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Abstract:- This paper presents a new algorithm for
learning with neural networks based on multiobjec-
tive performance criteria. It considers three perfor-
mance indices (or cost functions) as the objectives,
which are the Euclidean distance and maximum dif-
ference measurements between the real nonlinear sys-
tem and the nonlinear model (L3, Loo-norms) , and
the complexity measure of the nonlinear model, in-
stead of a single performance index. An algorithm
based on the method of inequalities, least squares
and genetic algorithms is developed for optimising
over the multi-objective criteria. Genetic algorithms
are also used simultaneously for model selection in
which the structure of the neural networks are de-
termined. The Volterra polynomial basis function
network and the Gaussian radial basis function net-
work are applied to the identification of a liquid level
nonlinear system.

INTODUCTION

The learning problem, where an unknown underly-
ing nonlinear function is to be found that maps a
set of inputs to a set of outputs, can be posed as a
function approximation problem. It is well known
that the polynomial and many other approximation
schemes can approximate arbitrary well a continu-
ous function [10]. In recent years, neural networks
have emerged as an alternative [3], but are similar,
to these schemes. Much of the learning with neural
networks is carried out with a single performance
index (or cost function), the most common being
the mean square error or the Lz-norm (Euclidean
distance) of the difference between the underlying
model and the network approximation. This results
in the well known least squares algorithm, chosen of-
ten for its computational simplicity. The assumption
behind choosing the Ly-norm is that the noise in the
process and measurements have Gaussian (normal)
distributions.

A commonly adopted approach where a single per-
formance index, the joint sum of the Ls-norm differ-
ence and some model complexity measure, is opti-
mised avoids the problem of overfitting in a selected
network. This improves generalisation in a chosen
model. However, it does not indicate if the model
approximation is the best that can be achieved.

The problem of comparing several models, such as
Bayesian model selection [9], Minimum Description
Length (MDL) [12], have also been developed. These
procedures allow the selection of the best amongst a
small number of candidate models [9].

In this paper, we extend the above ideas in two di-
rections. Firstly, we define a multi-objective cri-
teria to increase the robustness to learning, where
the mean squared error (Lz-norm), the maximum
error (Lo-norm) and a model complexity measure
are minimised. These objectives can sometimes be
conflicting and no solution may exist that optimises
all the objectives. Hence, an inevitable trade-off has
to be made. Secondly, we develop an algorithm to
select a subset from a larger set of basis functions
that is optimal in the multi-objective sense. This is
equivalent to selecting a model amongst a large num-
ber of candidate models determined by all the possi-
ble subset combinations of the basis functions. The
algorithm is demonstrated using two types of neu-
ral networks, namely, the Volterra polynomial basis
function (VPBF) network and the Gaussian radial
basis function (GRBF) network.

NEURAL NETWORKS

Let the underlying process generating the input -
output observations be

y=f(x)+1 1)

where y € R is the output, x € RM is the input, 7 is
the noise with unknown distribution and f*(.) is the
unknown underlying nonlinear function that needs
to be learned or estimated. Neural networks (NN)
are candidate models to approximate the unknown
nonlinear functions based on the observations. Its
functional form is given by [7],

K
f(xip) =Y we gr(x; i) (2)
k=1

where p is the set of parameters in the model or
network, wy, are the coefficients, gx(.) are the ba-
sis functions (formed at the hidden layer in a single
hidden layer NN), d; are the parameters in the kth
basis function (input — hidden layer weights in NN)
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and K denotes the number of basis functions. The
form of the network depends on the basis functions.
For example, the sigmoidal function is used in the
multilayer perceptron. Here, we use networks with
the following basis functions: the Volterra polyno-
mial basis functions (VPBF) and the Gaussian radial
basis functions (GRBF).

Multivariate (Volterra) polynomial expansions [14],
well known in function approximation, has been cast
into the framework of nonlinear system approxima-
tions and neural networks. A second order Volterra
polynomial expansion is given by,

ff(x,p) = a+x"b+x7Cx
K
= > wigk(x) (3)
k=1
where,
(w1, Wa, W3, ..., WA 42, WM 43, -, WK,] =

(4)

la, b1, bz, ..., €11, €12, C22.., CArM]
(91,92, 93, ... GM+2, IM 43, IM+4, -1 IKo) =
2 2 2
[1,1!1,1:2, sy 8y, T1T3, Ty, :wM]

(5)
are the set of linear weights and the set of basis func-
tions being linearly combined, respectively.

Radial basis functions (RBF) were introduced as a
technique for multivariable interpolation [11], which
can be cast into an architecture similar to that of
the multilayer perceptron [1]. RBF networks pro-
vide an alternative to the traditional NN architec-
tures and have good approximation properties. One
of the commonly used RBF networks is the Gaussian
radial basis function (GRBF) network, also called
the localised receptive field network. The function
mapped by the GRBF model is given by,

K
fr(x,p) = Zwk exp {—(x - dk)TCk(x — dk)}

k=1
(6)
where Cj is the weighting matrix of the kth ba-
sis function whose centre is dj, which can trans-
form the equidistant lines from being hyperpheri-
cal to the hyperellipsoidal, C, = I in this paper,
and p is the parameter vector containing wy and dg
(k=12 .., K).

MODEL SELECTION

Genetic algorithms (GA) are search procedures
which emulate the natural genetics [4]. They are
different from traditional search methods encoun-
tered in engineering optimisation in following ways:
(a) The GA searches from a population of points,
not a single point and (b) the GA uses probabilis-
tic and not deterministic transition rules. GAs have
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been succesfully used with neural networks to de-
termine the network parameters and structure [13],
with NARMAX models [5] and for nonlinear basis
function selection and RBF centre selection using
Bayesian criteria [8]. This paper applies the GA
approach to the model selection and identification
of nonlinear systems using multiobjective criteria as
the basis for selection.

Model selection is carried out with the GA where
each model is expressed by a Ky-bit binary model
code ¢, te., a chromosome representation in GA. The
1 bits of the binary model code c relate to the se-
lected subset of the basis functions from the set and
the 0 relate to the omitted ones. For example, if

(7

is the set of basis functions with g being the indi-
vidual basis functions. and if the binary model code
ise=1[1L 0 0 1 0 0 1 0 ..], the coded

model can be written as,

G= [91)921 ~~-'9Kn]

(8)

Hence model selection can be seen as a subset se-
lection problem. For the model represented by the
VPBF, with x € ®M, the maximum number of the
model terms is given by Ko = (M +1)(M +2)/2 and
there are 2%° possible models for selection.

F(x;p) = wig1(x) + waga(x) + wrgr(x) + ...

For the model represented by GRBF, the maximum
number of the model terms is given by Kj, the total
number of the Gaussian RBFs and there are 2%° pos-
sible models for selection. Also, there are Ko RBF
centre parameters d;. Thus a chromosome reprenta-
tion in genetic algorithms consists of a Kp-bit bi-
nary model code ¢ and real basis function centres d
(k=1,2,..., Ko), te.,

[c,d],d7, ..., d%,] 9)
Only the basis functions corresponding to the non-
zero bits of the binary model code ¢ are included
in the selected model. Given a parent set of binary
model codes and basis function parameter vectors,
the model chosen is one that optimises some perfor-
mance criteria.

MULTIOBJECTIVE CRITERIA

Let us define the following performance functions:

¢1(p) = IF(x) = " (x, p)ll2 (10)
¢2(p) = [1f(x) - F*(x, e (11)
¢3(p) = o(c) (12)
where ||.||]2 and ||.||c are the 2- and co-norms of the

function (.), o(c) is the number of the non-zero ele-
ments in the binary model code c.



For learning in nonlinear systems, there are good rea-
sons for giving attention to the performance func-
tions ¢;(p), (i = 1,2,3). The practical reasons for
considering the performance function ¢;(p) are even
stonger than the other two, ¢2(p) and ¢a(p). Statis-
tical considerations show that it is the most appro-
priate choice for data fitting when errors in the data
have a normal distribution. Often the performance
function ¢1(p) is preferred for its computational sim-
plicity in solving the estimation problem.

The performance function ¢3(p) is at the founda-
tion of much of approximation theory. It is known
from approximation theory that when ¢,(p) is small,
the performance function ¢:(p) is small also. But
the converse statement may not be true. Also, the
performance function ¢,(p) represents the accuracy
bound of the approximation achieved by the esti-
mated model. Such a bound may be necessarily en-
forced by some desired approximation accuracy in
some approximation tasks. Using ¢2(p) can also be
justified on statistical grounds if the noise # has a
uniform distribution.

The performance function ¢3(p) is used as a measure
of the model complexity. This measure is propor-
tional to the complexity measure used in the Akaike
Information Criterion. Small performance function
#3(p) indicates a simple model. The reason for
choosing ¢3(p) is that under similar performances in
$1(p) and ¢2(p) by two models, the simpler model
is statistically likely to be a better model (due to re-
duced degree of freedom in fitting the data). It is im-
portant to note that alternative criteria or additional
criteria may equally well be used considering differ-
ent noise distributions and complexity measures. For
example, the Li-norm could be used as a perfor-
mance function and the criteria used in Minimum
Description Length [12] or one based on Bayesian
statistics [9] could be used as a measure for model
complexity. The criteria selected in this paper are
principally to demonstrate the principle and its ap-
plication.

If one of the performance functions ¢; (i = 1,2,3) is
minimized individually (single-objective approach),
then unacceptably large values may result for other
performance functions ¢; (j # 7, j = 1,2,3). Gen-
erally, there does not exist a solution for all per-
formance function ¢;(p) for ¢ = 1,2,3 to be mini-
mized by the same parameter vector p. Following
the method of inequalities [15], we reformulate the
optimization into a multiobjective problem as,

$:(p) <, for i=1,2,3 (13)
where the positive real number €; represents the nu-
merical bound on the performance function ¢;(p)
and is determined by the designer.
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OPTIMISATION PROCEDURE

As we are concerned with three objectives (or cost
functions) for model selection and estimation, this
section develops the optimisation procedure based
on the method of inequalities [15]. Let us normalise
the multiobjective performance functions as follows:

¢i(p) ,
np) ={ & for i #0 (14)
$i(p)+ 1, for ;=0

Let T; be the set of parameter vectors p for which
the ith performance criterion is satisfied:

T ={p:¥:(p) < 1}. (15)

Then the admissible or feasible set of parameter vec-
tors for which all the performance criteria hold is the
intersection

(16)

Clearly, p is an admissible parameter vector if and
only if

'=r;n;nNls.

max{¢1(p), ¥2(p), ¥3(p)} < 1. (17)

which shows that the search for an admissible p can
be pursued by optimization, in particular by solving

rr:bin{max{iﬁl(P), P2(p), , Ya(P)}} < 1. (18)

Now, let p™ be the value of the parameter vector at
the nth step, and define

7 ={p:¢:(p) < A"}, for i=1,2,3, (19)
where
A™ = max{y:(p™)} (20)
and also define
M"m=T'nrynrg, (21)
E™ = 1 (p") + v2(p™) + ¥3(p™).  (22)

T'™ is the nth set of parameter vectors for which all
performance functions satisfy

¥i(p) < A7,

It is clear that '™ contains both p™ and the admis-
sible set I'. E™ is a combined measurement of all
performance functions. If we find a new parameter
vector p”, such that

for 1=1,2,3. (23)

A" < AT, (24)

or

A™ =A™ and E™ < E", (25)
where A™ and E™ are defined similarly to A™ and
E™, then we accept p™ as the next estimate of the
parameter vector. Then, setting p*t! = p” gives,

$i(p"tY) < (™), for i=1,2,3 (26)



and

rcrttcre (27)

so that the boundary of the set in which the param-
eters are located has been moved towards the ad-
missible set, or rarely, has remained unaltered. The
process of finding the optimal solution is terminated
only when both A,, and E™ cannot be reduced any
further. But the process of finding an admissible pa-
rameter vector p can be terminated when
A" <1, (28)
te., when the boundaries of I'™ have converged to
the boundaries of I'. If the A™ persists in being
larger than 1, this may be taken as an indication
that the performance criteria may be inconsistent,
whilst their magnitude gives some measure of how
closely it is possible to approach the objectives. In
this case, some of the performance criteria should
be relaxed until they are satisfied. From a practical
viewpoint, the approximate optimal solution is also
useful if the optimal solution is not achievable. GA
have been used in multi-objective optimisation and
have provided better results over conventional search
methods [4], [6]. Here, we combine GA with that of
least squares in deriving the estimation algorithm.

NUMERICAL ALGORITHM

The steps of the learning algorithm to be executed
for the GA implementation are as follows:

Step 1: Chromosomal representation

Each chromosome in the population consists of an
Ko-bit binary model code ¢ and a real number basis
function parameter vector D, where K is the total
number of the basis functions in the class of models.
For example, for the VPBF model the D is null and
for the GRBF model the vector D contains all basis
function centres di (k = 1,2, ..., Ko)

Step 2: Generation of the initial population
The L chromosomes [c, D] for the initial population
are randomly generated, where L is an odd number.

Step 3: Evaluation of the performance functions
Given the j-th binary model code ¢; and basis func-
tion parameter vector Dj;, then the j-th nonlin-
ear model is known. Using the least squares al-
gorithm, compute the j-th weight vector w; for
each of the models. Then evaluate the normalised
performance functions #;(p;) (: = 1,2,3), where
P; = [w]'vc]'le]v

Aj= igll?g'csiﬁf(pj), (29)
Bj =) vi(p;), (30)

i=1
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Complete the above computations for all L sets of
chromosomes, ie., j = 1,2, ..., L.

Step 4: Selection

According to the fitness of the performance functions

for each chromosome, delete the (L — 1)/2 weaker

members of the population and reorder the chromo-

somes. The fitness of the performance functions is,
Fj

for j=1,2,...,L. (31)

_ 1

A;’
Step 5: Crossover
Offspring binary model codes are produced from two
parent binary model codes so that their first half
elements are preserved. The second half elements in
each parent are exchanged. The average crossover
operator is used to produce offspring basis function
parameter vectors and is defined as,

Dj+1+D;

5 for j=1,2,...,(L - 1)/2.

(32)
Then the (L — 1)/2 offsprings are produced.

Step 6: Mutation
A mutation operator, called a creep, is used. For
the binary model codes, it randomly replaces one bit
in each offspring binary model code with a random
number 1 or 0. For the offspring basis function pa-
rameter vectors, the mutation operation is,
D; + 841, for j=1,2,...,(L-1)/2, (33)
where § is the maximum value adaptable and §; €
[-1,1] is a random variable with zero mean and I is
the identity matrix.

Step 7: Elitism

The elitist strategy copies the best chromosome into
the succeeding generation to prevent it being lost in
the next generation. The best chromosome is defined
as the one satisfying

= ' B < —a(A; —
B te{fg?,m{ BB < B — a(A1 - Ap)
and A< A, +6}  (34)
where,
Am =, _min {4} (35)

E,, and E; are corresponding to A,, and A;, which
are defined in equations (30) and (29), @ > 1 and §
is a positive number, specified by the designer (eg.,
a=11and §=0.1).

Step 8: New offsprings

Add the (L —1)/2 new offsprings to the population
which are generated in a random fashion. Actually,
the new offsprings are formed by replacing randomly
some elements of the best binary model code and



mutating the best basis function parameter vector.

Step 9: Stop check
Continue the cycle initiated in Step 3 until conver-
gence is achieved. The population is considered to
have converged when

AJ‘ - Ab <e

for 7=1,2,...,(L-1)/2, (36)

where Ap corresponds to Ej, and € > 0.

EXAMPLE: SYSTEM IDENTIFICATION

In the example, the task is to identify a system based
on the data generated by a large pilot scale liquid
level nonlinear system with zero mean Gaussian in-
put signal [5]. The data consists of 1000 pairs of
input-output data, of which the first 500 were used
for estimation and the remaining 500 for validation.
Using the nonlinear autoregressive modelling with
exogenous input (NARX) formulation [2], the sys-
tem can be represented by,

y(t) = f(x(8)) +n

with x formed from the delayed input and output
variables. The VPBF and GRBF models were sub-
jected to this identification task. The parameters
used in the example are given in Table 1.

(37)

TABLE 1 Design parameter values.

Parameter VPBF GRBF
Ko 45 10
L 21 21
Fy(t—1)7
y(t —2)
ut-3)| | ruie-1)
x y(t—4) y(t - 2)
u(t—1) u(t — 1)
u(t —2) u{t —2)
u(t — 3)
L u(t — 4) J
€1/1073 1.5 1.5
€2 0.3 0.3
€3 7 7

The VPBF Model: With the maximum number
of the model terms being 45, there are 2% possible
models for selections. But, after 210 generations a
sub-optimal model (optimality cannot be guaranteed
unless exhaustive search is done) has been found by
the algorithm. The best model performance func-
tions are

$1(p) = 1.8 x 1073, ¢y(p) = 0.3965, ¢3(p) = 3.
(38)
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The GRBF Model: Although the maximum
number of the model terms is only 10 (ie., 1024 possi-
ble models for selection), the search dimension of the
basis function centre parameters is 40 in real number
space (ze., infinite possibilities for selection). After
700 generations the performance criteria are almost
satisfied. In order to obtain better performance, the
basis function parameter vector was searched for an-
other 100 generations using the algorithm with the
fixed number of the model terms, te., let ¢3(p) = 5.
The best model performance functions are

$1(p) = 1.3 x 1073,

$2(p) = 0.1724, ¢3(p) = 5.

(39)

The convergence of the performance functions with
respect to generations are given in Figures 1 and 2.
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Figure 1. Convergence of performance functions — VPBF.
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Figure 2. Convergence of performance functions - GRBF.

The measured and estimated outputs, and estima-
tion error of the system on the validation data for
the model identified with the VPBF is illustrated in
Figure 3 and with the GRBF is shown in Figure 4.
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Figure 3. The validation results for VPBF model.
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Figure 4. The validation results for GRBF model.

The results show that while the GBRF model is more
complex than the VPBF model, it provides a better
approximation to the underlying system.

CONCLUSIONS

A learning algorithm with multi-objective criteria for
approximation with neural networks has been pro-
vided. The set of performance functions chosen mea-
sure the approximation accuracy based on L;- and
Lo norms and the model complexity based on the
number of basis functions in a model. This method
incorporates a search for model selection amongst a
large number of models formed by the various com-
binations of basis functions. The optimisation algo-
rithm for model parameter estimation and selection
is derived from the method of inequalities and the
genetic algorithm. The algorithm is demonstrated
on the Volterra polynomial basis function and the
Gaussian radial basis function models in a liquild
level nonlinear system identification task.
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