer from wear-out which led to the choice 
of the Weibull distribution with β=[1,3]. Furthermore, the hydraulic component may 
not work longer than five years without inspection. This is modeled by truncating the 
template after the estimated operating hours in five years. This estimate was given as 
[50000h,100000h,10;50000h,700000h,6;60000h,90000h,5] (see section 4). 

2.2 System definition 

A two-state reliability block diagram without component interaction is used to model 
the impact of a component failure onto the system. In collaboration with the 
ALDURO engineers, we decided to separate the system into 19 non-redundant sub-
systems (Figure 2). Inside the subsystem, redundancy occurs only in the hip. The hip 
movements are controlled by three hydraulic complexes. One complex is essential, 
the other complexes are redundant ( displayed as a parallel system structure) .In the 
further work, this subsystem will be the subject of the demonstrated methodology 
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S1: Central Body (welded framework, steel profiles, combustion engine, hydraulic 
supply, interface to operator) 
S2: Computer (CPU, I/O cards, peripheral parts) 
S3-6: Upper thigh (welded structure) 
S7-10: Lower thigh: welded structure, foot) 
S11-14: Knee (Hydraulic cylinder, servo valve, linear sensor, pressure sensors, ampli-
fiers, revolute joint) 
S15-19: Hip (Hydraulic cylinders, pressure sensors, linear sensors, servo valves, ampli-
fiers, ball joints) 

3 Data acquisition 

Some parts used to build ALDURO are commercially available. Their failure data 
(MTTF) was obtained either directly from the documentation or by contacting the 
manufacturer. The majority of the components has been created or heavily modified 
by the ALDURO engineers and thus no failure 
data is available. We had to rely on expert es-
timations and on the failure behaviour of simi-
lar parts. Two types of estimations were al-
lowed: MTTF and failure times. This parame-
ters are denoted easier to estimate than failure 
distribution parameters like Weibull character-
istic lifetime and shape [4]. An expert may give 
an arbitrary number of estimations [a, a], r  
where she expects the measurement to be inside 
interval [a, a] with certainty r. r is expressed on 
a scale from 1 (almost impossible) to 10 (al-
most certain). If the expert provided only one 
estimate, r was neglected. On the same scale 
the expert or his team leader denotes his com-
petence and knowledge of the component. 
Three engineers participated in the reliability 
analysis of the hip subsystem and provided es-

.
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Figure 2. ALDURO reliability block system 

 
Figure 3. The ALDURO leg. 
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timation of the component MTTF and failure times as given in Table I. Where the 
manufacturer provided data it was rated as a very competent source (Competence 10). 
For the pressure sensor, no manufacturers data and only one expert estimate was 
available. Thus, the data of two similar products was used and rated with low cer-
tainty. 

4 Modeling and Calculations 

After defining the system model and collecting the data, it is necessary to choose an 
appropriate statistical framework. Which characteristics should be regarded? 

• Uncertainty is high, so the framework must include ways to specify it. 
• Different data types have to be combined in the same model. 
• Expert estimations may be conflicting, controversial and even simply false. 
• The expert’s competence must impact on his estimate’s importance. 

Several probabilistic frameworks have been proposed that model and preserve uncer-
tainty and disagreement in reliability analysis, e. g. fuzzy sets [5] and the Dempster-
Shafer theory of evidence. The latter one will be applied in this work. The huge dif-
ference between the presented fusion methods and Bayes modelling is the require-
ment of precise prior distributions. Walley points out that it is part of the Bayesian 
principle that both prior and likelihood are precisely known [6]. Unknown priors are 
modelled as uniform distributions without taking into account that reality may be 
anywhere else. The presented methods incorporate epistemic uncertainties where ex-
actly this is not necessary. 

4.1 The Dempster-Shafer theory of evidence 

The Dempster-Shafer theory [7] has proven to be a well-suited framework for repre-
senting both epistemic and aleatory uncertainty. It has found application in various 

Table I: Failure data from various sources. 

Component Data source Competence Estimation (in hours) Template
Expert 1 7 MTTF=[2000,8000] Hydraulics
Expert 2 2 Failure time=[0,10],5;[10,1000],1;[1000,50000],7
Expert 3 5 MTTF=[5000,9000]
Expert 1 1 MTTF=[1000,50000] Electronics

Similar Part 3 MTTF=[100000,100000]
Similar Part 4 MTTF=[105120,105120]

Linear sensor Manufacturer 10 MTTF=[400000,800000] Electronics
Expert 1 6 MTTF=[3000,10000] Hydraulics
Expert 2 2 MTTF=[500,500]
Expert 3 2 MTTF=[2000,5000]

Manufacturer 10 MTTF=[24000,24000]
Amplifier Expert 1 1 MTTF=[1000,10000] Electronics

Expert 2 1 MTTF=[7000,20000]
Expert 1 3 MTTF=[3000,5000] Mechanics
Expert 3 3 MTTF=[2000,5000]

Ball joint

Hydraulic 
cylinder

Pressure 
sensor

Servo valve
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fields [8, 9] and is an ideal tool for reliability prediction. In the classical discrete 
probability calculus, a probability mass m(a) is defined for each possible value of a 
random variable X and p(X = a) = m(a). Real-valued Dempster-Shafer structures are 
similar to normal probability distributions with one important difference. The prob-
ability mass function is not a mapping [0,1]→  but instead a mapping from 
2 [0,1]→ , where probability masses are assigned to sets instead of discrete values. 
A Dempster-Shafer structure can be described by its basic probability assignment 
(bpa) or by a set of focal elements with associated mass. 

Definition 1: A basic probability assignment (bpa) m over the real line is a mapping 
m : 2 [0,1]→  provided 

 m( ) 0∅ =  (1) 
 

B
m(B) 1

⊆
=∑  (2) 

Definition 2: A focal element A  is an interval with a nonzero mass m(A)>0. 

Because of the uncertainty modelled it is not possible to give an exact probability 
p(X∈B) for a value or interval B, yet upper and lower bounds can be calculated. As-
sociated with each bpa are two functions Bel, Pl : 2 [0,1]→  referred to as belief and 
plausibility. 

Definition 3: Belief and plausibility of an interval B ⊆  are defined as 

 
A B

Bel(B) m(A)
⊆

= ∑  (3) 

 
A B

Pl(B) m(A)
∩ ≠∅

= ∑  (4) 

It is obvious that Bel(B) ≤ Pl(B) because A ,A B A B≠∅ ⊆ ⇒ ∩ ≠∅ . Bel(B) and 
Pl(B) can be interpreted as bounds on the probability p(X∈B). Informally, the belief 
function represents the maximal value that we despite all epistemic uncertainty “be-
lieve” to be smaller than p(X∈B), the plausibility function represents the highest 
“plausible” value of p(X∈B). Belief and plausibility will be used to display a Demp-
ster-Shafer structure. For our use it is adequate (but not necessary) to restrict focal 
elements to intervals [ ]A a, a=  rather than more compli-
cated sets. 

4.2 Data representation 

Expert estimations can be transformed to a bpa by mapping 
the ratings to mass values. The intervals estimated by the 
user are interpreted as focal elements. Let n be the number of 
intervals 1 nA … . A function : {1,...,10} [0,1]φ →  assigns to 
each rating ir , i 1 n∈ …  of an expert estimate a value i(r )φ  as 
defined in Table II. The mass of a focal element iA  is then 
defined as: 

Table II: Ratings and 
their respective Φ-values. 

Rating r Φ(r)
10 0.99

9 0.9
8 0.8
7 0.7
6 0.58
5 0.42
4 0.3
3 0.2
2 0.1
1 0.01  
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 i
i n

j
j 1

(r )m(A )
(r )

=

φ=
φ∑

 (5) 

In case of estimating failure times, the estimate now already describes a failure func-
tion. If templates are used, then we deal with an uncertain statistical property that has 
to be propagated through the template function. 

4.3 Data aggregation using the Dempster-Shafer theory 

There are many ways of combining different sources of evidence to a joint bpa [10]. 
Probably the most famous is Dempster’s rule of combination which combines evi-
dence assuming all sources include the correct value. According to Dempster’s rule, 
the aggregated bpa is given through: 

 
1 1 2 2

A A A1 2
DP

m (A ) m (A )
m (A)

1 K
∩ =

⋅
=

−

∑
 (6) 

 1 1 2 2
A A1 2

K m (A ) m (A )
∩ =∅

= ⋅∑  (7) 

Dempster’s rule has the big disadvantage that only pieces of evidence are regarded 
which are agreed by all sources. If at least one source is faulty and/or there is no in-
tersection between both sources, Dempster’s rule is not reasonable or even applicable. 
In addition there is no possibility of weighting the importance of expert estimations. 
Not fulfilling two of the given requirements, this renders Dempster’s rule unapplica-
ble for our case. Therefore we propose the weighted mixture method [10] which is an 
extension of the linear opinion pooling [11] for Dempster-Shafer structures. All focal 
elements are combined into one structure and their mass is weighted by the weights 

1 nw …  which were determined from the competence values using the Φ-mapping (Ta-
ble II). 

 
n

i ii 1
mix n

ii 1

w m (A)
m (A)

w
=

=

= ∑
∑

 (8) 

For the mixing of data from different sources and component types, a conversion to 
the same format is necessary. The templates produced Dempster-Shafer structures by 
the outer discretization method [9] with a minimal mass resolution of m(A) ≥ 0.01. 
Higher resolutions are not feasible because of the huge amount of computation time 
and the low data accuracy. 

Statistical characteristics of the mixed failure distributions of the ALDURO hip com-
ponents (belief and plausibility) are given in Table III, the failure cumulative distribu-
tion function of a servo valve is shown in Figure 4. 
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4.4 Calculation of the system function 

The system reliability calculation is performed by the minimal cut set method [12]. 
The failure mass function mΘ  of a minimal cut set 1 n{C ,...,C }Θ =  is calculated 
from the component mass functions 1 nm ...m  as: 

 
1 1 1 1 1 n n n n n

n

1 n 1 n i i i
i 1

[a , a ] : m ([a , a ]) 0, ,[a , a ] : m ([a , a ]) 0 :

m ([max(a ), max(a )]) m ([a , a ])Θ
=

∀ > >

=∏… …

…
 (9) 

The system failure mass function Sm  then results from the minimal cut set masses 

1...nmΘ  as: 

 
1 1 1 1 1 n n n n n

n

S 1 n 1 n i i i
i 1

[a , a ] : m ([a , a ]) 0, ,[a , a ] : m ([a , a ]) 0 :

m ([min(a ), min(a )]) m ([a , a ])

Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ

Θ Θ Θ Θ Θ
=

∀ > >

=∏… …

…

 (10) 

Belief and plausibility of the system reliability are given in Figure 5. As the compo-
nent failure distributions were highly uncertain, it would be window-dressing to ex-

Table III: Reliability statistics of hip components and hip subsystem. 

MTTF Median TTF 95% conf. 75% conf. 25%. conf. 5% conf.
Cylinder [2224h, 12464h] [1568h, 8543h] [18h, 2362h] [643h, 5938h] [2856h, 13656h] [6664h, 40981h]
Pressure 
sensor

[97771h, 
108000h]

[64574h, 
66514h]

[1903h, 
9361h]

[24450h, 
26779h]

[131684h, 
135443h]

[276023h, 
292554h]

Linear sensor [386943h, 
847569h]

[261533h, 
538598h]

[12182h, 
32654h]

[104533h, 
219524h]

[523625h, 
1077431h]

[1063172h, 
2249476h]

Servo valve [11020h, 21400h] [4164h, 17456h] [116h, 2913h] [1374h, 8655h] [18108h, 26097h] [34985h, 55243h]
Amplifier [3375h, 10583h] [3002h, 8078h] [142h, 4083h] [1199h, 6407h] [5029h, 11591h] [7427h, 24036h]
Ball joints [1816h, 6614h] [1589h, 5031h] [71h, 2552h] [630h, 3983h] [2649h, 7457h] [3937h, 13674h]

ALDURO Hip 
subsystem

[441h, 3505h] [319h, 3430h] [<10h, 429h] [125h, 2443h] [635h, 4370h] [1129h, 6131h]
 

 
Figure 4. Failure cdf over time (in hours), servo 
valve. 

 
Figure 5. Reliability over time (in hours), 
ALDURO hip. 
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pect certain system reliability values. This is reflected by the broad difference be-
tween belief and plausibility. MTTF, Median TTF and some confidence rates are 
listed in Table III. 

5 Design optimization 

The design optimization for reliability is modeled as a multi-objective optimization 
problem by defining a mapping from the space of all possible (or interesting) designs 
x ∈ X to the objective space y ∈ Y defining several objective values that describe the 
properties of the system like cost and reliability. 

 f : X Y→  (11) 

 
1

n

y
f ( )

y

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜= = ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
x y  (12) 

We choose the optimization of the ALDURO hip as a fictive example. The goal is to 
maximize the system Mean Time To Failure MTTF(x) while minimizing the system 
costs CS(x) which are computed as the sum of all component costs. This is expressed 
as a maximization problem. 20000 – CS(x) is used to map the system costs to a 
maximization objective. 

 
MTTF( )

f ( )
20000 CS( )

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠−
x

x
x

 (13) 

The main difference to standard multi-objective optimization problems is the property 
of the objective values to be uncertain themselves. In this approach, the quantity 
MTTF(x) is uncertain and can only be described via belief and plausibility values. 

Two general multi-objective optimization approaches should be separated: 

• The aggregation approach (a priori decision) where a function is defined that 
maps the objective space Y to a total ordered space (most common the real 
line): u : Y → . u has to be defined before the start of the optimization proc-
ess and thus some extra problem knowledge is needed. 

• The Pareto (or a posteriori) approach where u is not defined. The only criterion 
used is the vector dominance which is a partial order and allows a whole set of 
so-called Pareto optimal solutions. Decisions between this optimal solutions are 
afterwards left to the user. 

Definition 4: A vector n∈y  Pareto dominates another vector n' ∈y  ( p 'y y ) 
if: 

 i ii 1...n : y y '∀ ∈ ≥  (14) 
 i ii 1...n : y y '∃ ∈ >  (15) 
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The Pareto relation relies on the total order inside the dimensions of the element vec-
tor. But what if the results of f are uncertain values, represented as intervals. In our 
case, the objective function changes to: 

 
[Bel(MTTF( )),Pl(MTTF( ))]

f (
20000 CS( )

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠−
x x

x)
x

 (16) 

One of our premises has been that we do not know which distribution describes the 
epistemic uncertainty. Therefore it is difficult to define an aggregation function which 
maps the interval [Bel(MTTF(x)), Pl(MTTF(x))] to a total order. We can diversify 
between three cases: 

1. MTTF(x)=[10000h,15000h] and MTTF( x' )=[6000h,8000h]: x is certainly more 
preferable than x' . 

2. MTTF(x)=[10000h,15000h] and MTTF( x' )=[ 8000h,12000h]: x could be more 
preferable than x' . Either we could leave the choice to the user or infer that x is 
more preferable than x'  because its belief and plausibility values are higher. 

3. MTTF(x)=[10000h,15000h] and MTTF( x' )=[12000h,14000h]: There is no ob-
vious way to decide if x or x'  is better and we should leave the choice to the 
expert afterwards. 

The first example is the ideal case where we can make a certain decision. In the third 
case it is difficult to make any decision without additional knowledge about 
MTTF(x). The second case is the critical one. Both belief and plausibility values are 
higher, but we can not decide without the danger of an error. But for any monote ag-
gregation function f (Bel(MTTF( ),Pl(MTTF( )) : × →x x , x would be superior. 
Therefore, we stated that the optimization algorithm should make a decision in favor 
of x. 

The straightforward way to map this ideas to a standard multi-objective optimization 
criterion is to interpret [Bel(MTTF(x)), Pl(MTTF(x))] as two independent objective 
functions and use Pareto-based optimization: 

 
Bel(MTTF( ))

f ( ) Pl(MTTF( ))
20000 CS( )

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ −⎝ ⎠

x
x x

x
 (17) 

If we apply Pareto-based optimization methods like the popular algorithms SPEA2 or 
MOPSO [13, 14], we yield a choice of nondominated solutions where the user can 
select his favourite design. All algorithms maintain a bounded repository where the 
currently found nondominated solutions are kept. Problems arise if there are more 
nondominated solutions than the user could handle. Solutions in the repository also 
influence the optimization progress. Therefore it is of importance to keep the reposi-
tory as small as possible without omitting interesting solutions. There may be thou-
sands of nondominated solutions at a time. Thus, the algorithm has to select which 
are the best to keep. Each of the listed algorithms encloses a different strategy to de-
lete solutions if their number exceeds the repository bounds while preserving diver-
sity of the solutions kept in the repository. 
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But maximal diversity may not be the goal of the a posteriori decision maker. She 
may be much more interested in a high density of solutions in some regions of the 
objective space while not omitting that other regions may also include interesting 
designs. We present a method to set a priori preferences for certain objective func-
tions that bias the optimization process to the desired objective space regions extend-
ing the adaptive hypercube repository [15]. 

The adaptive hypercube strategy for real objective values is based on the histogram 
technique. The objective space occupied by individuals in the repository is separated 
in hypercubes n

i , ,i1 nh ⊆… . The covered space of a cube is: 

 

( ) ( )

( ) ( )

j , , j1 n

1 1
1 1 1 1 1 1

n n
n n n n n n

h

j 1 jmin max min , min max min
c rep c rep

j 1 jmin max min , min max min
c rep c rep

=

⎡ ⎤⎛ ⎞− ⎟⎜ + − + −⎢ ⎥ ⎟⎜ ⎟⎜ ⎢ ⎥ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎡ ⎤− ⎟⎜ ⎟+ − + −⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

… (18) 

where imin  and imax  are the minimal/maximal values of objective i regarding all 
solutions in the repository with size constraint |rep|. The constant c [0,1]∈  controls 
the number of cubes. It represents a selection pressure in favour of solutions in re-
gions with low density. Each solution y receives a deletion fitness which is computed 
as the number of solutions sharing the same hypercube. The cubes are updated every 
algorithmic iteration (generation). 

Our extension uses adaptive priority cubes, hypercubes that are not of uniform length. 
Desired regions of the objective space are covered with a high cube density while 
uninteresting regions contain much fewer cubes. Objective priorities are determined 
by raw priority values 1 nP ∈…  which the user defines to describe the proportion of 
an objective’s importance. She chooses an arbitrary value Pj for one of the objectives 
yj and the rest by mapping expressions like “Objective yi is r times (double/half/…) as 
important as yj” to i jP r P= ⋅ . From this raw priority values, priority indices 

1 np ∈…  are generated to create the hypercubes. 

345 350 355 360 365 370 375 380 385 390 395

4550

4600

4650

4700

4750

4800

4850

4900

4950

Bel(MTTF)

Pl
(M

TT
F)

 
Figure 6. Optimization results, priority on 
Bel(MTTF). 

345 350 355 360 365 370 375 380 385 390 395

4550

4600

4650

4700

4750

4800

4850

4900

4950

Bel(MTTF)

Pl
(M

TT
F)

 
Figure 7. Optimization results, priority on 
Pl(MTTF). 
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j 1 jmin max min ,min max min
c rep c rep

j 1 jmin max min ,min max min
c rep c rep

=

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− ⎟⎜ ⎢ ⎥⎟ ⎟⎜ ⎜ ⎟+ − + −⎜ ⎟ ⎟⎜ ⎜ ⎟⎜ ⎟ ⎟⎢ ⎥⎜ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎡ ⎤⎜ ⎛ ⎞ ⎛ ⎞− ⎟⎜ ⎢ ⎥⎟ ⎟⎜ ⎜+ − + −⎜ ⎟ ⎟⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠⎜⎝ ⎠⎢ ⎥⎣ ⎦
⎟⎟⎟⎟

(20) 

The resulting cube lattice is warped (Figure 6 and Figure 7). Therefore solutions with 
high values of the preferred objective may cluster much denser without raising their 
deletion probability. 

Five different choices were possible for each component. Beside the original part 
with its real costs, four fictive variants with different characteristics were defined. 
They vary both in their MTTF and costs. Due to the combinatorial nature of the prob-
lem, the overall number of possible designs exceeds 1014. Two exemplary optimiza-
tion runs with the component choice listed in Table IV were carried out. The first 
optimization aims on maximizing belief and plausibility of the system MTTF while 
the second run introduces a third 
dimension (cost). A multi-objective 
evolutionary algorithm with a 
population size of 20 optimized the 
system over 100 generations (2000 
tested systems). Crossover prob-
ability was set to 0.9, mutation 
probability to 0.1 and selection 
pressure c to 0.25. 

Figure 6 and Figure 7 show the 
nondominated set of solutions with 
a repository size of 20. In Figure 6, 
Bel(MTTF) was priorized higher, 
in Figure 7 Pl(MTTF). It could be 
seen how most of the solutions 
cluster in regions with high values 
of the priorized objective. Never-
theless the nondominated set cov-
ers a large region of the objective 
space leaving a broad choice of 
systems to choose from. Figure 8 
shows the optimization results in 
the three-objective case with prior-
ity on the system costs. The reposi-
tory size was set to 50 as the num-
ber of optimal solutions increases. 

Table IV: Component variants. 

Component Variant MTTF (Bel/Pl) Template Costs
Original [2224,12464] Aggregated 2000

2 [4000,7000] Hydraulics 2200
3 [2000,12000] Hydraulics 1500
4 [5000,5500] Hydraulics 1800
5 [3000,10000] Hydraulics 1600

Original [97771,108100] Aggregated 570
2 [70000,120000] Electronics 600
3 [90000,110000] Electronics 480
4 [80000,115000] Electronics 520
5 [75000,118000] Electronics 650

Original [386943,847569] Aggregated 250
2 [8000,25000] Hydraulics 280
3 [14000,19000] Hydraulics 240
4 [10000,21000] Hydraulics 260
5 [11000,20000] Hydraulics 300

Original [11020,21400] Aggregated 1000
2 [8000,25000] Hydraulics 1200
3 [14000,19000] Hydraulics 890
4 [10000,21000] Hydraulics 950
5 [11000,20000] Hydraulics 1050

Original [6495,20685] Aggregated 210
2 [8000,15000] Electronics 240
3 [10000,12000] Electronics 220
4 [9000,12500] Electronics 190
5 [8000,14000] Electronics 200

Original [1816,6614] Aggregated 230
2 [8000,15000] Electronics 250
3 [10000,12000] Electronics 210
4 [9000,12500] Electronics 240
5 [8000,14000] Electronics 235

Amplifier

Ball joints

Cylinder

Pressure 
sensor

Linear 
sensor

Servo valve
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Both 20 and 50 candidate systems are a number The diversity of the solutions from 
systems with low costs to systems with high costs and high MTTF allows to select 
between cheap and high-quality solutions. Due to the clearness of the plot it was not 
possible to draw the hypercube grid, but nevertheless it could be seen that the solu-
tions cluster in regions with high cost values. At this point, the engineer could select 
which of the design she would prefer. From a huge amount of alternatives, a choice of 
20-50 designs are left, most of them with the characteristics she claimed as important. 
Other solutions with different characteristics that she didn’t thought before are also 
proposed, which would never be possible in an a priori approach. 

6 Conclusion and outlook 

This work shows that the Dempster-Shafer theory is a well-suited framework for reli-
ablity analysis in early design stages. It was demonstrated how data uncertainty can 
be preserved and propagated during the whole analytical process. The design optimi-
zation algorithm enables the user to define his objective priorities and afterwards 
comes up with a set of solutions meeting his demands. From over 1014 system vari-
ants, 20 are preselected reflect a wide range of characteristics. Our further research 
will include ways to specify, store and aggregate uncertain failure characteristics in 
early design stages received from experts, previous experiences and other sources. 
This knowledge should then be used to influence the design process as outlined in our 
work.       
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