A multiobjective genetic algorithm for portfolio
selection problem'

Dan Lin*"* and Shouyang Wang®
“Institute of Systems Science, Academy of Mathematics and Systems Science
Chinese Academy of Sciences, Beijing 100080, P.R.China
®Department of Mathematics, Tianjin University, Tianjin 300072, P.R.China

lindan@iss04.iss.ac.cn swang@iss04.iss.ac.cn

Hong Yan
Department of Management, The Hong Kong Polytechnic University, Kowloon,
Hong Kong
mshyan@polyu.edu.hk

Abstract

A mean-variance models is proposed for portfolio selection with fixed
transaction costs and minimum transaction lots. The portfolio seleciton
problems are modeled as a non-smooth nonlinear integer programming
problem with multiple objective functions. A new genetic algorithm based on
NSGA-II and Geconop is designed to solve the proposed models. It is
illustrated via a numerical example that the genetic algorithm can be used to

solve portfolio selection problems efficiently in practice.

Keywords: Portfolio selection; Mean-variance model; Transaction costs;

Minimum transaction lots; Genetic algorithm

1. Introduction

The mean-variance (MV) methodology originally proposed by Markowitz (1952) has

been playing a crucial role in the theory of portfolio selection and also gained

widespread acceptance as a practical tool for investment analysis. The classical

! This work was supported by Chinese Postdoctoral Funds, NSFC, MADIS , CAS and CERG Research Grant B-
Q343.
% The corresponding author.

formulation of Markowitz’s model for portfolio selection is a quadratic programming
problem with a positive semidefinite matrix which is solvalbe in polynomial time.
However, when taking into account a practical situation such as fixed transaction costs
and/or minimum transaction lots (or minimum lots for simplicity), portfolio selection
becomes more complicated because the model is a mathematical programming problem
with mixed-integer variables and nonlinear objectives.

A number of authors have discussed the transaction costs in portfolio optimization
e.g., Mao (1970), Pogue (1970), Chen, Jen and Zionts (1971), Jacob (1974), Levy
(1978), Patel and Subhmanyam (1982), Mulvey and Vladimiron (1992), Dantzig and
Infanger (1993), Gennotte and Jung (1994), Yoshimoto (1996), Li , Wang and Deng
(2000). Most of them incorporated the transaction costs into the single-period or multi-
period portfolio selection models. It is generally believed that an optimal portfolio
selection problem with fixed transaction costs is a complex mathematical programming
problem. Because of the complexity, the convex quadratic programming technique
cannot be applied to solve such a problem (Yoshimoto 1996).

Very recently some authors included minimum lots into portfolio selection problems
(Speranza 1996, Kellerer et al. 1997, Mansini and Spernza 1999, Konno and
Wijayanayake 2001), while some of them considered transaction costs at the same time.
It was shown that a portfolio selection problem with minimum lots and without any
fixed costs is an NP-complete problem (Mansini and Speranza 1999), so a few
heuristics have been developed and shown to be quite effective for solving a problem
with minimum lots.

The genetic algorithms (GAs) were growing in popularity over the last few years. GA
is a stochastic, heuristic technique based on the natural selection principle, and it does
not need specific information to guide the search. Therefore, the GA can be applied in a
wide variety of domains. A comprehensive discussion on GAs can be found in Holland
(1975), Goldberg (1989) and Béck ef al. (1995).

Since the mid-eighties of the last century, multi-objective genetic algorithms
(MOGAs) have been greatly developed to solve multi-objective scientific and
engineering problems (Coello 1999, van Veldhuizen 2000). Till to date, most of the
successful genetic type implementations for multiobjective optimization rely on the
concept of nondomination firstly proposed by Pareto, and among them are Niched-
Pareto-GA(NSGA) (Srinivas and Deb 1994) and its new version NSGA-II (Deb et al.
2000).

As a “Black-box™ search algorithm, MOGA can deal with the multiple optimization

problems with non-smooth and even non-continuous objective or constraint functions.
Furthermore, being a population-based technique, it makes possible to lead to the
efficient front in a same evolution run.

In this paper, we will propose a model for portfolio selection with fixed transaction
costs and minimum lots(ML). A NSGA-II based heuristic is designed to solve these two
models. The paper is organized as follows. In Section 2, we formulate the models. A
genetic algorithm is designed in Section 3. Computational results are given in Section 4.

Finally, a few concluding remarks are made in Section 5.
2. Model

The portfolio selection model with fixed transaction costs and minimum lots based
on a different risk measure was firstly introduced by Kelererer et al. (1997). In this
section, we will present a new portfolio selection model with fixed transaction costs
and minimum lots in a traditional mean-variance framework.

First we introduce some notations. We denote by S the set of securities in which

the investor intends to invest a capital C, and suppose that C is fixed to range between
rangeC, and C,, i.e. between the minimum and the maximum amount of money

available for the investment. Let s = |S| be the number of the securities. Let 7, be the
random rate of return on security i, where i€ S . Suppose that all the securities in
S must be acquired in multiplies of a minimum transaction lot. Let N, be the minimum
transaction lot of security ;. The quantity d, represents the proportional cost associated
with security j, and p, represents the quoted price of security j at the time of its
acquisition on the market. We denote by ¢, the purchasing price for the minimum lot of
security j. For each security, the minimum lot is expressed in terms of money and is
equivalent to ¢, = N P, Thus, a portfolio can be represented as & = (%,....,k,), where
k, represents the multiple minimum lots of security j in the portfolio. We denote
R, = E(r;) the expected rate of return on security i, and o, = cov(r,,r,) the covariance
between 7, and r,. For security j €S, we impose a maximum amount of capital which
can be invested in it, denoted by u,. Consider the case in which the investor is obliged

to pay the corresponding fixed cost f, when security jis chosen in a portfolio, and the

fixed costs are supposed to be incurred at the end of the period and are deduced from the
portfolio return. Hence, the net expected return R(x) of a portfolio £ can be written as

Rx)=Q (R, —d ek, -> f,z)/C,

Jjes Jjes

where C = ZC»,xj is the total sum of capital invested in the portfolio and z, isa 0-1
Jjes

variable taking value 1 if and only if k£, > 0. The variance V'(x) is

Vx) =YD 0,55,

ieS jeS

where y, = (k,c,)/C is the fraction of the capital C' invested in security ;.

The portfolio selection model with fixed transaction costs and minimum lots
proposed in this paper is a two objective programming problem. The problem can be

stated as follows:

minimize (-R(k),V (k))
subject to
(P1) Cy <Y ek, =C<C, (1.1)

Jjes

0<ck, <u, (1.2)
z, €{0,1}
forall je S

A portfoliok = (k,....,k,) is said to be feasible to (P1) if it satisfies all the constraints
of (P1). A feasible portfolio &~ is said to be efficient if it is Pareto-optimal solution to
(P1), i.e., there exists no other feasible portfolio k such that R(k)>R(k).
V(k)<V (k") with at least one strict inequality. The set of all the efficient portfolios is

called the efficient frontier of (P1). In GA community, the solutions are traditionally
called as chromosomes.

The fixed transaction costs may take on different forms. One model is proposed in
Kellerer ef al. (1997) where the fixed cost is charged if the sum of money invested in the
individual security exceeds a bound, represented by the parameter M1, and otherwise no
such cost is imposed. Another example is of more reality because at the Japanese stock
market where different amount of fixed transaction cost is imposed according to the
total amount of investment capital (Yoshimoto 1996). Mathematically the fixed
transaction cost function can be plotted as a step function with two or more constant
values.

Some attentions paid to the portfolio selection models with fixed transaction costs

and minimum lots. When the fixed transaction cost is of the type as a step function with
two values, the problem (P1) can be transformed into a mixed-integer programming
problem by adding an additional constraint and then the linear programming based
heuristics MILP (Mansini and Speranza 1999) can be used to solve the problem. But for
a step function which takes more than two values, this approach will encounter
difficulties. In Yoshimoto (1996), although the multi-value step function typed fixed
cost was discussed, the classical V-shaped transaction cost function was considered for
calculations instead. Kanno and Wijayanayake (2001) considered the portfolio
optimization problem with convex transaction cost function and minimum lots. A
branch and bound algorithm was used to calculate the optimal solution (not integers in
general). The solution is rounded to the nearest solution to satisfy the minimum lots
constraint. In all the above methods, the risk and return measure functions are chosen in
linear forms so that some linear programming algorithms can be applied. But for our
model (P1) with quadratic risk terms, those methods do not work.

There are two types of constraints in (P1): the constraint (1.1) of the amount of
invested capital and the bound constraint (1.2). Constraint (1.1) implies that a fund will
be nearly fully invested to insure fully investment, like the constraint Zx,. =1 in
classical M-V models, while (1.2) implies that short sales and borrowings are not
allowed and a maximum amount of capital is imposed on each security.

Because finding a feasible solution tothe model (P1) is NP-hard (Mansini and

Speranza 1999), it is significant to design some heuristic algorithms to solve (P1).

3. Genetic algorithms

GAs have been used for solving portfolio selection problems. Chang et al. (2000)
extended the classical M-V model to include cardinality constraints and useed GA as
one heuristic algorithm to find the efficient frontier. However, neither transaction costs
nor minimum lots is considered. In Xia ef al. (2000), GA is used to solve an extended
M-V model with ordered expected returns. A V-shaped transaction cost function is
considered there.

In Vedarajan et al. (2000), NSGA is used to calculate the efficient frontier of a
simple portfolio that consists of five stocks. The efficient frontier can be yielded in just a
run of the GA simulation, and the result seems very promising. A V-shaped transaction
cost function is considered, but no minimum lots constraints have been taken into
account..

In our previous work (Lin et al. 2001), we use a GA to solve the portfolio selection

and a similar portfolio revision model. Through scalar weighting, these two objective
functions are combined into one scalar function. The proposed GA is quite similar to the
GA which will be described in 3.1.

NSGA was originally proposed in Srinivas and Deb (1994), and recently Deb et al.
(2000) proposed an improved version of NSGA called NSGA-II. From the simulation
results of the NSGA-II on a number of difficult test problems, quite good performance
has been observed. For the details of an NSGA-II algorithm, one can refer to Deb et al.
(2000).

3.1 GA based on NSGA-II

In this section, we will design a genetic algorithm based on NSGA-II to solve
problems (P1). Because (P1) includes constraints of discrete variables, some
components of NSGA-II should be revised and a new mutation operator will be used.
Since a detailed description of the GA will occupy too much space, in the following we
will only discuss the representation structure, initialization process, cross and mutation
operators, which are different from those of NSGA-II.

Representation structure: When using NSGA, one is allowed to choose binary or real-
coded representation. The binary representation traditionally used in GAs has some

drawbacks when it is applied to the integer programming problems ((P1) and (P2). For
example, if for some security i the k, is within [0,100], then it is difficult to use a fixed

length binary chromosome to exactly represent all the integers lying within [0,100]. A
binary chromosome with length of 6 can represent all the integers in [0,63], while a
binary string of length 7 represents the integers in [0,127]. Even if one could manage to
deal with that, treating constraints in (P1) and (P2) would be a tough task. Adopting the
idea of real-coded representation used in GAs for mathematical programming problems
with real variables (Baeck er al. 1995), we will represent a solution by the integer

implementation in which each chromosome is coded as a string of integer numbers
k=(k,....k),
and each x lies in the range|0, upper(i)], where upper(i) =[u /c | for each i € S'. Here

[] denotes the truncation function. This promises that the boundary constraint (1.2)
holds for every i € S .
Initialization process: As will be remarked later, in NSGA-II, there is no need to treat

the constraint (1.1) separately. Thus attention will be paid to keeping the solutions from

the initialization and throughout the whole simulation process to satisfy the boundary

constraint (1.2). For doing that, we generate random integer k, €[0,upper(i)] for each
ieS, and then an initialized solution k =(k,,....k) is generated. Repeat it for

pop _size times, where the parameter pop size is the number of the population of

chromosomes. Then the initialized population is generated.

Crossover operator: In NSGA-II, SBX crossover (Deb and Agrawal 1995) operator is
used for real-coded representation chromosomes. In order to make it suit for our integer-

coded representation chromosomes, we suggest a tiny revision to it as follows. After
each time the crossover process happens, every variable x, (not an integer value in

general) of the children solution will be made to take an integer value k, according to the

following form

. {[x,]or [x, +1] randomly, if [x,]+1< upper(i) G.0)

upper(i), else
Here again, &, will be in the range [0, upper(i)] .

Mutation operator: The Parameter Based Mutation (PM) Operator used in NSGA-II can
be modified through truncating to suit for our integer-coded representation

chromosomes in the similar way. It works as follows: for a parent chromosome
k =(k,,....k,), if for some i,1<i<s,k has been chosen to be mutated, it can be

mutated into x by using the traditional PM operator for real coded value. Then x is

truncated to a integer k, by (3.1).

The main loop and other key issues of the GA are the same as that of NSGA-II.
There are two features of NSGA-II and the proposed GA. For the constraint (1.1), any

possible solution k£ to (P1) which satisfies (1.2), the measure of the constraint violation
g(k) with regard to constraint (1.2) defined as

0, if Co<C<Cl
g(x)=1 CO-C, if C <CO (3.2)
C-Cl, if C > Cl.

Obviously, a solution is feasible if an only if g(x)=0. By guaranteeing that (1): a

feasible solution is always better than an infeasible solution and (2): an infeasible
solution with a small g(x) is always superior to an infeasible solution with a large g(x),
an tournament selection method and elitism strategy (Deb et al. 2000) implemented in
NSGA-II is able to find and keep feasible solutions in the population quickly and
efficiently.

Besides it should be mentioned that since the GA does not utilize any particular
properties of the objective functions such as linearity, convexity or differentiability, the
fixed transaction cost with multi-value step function does not add any difficulty to
calculation of the objective values.

For simplicity, we will call the GA proposed above GA1.

3.2 GA based on NSGA-II and Genocop

When using GA1 to solve (P1), there still exists a drawback for its genetic
operators. As the constraint (1.1) is hard to satisfy, the genetic operators can not
guarantee the feasibility of any children even the parents all feasible. So many infeasible
individuals are generated in the evolution and quite a lot of computation effort has been
wasted. In the preliminary work of this paper, the investigation shows that preserving
the feasibility of individuals is of great importance to improve the efficiency of GA (Lin
etal. 2001).

The Genocop (for GEnetic algorithm for Numerical Optimization of COnstrained
Problems) system (Michalwicz ,1998) assumes linear constraints only and a feasible

starting point (or feasible initial population). A closed set of operators maintains
feasibility of solutions. For example, when a particular component x, of a solution

vector X =(x,,...,x,) is mutated, the system determines its current domain dom(x)
(which is a function of linear constraints and remaining values of the solution vector X)
and the new value of x is taken from this domain by using some mutation operator.
The offspring solution vector is always feasible. Genocop 4.0, the fourth version of
Genocop system, handles also integer and Boolean variables. Uniform, boundary, non-
uniform and whole non-uniform mutation operators, as well as whole arithmetical,

simple arithmetical and heuristic crossover operators are used.

As in (P1) there are only linear constraints, Genocop 4.0 will also work here. But it
deserves more consideration about the constraint (1.1). Although it takes on a form of an
inequality, it is essentially an equality constraint to ensure the total investment. For a
feasible individual & =(k,.k,.....,k,) which satisfies constraint (1.1), when, say k, is
chosen to be mutated when using uniform mutation operator, &, can uniformly takes an

integer value from the range

CO_ZkIpI Cl_zklpi
[=2, = ——1N[0,upper(1)]
P P

When the constraint is tight, i.e., (C;, —C,) is small, &, can hardly been mutated into

different values, especially in the case of large minimum lots. This eventually

undermines the search power of mutation operators dramatically.

Based on the above discussion, now we are able to present a GA which combines
the ideas of GA1 and Genocop and can preserve the feasibility of all solutions generated

within the whole evolution generations. We call the new GA GA2 .

The main specific components of GA2 different from GA1 can be described as
below:
Initialization process: When implementing Genocop, it requires that all individuals in
the initial population are feasible. However, as mentioned above, finding feasible
solutions to (P1) under the constraints is a NP-hard problem. As a good heuristic to
solve such a constrain satisfaction problem, GA can be used to find the feasible
individuals.

All feasible individuals to (P1) are solutions to the following single objective

problem:
minimize g° (k)
subject to
(P2) 0<ck <u,
forall j€S.

Viewed as a special case of the multi-objective optimization problems, (P2) can also be
solved by using GA1. The run will be terminated until all individuals in the population
are all feasible and this population will serve as the initial population for GA2.

Fitness scaling: First we will solve the following two single objective programming

problems
(P3) maximize V(k)
s.t. constraints in (P1)
and
(P4) maximize R (k)

s.t. constraints in (P1)
The solutions to (P3) and (P4) are of global minimum variance and maximum return
respectively, and their fitness value are denoted as (R)and (R).These

two solutions will be inserted into the initial population by substituting two randomly
selected individuals.
Now the fitness function in (P1) will be transformed by scaling and we obtain a new

model (P5)

(P5) minimize ('Rﬂz . V(_kl)/)

mzx min max min

s.t. constraints in (P1).

The purpose of scaling is to eliminate the “range dependent” effect of the rank method
(Bently and Wakefield, 1997). It will not affect the result of dominance comparison of
any two individuals at all, while at the same time it does change the value of the
quantity for density estimation and eventually cause the different rank of the individuals
in the same efficient front (Deb et. al. , 2001).

Constraint handling: In GA2, only the boundary constraint (1.2) need to be considered.
The genetic operators will always keep the individuals satisfying (1.2).

Mutation operators: Instead, we could treat (1.1) as an equality and then extract an
variable as one wish as a non free variable. Without loss of generality, in the following
we will assume that k, has been extracted. For the sub-individual £ =(k,,....k,), when

k, is chosen to be mutated into k;. which belongs to its current domain dom(k,), then

we make k, must satisfy the follow inequalities in addition to the boundary constraint

(1.2):

Cy — p, -upper() =Y pk, <k, -p,<C,=> pk, . (3.3)
i=2 i=2
I?t»[I#j

Thus the inequality

Cy = py -upper(l) < ijki + kll/'pj <G (3.4)
i=2
i#]
holds, and we have
Co =D pk,—k,p, <pk <C =Y pk —kp, (3.5)
i=2 i=2
i#] 1#]

From (1.4) it is easy to see that

s

Co-Y.pk, —k,-p,<p, -upper(l)
i=2
i#]

and

OSCI—Zp,k, —k;pj,
i=2

1#]

10

so at least one integer k, €[0,upper(l)] exists, and the new individual
k' =k, ky,.s k»',.,...ks) is a feasible solution to (P1).

When implementing boundary, uniform and non-uniform operators, only a single

variable of an individual is mutated and the mutation is implemented according to the
process just described. For whole non-uniform operator which mutates all the variables
of the individual, we need to adjust the current value of k; just after each mutation
happened variable by variable.
Crossover operators. The implementation of all three crossover operators is just the
same as Geconop 4.0. When two individuals are chosen to crossover using whole
arithmetical crossover operators, they produce children individuals as in the real-code
situation, then each variable of the children is set to an integer by (3.1) and then two
integer valued children are created. The feasibility of these two children to (P1) are
tested, and they will be accepted if they are both feasible. If not, the two parent will
crossover once more. This process is repeated until two feasible individuals have been
created or the number of trials proceeds a prespecified maximum trial number. Similar
implementations are done to other crossover operators.

We can now summarize the GA based on the SBX and PM genetic operators which

solves the portfolio optimization problems (P2) —(P4) as follows:

Step 0. Input all parameters such as pop _size, crossover probability p, and mutation
probability p,, of all genetic operators, total evolutionary generations gen.

Step 1. Use GAI to solve (p2) to generate the initial population consists of all feasible
solutions to (P1).

Step 2. Use GAI to solve (P3) and (P4) to obtain the global minimum risk and the
maximum return solution, insert them into the initial population. Do fitness
function scaling.

Step 3. Update the individuals in the current population by crossover and mutation
operators.

Step 4. Calculate the scaled fitness values for all individuals.

Step 5. Select the individuals by using the binary tournament selection strategy, carry
out elitism strategy to generate the next generation for evolution.

Step 6. Repeat steps 3 to 5 until the given gen generations.

Step 7. Report the efficient solutions in the final population.

4. Simulation results

4.1. Problem description and GA settings

11

In this section, the proposed GA2 is illustrated by solving (P1) using the data
publically available from OR-Library at http://mscmga.ms.ic.ac.uk/jeb/orlib/portinfo.html. The
data consist of 31 observations of weekly prices for the period from March 1992 to
September 1997 for asset from Hang Seng index. The top six mean returns of these
stocks are 0.0109, 0.0071, 0.0058, 0.0053, 0.0052, 0.0050 respectively. The prices of all
stocks in the last period are randomly generated in the range [10,100].

The minimum lots ML is set to be 100 or 1 when purchasing and selling stocks. In
constraint (1.1), C, =1,000,000 and C, =1,00,5000. For each security ie S, u, =0.4

or 1. Denote by C the amount to be invested in stock i, the proportional transaction
costs P(C) and fixed transaction costs /'(C) are defined as

P(C)=0.0115C, F(C)=0

if C <10,000
P(C) =0.009C, F(C) =25

if 10,000 < C < 50,000
P(C)=0.007C, F(C) =125

if 50,000 < C <100,000
P(C) =0.00075C, F(C) =785

if C >100,000

These settings are rather arbitrary for our purpose of this section is merely to test
the efficiency of the proposed GA for model (P1).

To solve (P1) when using GA1 in step 1 and 2, we let the probability of crossover
P. be 0.95 and the probability of mutation P, be 1/(chromosome length) as proposed

in NSGA-II. pop size=200in both steps, and gen =100 and 1500 in step 1 and 2
respectively. For step 3 to 5, pop_size =200 and gen=3000. P.=0.4 for all

crossover operators and P, = 0.2 for all mutation operators.

4.2. Computational results

In all simulations, GA1l can always attain a feasible population within 50
generations. The NP-hard problem for finding feasible solutions has not been cause
difficulties to GA.

The solid lines in all the following figures are the efficient solutions for the classical
Markowitz M-V model in the return-risk plane. These efficient frontier values are

provide in the data set we used. In some sense, they can serve as benchmark.

The efficient frontier obtained when using GA2 for (P1) with ML =1 and u, =1

12

and without transaction costs is shown in Figure 1. As ML =1 is the smallest
transaction lots as possible while u, takes the largest possible value 1, in this case (P1)
is the most accurate approximation of the M-V model. In Figure 1 we can find that the
efficient solutions obtained almost exactly lies in the efficient frontier for M-V model.
This fact proves the efficiency of GA2.

We also solve (P1) without changing any settings except for omitting fitness scaling
implemented in step 2. Figure 2 shows that the distribution of the obtained solutions
composing the efficient frontier is less even than that in Figure 1 for the part when the e
return of the solutions is relatively high. Similar phenomena occur in other simulations
of which the results are not presented here. We can draw a conclusion that the efficiency

of GA2 always been undermined without fitness scaling.

Return

Fehum

i =

s 15 2 25 3 a5 4 45 5 :-:-1- ! T I :I1- :- N : JI1- L
Risk w10? Rizk . 1ft
Figl. GA2 for (P1) with fitness scaling, Fig2. GA2 for (P1) without fitness
ML =1,u; =1, without transaction scaling, ML=1, u; =1,
without transaction costs without transaction costs

The results for u#, =0.4and ML =1 are shown in Figure 3. We can see that by

investing in more stocks, the maximum risk has decreased significantly. Once more the

efficiency of GA2 can be proven from the coincidence of these two frontiers.
In Figure 4, the obtained frontiers with u#, =0.4and ML =1 and with and without
transaction costs are plotted for comparison. Although we lack benchmark to test the

quantity of the solutions where transaction costs are considered, we have faith in it.

Figure 5 and 6 show the results corresponding to those in Figures 3 and 4 while
u; =0.4 and ML =100, and the results are quite similar.

13

= c
5 5]
] kol
[n o
| '
N 4+ GA2
2 i i i ; i ! 2 . L L L L L
05 1 15 2 25 3 35 4 45 5 06 08 1 12 14 16 18 2
Fisk w 10'3 Risk X107
Fig3. GA2 for (P1) with ML =1, Figd. GA2 for (P1) with ML =1,
u; = 0.4 , without costs u; = 0.4 , with and without costs
=10 x10°
1" T T T T T T T T 10 T T T T T T
I—-'-'_'_'_
-
1a L
P 2 8l B
8 -~ W
®0®
P o ¢
& ’
E 7 c 4
g 2
3]
e 4 o
1
i + nocosts
TN O with costs
1 + 2]
neE i ik) a6 2 :13 i 5 [06 08 1 12 14 16 18
RFigk 10 Risk x 10"

Fig5. GA2 for (P1) with ML =100,
u; = 0.4, without costs

Fig6. GA2 for (P1) with ML =100,
u; = 0.4, with and without costs

It is worthwhile to highlight that as GAs are highly parallel algorithms in nature

(Goldberg 1989), it is easy to implement GAs on parallel architectures and the efficiency

can be improved drastically.

5. Conclusions

14

In this paper, we have proposed a new mean-variance model for portfolio selection
with both fixed transaction costs and minimum lots. As the model is a nonlinear,
multiple objectives integer programming problem, we design a GA based on NSGA-II
and Geconop to solve the programming problems. Computational results show that the

proposed GA is a promising tool to solve portfolio optimization problems.

Acknowledgements

The authors would like to thank Prof. Kalyanmoy Deb of Indian Institute Of
Technology Kanpur and Prof. Zbigniew Michalewicz of University of North Carolina

for making their genetic algorithm code publicly available.

References

Baeck, T., Fogel, D.B., Michalewicz, Z., (Eds.), 1997. Handbook of Evolutionary Computation.
Oxford University Press, Oxford.

Bentley, P. J., Wakefield, J. P., 1997. Finding Acceptable Solutions in the Pareto-Optimal Range
using Multiobjective Genetic Algorithms. Chawdhry, in: Roy, P.K., Pant, R.K. (Eds.), Soft
Computing in Engineering Design and Manufacturing. Springer Verlag London Limited, Part 5,
231-240.

Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M., 2000. Heuristics for cardinality constrained
portfolio optimization, Computers and Operations Research 27,1271-1302.

Chen, A.H.Y., Jen, F.C., Zinots, S., 1971. The optimal portfolio revision policy, Journal of Business
44,51-61.

Coello Coello, C.A., 1999. A Comprehensive Survey of Evolutionary-Based Multiobjective
Optimization Techniques. Knowledge and Information Systems 1, 269-308.

Dantzig, G.B., Infanger, G., 1993. Multi-stage stochastic linear programs for portfolio optimization.
Annals of Operations Research 45, 59-76.

Deb, K., Agrawal, R.B., 1995. Simulated binary crossover for continuous search space. Complex
Systems 9,115-148.

Deb, K., Agrawal S., Pratab A., Meyarivan, T., 2000. A Fast Elitist Non-Dominated Sorting Genetic

Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001, Indian Institute of

Technology, Kanpur, India.

Fama, E., 1965. Portfolio analysis in a stable market. Management Science 11, 404-419.

Gennotte, G., Jung, A., 1994. Investment strategies under transaction costs: the finite horizon case.
Management Science 40, 385-404.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, New York, NY.

Holland, J.H.,1975. Adaptation in natural and artificial systems. University of Michigan Press,
Michigan.

Jacob, N.L., 1974. A limited-diversification portfolio selection model for the small investor. Journal
of Finance 29,847-856.

Kellerer, H., Mansini, R., Speranza M.G., 1997. On selecting a portfolio with fixed costs and

15

minimum lots. Working paper at Dip. di Metodi Quantitativi, Universita di Brescia, C.da.S Chiara
48/b, 25122 Brescia, Italy.

Konno, H., Wijayanayake, A., 2001. Portfolio optimization problems under concave transaction
costs and minimal transaction unit constraints. Mathematical Programming 89, 233-250.

Levy, H., 1978. Equilibrium in an imperfect market: a constraint on the number of securities in the
portfolio. American Economic Review 68,643-658.

Li, Z.F., Wang, S.Y., Deng, X., 2000. A linear programming algorithm for optimal portfolio selection
with transaction costs. International Journal of Systems Science 31,107-117.

Lin, D., Wang, S.Y., 2001, A Genetic algorithms to solve portfolio optimization problems with
transaction costs and minimum transaction lots, to be published in Proceeding of Knowledge
Sciences and System Sciences 2001.

Lin, D., Wang, S.Y., Hong, Y., 2001,Genetic algorithms to solve portfolio optimization problems
with transaction costs and minimum transaction lots, submitted to Computers and Mathematics
with Applications.

Mao, J.C.T.,1970. Essentials of portfolio diversification strategy. Journal of Finance 25: 1109-1121.

Markowitz, H., 1952. Portfolio selection. Journal of Finance 7, 77-91.

Masini, R., Speranza, M.G., 1999, Heuristic Algorithms for a Portfolio Selection Problem with
Minimum Transaction Lots, European Journal of Operational Research 114(2), 219-233.

Michalewicz, Z., 1996. Genetic Algorithms + Data Structures = Evolution Programs, 3rd edition,
Springer-Verlag, Berlin.

Mulvey, J.M., Vladimirou, H., 1992. Stochastic network programming for financial planning
problems, Management Science 38, 1642-1664.

Patel, N. R., Subrahmanyam, M. G., A simple algorithm for optimal portfolio selection with fixed
transaction costs, Management Science, 1982; 28:303-314.

Pogue, GA, 1970. An extension of the Markowitz portfolio selection model to include variable
transaction costs, short sales, leverage policies and taxes. Journal of Finance, 25, 1005-1028.

Speranza, M. G., 1996. A heuristic algorithm for a portfolio optimization model applied to the Milan
stock market. Computers & Operations Research 23,433-441.

Srinivas, N., Deb, K., 1995. Multi-objective function optimization using non-dominated sorting
genetic algorithms. Evolutionary Computation 2, 221-248.

van Veldhuizen, D.A., Lamont, G.B., 2000. Multiobjective Evolutionary Algorithms: Analyzing the
State-of-the-Art. Evolutionary Computation 8, 125-147.

Vedarajan, G., Chan, L.C., Goldberg, D., 2000. Investment portfolio optimization using genetic
algorithms, in: Gonnet, GH., Panario, D., Viola, A. (Eds.), Lecture Notes in Computer Science,
vol. 1776. Springer.

Wang, S.Y., Xia, Y.S., 2000. Portfolio Optimization and Asset Pricing. Global-Link Publishers,
Hong Kong.

Xia, Y., Wang, S.Y., 2000. A model of portfolio selection with order of expected returns. Computers
& Operations Research 27, 409-422.

Yoshimoto, A., 1996. The mean-variance approach to portfolio optimization subject to transaction
costs. Journal of Operations Research Society of Japan 39,99-117.

16

