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Abstract

In this paper, we introduce a new preference relation based on a reference point

approach. This relation offers an easy approach to integrate decision maker’s

preferences into a Multiobjective Evolutionary Algorithm (MOEA) without mod-

ifying its basic structure. Besides finding the optimal solution of the achievement

scalarizing function, the new preference relation allows the decision maker to

find a set of solutions around that optimal solution. Then, a MOEA equipped

with the proposed preference relation can be integrated into an interactive opti-

mization method. One of the main advantages of the new method is that setting

its parameters is an intuitive task to the decision maker. The other advantage

is that, since our preference relation induces a finer order on vectors of objective

space than that achieved by the Pareto dominance relation, it is appropriate to

cope with problems having a high number of objectives.

Keywords: Evolutionary computation, Multi-objective optimization,

Many-objective optimization problems, Interactive optimization methods,

1. Introduction1

MOEAs rely on preference relations to identify high-potential regions of the2

search space in order to approximate the optimal solution set. A preference3
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relation is a mean to decide if a solution x is preferable over another solution y4

in the search space.5

In single-objective optimization, the determination of the optimum among a6

set of given solutions is clear. However, in the absence of preference information,7

in multiobjective optimization, there does not exist a unique preference relation8

to determine if a solution is better than other. The most common preference9

relation adopted is known as the Pareto dominance relation [35], which leads to10

the best possible trade-offs among the objectives. Thus, by using this relation,11

it is normally not possible to obtain a single optimal solution (except when there12

is no conflict among the objectives), but instead, a set of good solutions can be13

produced. This set is called the Pareto optimal set and its image in objective14

space is known as the Pareto optimal front.15

Multiobjective optimization involves three stages: model building, search,16

and decision making (preference articulation). Having a good approximation of17

the Pareto optimal set does not completely solve a multiobjective optimization18

problem. The decision maker (DM) still has the task of choosing the most19

preferred solution out of the approximation set. This task requires preference20

information from the DM. Following this need, there are several methodologies21

available for defining how and when to incorporate preferences from the DM22

into the search process. These methodologies can be classified in the following23

categories [33, 7]:24

1. Prior to the search (a priori approaches).25

2. During the search (interactive approaches).26

3. After the search (a posteriori approaches).27

Although interactive approaches for incorporating preferences have been28

widely used for a long time in Operations Research (see e.g., [6, 33]), it was29

only until very recently that the inclusion of preference information into MOEAs30

started to attract a considerable amount of interest among researchers (see for31

example, [7, 2]).32

On the other hand, as noted by several researchers [28, 26, 50, 36, 37, 29, 47],33
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the Pareto dominance relation has an important drawback when it is applied to34

multiobjective optimization problems with a high number of objectives (these35

are the so-called many-objective problems, e.g., [30]). That is, the deterioration36

of its ability to discern between good and bad solutions as the number solutions37

increases. A widely accepted explanation for this problem is that the propor-38

tion of nondominated solutions (i.e., incomparable solutions according to the39

Pareto dominance relation) in a population increases rapidly with the number40

of objectives (see e.g., [1, 20]).41

Being aware of the need of integrating MOEAs into interactive methods in42

many-objective optimization problems, in this paper, we present a new pref-43

erence relation based on an achievement scalarizing function [53]. The main44

purpose of the new preference relation is to offer a simple approach to inte-45

grate decision maker’s preferences into a MOEA without modifying the original46

structure of the MOEA.47

There are other proposed schemes to incorporate user’s preferences into a48

MOEA. However, the proposed preference relation, although can be applied for49

a general Multiobjective Optimization Problem (MOP), it is specially suited to50

deal with many-objective problems since it has some particular features: i) the51

location and size of the region of interest can be easily controlled during the52

search of a MOEA, ii) the new relation is scalable with respect to the number53

of objectives in terms of effectiveness, computational efficiency and amount of54

information required from the DM. As shown in Section 3, in other preference55

relations the number of questions asked to the DM depends on the number of56

objectives, which these techniques difficult to use with many-objectives prob-57

lems. In addition, in a general sense, our approach successfully overcomes some58

of the drawbacks of similar methods (Section 3).59

The new preference relation divides the objective function space into two60

subspaces. The solutions in one of these subspaces are compared using the usual61

Pareto dominance relation, while the others are compared using the achievement62

scalarizing function. By means of a reference point, the proposed preference63

relation allows the decision maker to guide the search towards a certain region64
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of the Pareto optimal front. Each component of the reference point represents65

the aspiration levels that the decision maker requires for each objective. Later66

on, the new preference relation is embedded into an interactive optimization67

scheme in which a sample of the current approximation of the Pareto front is68

presented, at each interaction point, to the DM in order to change the reference69

point and the size of the region of interest.70

Since, by using an achievement scalarizing function, the developed preference71

relation induces a finer order on vectors of the objective space than that achieved72

by the Pareto dominance relation, we believe that the use of the new prefer-73

ence relation is a promising approach to deal with many-objective problems.74

Additionally, by using an interactive optimization technique we can avoid the75

generation of millions or even billions of nondominated points in many-objective76

problems.77

The main contributions of this work can be summarized as follows:78

• A new preference relation to incorporate decision maker’s preferences into79

a MOEA without modifying the original structure of the MOEA.80

• A variant of the new preference relation which is able to naturally con-81

verge towards the central part of the Pareto front with no need of DM’s82

information.83

– Both variants of the preference relation can be used just by replacing84

the dominance-checking procedure in a given Pareto-based MOEA.85

– The preference relations proposed are not affected if the DM provides86

an infeasible reference point. Furthermore, the relations take into87

account the magnitude by which a solution over- or under-attains88

the reference point.89

– Since the relations are based on a reference point, unlike other meth-90

ods, the amount of information required from the DM is low even for91

more than 3 objectives.92

– In addition, these relations have a lower time complexity than that93
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of the Pareto dominance relation and other existing relations that94

perform component-wise comparisons.95

• An interactive optimization scheme using the proposed preference relation.96

• Experimentation of the interactive scheme using an airfoil design problem97

with 6 objectives.98

The results show that the new preference relation is able to guide the search99

towards the region defined by the reference point given by the decision maker,100

even if the reference point is infeasible. In addition, the experiments show that101

the proposed relation improves notably the convergence ability of a MOEA in102

problems with a high number of objectives.103

The remainder of this paper is structured in the following manner. The104

next section presents some basic concepts and the notation adopted throughout105

the paper. Section 3 shortly describes some previous proposals to incorporate106

preferences into MOEAs. Section 4 introduces the new preference relation and the107

interactive optimization method. In Section 5 we present the evaluation of the108

interactive method using three instances of an airfoil shape design optimization109

problem, namely with 2, 3 and 6 objectives. Finally, in Section 6 we present110

our conclusions and some potential paths for future research.111

2. Basic Concepts and Notation112

In this section, we will introduce the concepts and notation that will be used113

throughout the rest of the paper.114

2.1. Multiobjective Optimization Problems115

Definition 1 (Multiobjective optimization problem). A MOP is defined

as:

“Minimize” f(x) = [f1(x), f2(x), . . . , fk(x)]
T

subject to x ∈ X .
(1)
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The vector x ∈ Rn is formed by n decision variables representing the quanti-116

ties for which values are to be chosen in the optimization problem. The feasible117

set X ⊆ Rn is implicitly determined by a set of equality and inequality con-118

straints. The vector function f : X → Rk is composed by k ≥ 2 scalar objective119

functions fi : X → R (i = 1, . . . , k). In multiobjective optimization, the sets120

Rn and Rk are known as decision variable space and objective function space,121

respectively. The image, Z = f(X ), of X is referred to as the feasible set in the122

objective function space.123

In order to define precisely the multiobjective optimization problem stated124

in Definition 1 we have to establish the meaning of minimization in Rk. That125

is to say, we need to define how vectors z = f(x) ∈ Rk have to be compared for126

different solutions x ∈ Rn. In single-objective optimization the relation “less127

than or equal” (≤) is used to compare the scalar objective values. By using128

this relation there may be many different optimal solutions x ∈ X , but only one129

optimal value fmin = min{f(x) |x ∈ X} since the relation ≤ induces a total130

order in R (i.e., every pair of solutions is comparable, and thus, we can sort131

solutions from the best to the worst one). In contrast, in multiobjective opti-132

mization problems, there is no canonical order on Rk, and thus, we need weaker133

definitions of order to compare vectors in Rk. In multiobjective optimization,134

the Pareto dominance relation is usually adopted [18, 35].135

Definition 2 (Pareto dominance relation). We say that a vector z1 domi-

nates vector z2, denoted by z1 ≺pareto z2, if and only if:

∀i ∈ {1, . . . , k} : z1i ≤ z2i and ∃i ∈ {1, . . . , k} : z1i < z2i . (2)

Thus, to solve a MOP we have to find those solutions x ∈ X whose images,136

z = f(x), are not dominated by any other vector in the feasible space. It is said137

that two vectors, z1 and z2, are mutually nondominated vectors if z1 ⊀pareto z
2

138

and z2 ⊀pareto z
1.139

Definition 3 (Pareto optimality). A solution x∗ ∈ X is Pareto optimal if140
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there does not exist another solution x ∈ X such that f(x) ≺pareto f(x∗).141

Definition 4 (ρ-properly Pareto optimality). A solution x∗ ∈ X and its

corresponding vector z∗ ∈ Z are ρ-properly Pareto optimal, in the sense of

Wierzbicki [53], if

(z∗ − Rk
ρ \ {0}) ∩ Z = ∅,

where Rk
ρ = {z ∈ Rk|maxi=1,...,k zi + ρ

∑k
i=1 zi ≥ 0}, and ρ is some scalar.142

Definition 5 (Pareto optimal set). The Pareto optimal set, Popt, is defined

as:

Popt = {x ∈ X | ∄y ∈ X : f(y) ≺pareto f(x)}. (3)

Definition 6 (Pareto front). For a Pareto optimal set Popt, the Pareto front,

PFopt, is defined as:

PFopt = {z = (f1(x), . . . , fk(x)) | x ∈ Popt}. (4)

In practice, the goal of a posteriori MOEAs is finding the “best” approxima-143

tion set of the Pareto optimal front. An approximation set is a finite subset144

of Z composed of mutually nondominated vectors and is denoted by PFapprox.145

Currently, it is well accepted that the best approximation set is determined by146

the closeness to the Pareto optimal front, and the spread over the entire Pareto147

optimal front [16, 56, 7].148

In interactive optimization methods it is useful to know the lower and upper149

bounds of the Pareto front. The ideal point represents the lower bounds and is150

defined by z⋆i = minz∈Z zi ∀i = 1, . . . , k. In turn, the upper bounds are defined151

by the nadir point, which is given by znadi = maxz∈PFopt
zi ∀i = 1, . . . , k. In152

order to avoid some problems when the ideal and nadir points are equal or very153

close, a point strictly better than the ideal point is usually defined. This point154

is called the utopian point and is defined by z⋆⋆i = z⋆i − ǫ ∀i = 1, . . . , k, where155

ǫ > 0 is a small scalar.156

As we mentioned before, Pareto dominance is the most common preference157

relation used in multiobjective optimization. However, it is only one of the158
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possible preference relations available.159

2.2. The Reference Point Approach and the Achievement Scalarizing Function160

The proposed preference relation is based on the achievement scalarizing161

function approach proposed by Wierzbicki [52, 53]. An achievement scalarizing162

function uses a reference point to capture the desired values of the objective163

functions.164

Definition 7 (Achievement scalarizing function). An achievement scalar-

izing function (or achievement function for short) is a parameterized function

szref(z) : R
k → R, where zref ∈ Rk is a reference point representing the decision

maker’s aspiration levels. Thus, the multiobjective problem is transformed into

the following scalar problem:

Minimize szref(z)

subject to z ∈ Z.
(5)

A common achievement function is based on the Chebyshev distance (L∞165

metric), see e.g., [33, 19].166

Definition 8 (Chebyshev distance). For two vectors z1, z2 ∈ Rk the Cheby-

shev distance is defined by

d∞(z1, z2) = ||z1 − z2||∞ = max
i=1,...,k

|z1i − z2i |. (6)

We will now define an appropriate achievement function.167

Definition 9 (Weighted achievement function). The weighted achievement

function (or achievement function for short) is defined by

s∞(z, zref) = max
i=1,...,k

{λi(zi − zrefi )}+ ρ

k∑

i=1

λi(zi − zrefi ), (7)

where zref is a reference point, λ = [λ1, . . . , λk] is a vector of weights such168

that ∀i λi ≥ 0 and, for at least one i, λi > 0, and ρ > 0 is an augmentation169
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coefficient sufficiently small. The main role of ρ is to avoid the generation of170

weakly Pareto optimal solutions.171

We should note that, unlike the Chebyshev distance, the achievement func-172

tion does not use the absolute value in the first term. This small difference173

allows the achievement function to correctly assess solutions that improve the174

reference point.175

The achievement function has some convenient properties over other scalar-176

izing functions. As proved in [45, 33, 19], the minimum of (7) is a Pareto optimal177

solution and we can find any ρ-properly Pareto optimal solution (see def. 4).178

In most of the reference point methods, the exploration of the objective

space is made by moving the reference point at each iteration (for example,

[31]). In turn, the weights are kept unaltered during the interactive optimization

process. That is, weights do not define preferences, but they are mainly used

for normalizing each objective function. Usually, the weights are set for all

i = 1, . . . , k as

λi =
1

znadi − z⋆⋆i
. (8)

It is important to mention that the DM can provide both feasible and infea-179

sible reference points, or more precisely, zref ∈ Z +Rk
+ or zref /∈ Z +Rk

+, where180

Rk
+ is the nonnegative orthant of Rk. On the one hand, if zref ∈ Z + Rk

+, then181

the minimization of (7) subject to z ∈ Z should represent the maximization of182

the surplus z−zref ∈ Rk. On the other hand, if zref /∈ Z+Rk
+, the minimization183

of (7) subject to z ∈ Z minimizes the distance between the reference point and184

the Pareto optimal set.185

3. Previous Related Work186

In this section we describe similar approaches to incorporate DM’s prefer-187

ences into a MOEA. The descriptions emphasize the drawbacks of those ap-188

proaches that our method overcomes. Table 1 summarize other proposals and189

their main features which include the kind of information provided by the DM to190
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articulate preferences, the optimality guaranteed by the method, i.e., (weakly,191

properly) Pareto optimal solutions. Whether the method is applicable to non-192

convex Pareto fronts, or whether feasible reference points can be used in the193

method.194

Among the earliest attempts to incorporate preferences in a MOEA, we can195

find the preferability relation proposed by Fonseca and Fleming [22, 24]. This196

relation accommodates goal information (equivalent to a reference point in other197

methods) and priorities in a single preference relation. The DM should define198

goal values and group objectives according to their priority. Using the prefer-199

ability relation two solutions are first compared starting with the highest priority200

group. If the objectives of both solutions meet all their goal values or, contrarily,201

violate some or all of their goal values in a similar way, the next priority objec-202

tive group is considered. One disadvantage of this relation is that is affected by203

the feasibility of the goal provided by the decision maker. If the given goal is204

far away from the feasible region, then the solutions will be mainly compared205

in terms of the objective priorities, reducing the relation to the lexicographic206

relation. In addition, if two solutions either do or do not meet their goals, the207

relation does not take into account the degree of under- or over-attainment.208

Deb [11] proposed a technique to transform goal programming problems209

into multiobjective optimization problems which are then solved using a MOEA.210

In goal programming the DM has to assign goals that wishes to achieve for211

each objective, and these values are incorporated into the problem as additional212

constraints. Unfortunately, as in the previous method, this approach is sensitive213

to the feasibility of the goal values. If the goal is contained in the feasible space,214

it could prevent the generation of a better solution. On the other hand, if the215

goal is located far away from the feasible space, the effect of the method is216

practically inexistent.217

Branke et al. [5] proposed an approach called Guided MOEA (G-MOEA)218

which models DM’s preferences using the trade-off between pairs of objectives1.219

1Here, a trade-off is the amount of units of objective fi the DM is willing to trade-off in
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By setting appropriate trade-offs it is possible to focus the search to any subre-220

gion of the Pareto front. The main drawback of this approach is the difficulty221

to determine the trade-offs as the number of objectives increases, since the DM222

has to provide k(k−1) trade-offs. Furthermore, this method is only applicable223

in problems with a convex Pareto front.224

Cvetković and Parmee [8, 9] proposed the use of binary preference relations225

expressed qualitatively (i.e., objectives are classified into “less important” or226

“don’t care” classes). These preferences are translated to quantitative terms227

(i.e., weights) to guide the search towards certain region of interest of the Pareto228

front. The weights generated can be used with a simple aggregating approach229

(i.e., a sum of weights) or with Pareto ranking. There may be some practical230

issues to take into account if this approach is used interactively, since the DM is231

asked a considerably high number of questions to make it possible to translate232

qualitative preferences into quantitative values.233

More recently, Deb et al. [15] proposed the Reference-Point-Based NSGA-234

II (R-NSGA-II). They introduced a modification in the crowding distance op-235

erator in order to select from the last nondominated front the solutions that236

would take part of the new population. They used the Euclidean distance to237

sort and rank the population accordingly (the solution closest to the reference238

point receives the best rank). The drawback of this scheme is that it only239

guarantees weak Pareto optimality since, besides Pareto optimal solutions, the240

method might generate some weakly Pareto optimal solutions, particularly in241

MOPs with disconnected Pareto fronts. Likewise, in [38] a preference relation242

based on Euclidean distance was presented. Using the aspiration levels defined243

by a reference point, Molina et al. [34] proposed a method that classifies the244

solutions into two types, namely i) those that either fail to satisfy all the aspi-245

ration levels or fulfill all of them, and ii) solutions that satisfy only some of the246

aspiration levels. The former type of solutions are preferred over those of the247

latter type. As a consequence, dominated solutions are preferred over solutions248

exchange of one unit of objective fj , and vice versa.
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improving some of the aspiration levels. Another approach was also proposed249

by Deb and Kumar [13], in which the light beam search procedure [27] was in-250

corporated into the Nondominated Sorting Genetic Algorithm II (NSGA-II) [14].251

Similar to R-NSGA-II, DM’s preferences are articulated into the crowding oper-252

ator. This algorithm finds a subset of solutions around the optimum of the253

achievement function adopting the usual outranking relation2. In [27] three254

kinds of thresholds are defined to determine if one solution outranks another255

one, namely, indifference, preference, and veto threshold. This relation depends256

on the crowding comparison operator. In contrast, the new preference relation257

presented in this work does not depend on external methods, and, therefore, it258

can be used in any Pareto-based MOEA.259

Thiele et al. [48] proposed a variant of the Indicator-Based Evolutionary260

Algorithm (IBEA) [54], in which preference information is incorporated by means261

of an achievement scalarizing function. The basic idea is to divide the original262

indicator value (which is to be maximized) by the achievement value (which263

is to be minimized). Thus, solutions with a smaller achievement value will be264

preferred since the modified indicator value is larger. This approach is similar265

to the one proposed in this paper. However, our approach can be used both in266

IBEAs and Pareto-based MOEAs. In a further paper, the new IBEA introduced267

in [48] was used by Figueira et al. [21] in order to approximate the entire Pareto268

front by defining several reference points.269

Recently, Sindhya et al. [41] proposed an interactive framework in which an270

Evolutionary Algorithm (EA) is used to solve a single-objective optimization271

problem defined by an achievement function. The weights and the reference272

point of this function are provided by the DM at each iteration to incorporate273

his preferences. The drawback of this approach is that only shows a single point274

to the DM since the MOP is converted into a single-objective problem.275

Another recent method is the interactive Decomposition Based Multiobjec-276

tive Evolutionary Algorithm (MOEA/D) proposed by Gong et al. [25] In this277

2A vector z
1 outranks vector z

2 if z1 is considered to be at least as good as z
2.
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Technique Preference

information

Optima-

lity

Non-

convex

Feasible

zref allowed

Preferability relation [24] RP, classes Pareto† Yes No⋆

Goal Prog. NSGA [11] RP Pareto† Yes No

G-MOEA [5] Tradeoffs Pareto No –

Preference MOGA [8] Classes Pareto Yes –

R-NSGA-II [15] RP Weakly Yes⋆ Yes

g-dominance [34] RP Weakly Yes Yes

r-dominance [38] RP Weakly Yes⋆ Yes

Light Beam NSGA-II [13] RP, thresholds Pareto Yes Yes

iMOEA/D [25] RP Properly‡ Yes –

Preference IBEA [48] RP Properly Yes Yes

PIE [41] RP, classes Properly Yes Yes

Chebyshev relation RP Properly Yes Yes

RP: Reference point. †When reference point is unfeasible.
‡If Chebyshev achievement function is used. ⋆Preferences might have no effect.

Table 1: Summary of the features of other MOEA with preference incorporation.

method the standard MOEA/D is initially applied. Later, at each interaction278

stage, the DM selects the most preferred solution and the weight vectors are279

redistributed inside a circular neighborhood around the selected solution. Un-280

fortunately, in this approach is not possible to revisit regions of interest.281

4. Chebyshev Relation to Guide the Search282

Our preference relation was designed with two goals in mind. First, we aimed283

to provide an easy way to integrate preferences into different types of MOEAs284

requiring only slight modifications to their structure. The second goal was to285

investigate the use of achievement functions when dealing with many-objective286

problems.287

In the following sections, we introduce the new preference relation and its288

use as an interactive technique for multi- and many-objective optimization.289

4.1. User Reference Point Chebyshev Preference Relation290

In this paper, we propose combining the Pareto dominance relation and the291

achievement function to compare solutions in objective function space. The292
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achievement function will allow the incorporation of DM’s preferences using a293

feasible or an infeasible reference point.294

We can easily define a simple preference relation using the achievement func-295

tion. For example, we could say that a vector z1 will be preferred to z2 if and296

only if s∞(z1, zref) < s∞(z2, zref). However, by doing so, we would obtain only297

one Pareto optimal solution, which we will denote by z⋆∞ = argminz∈Z s∞(z, zref).298

In order to find a set of solutions around the point z⋆∞, we will allow a threshold,299

δ, in the preference relation. That is, we want to find the set of points, z, such300

that s∞(z, zref) ≤ smin + δ, where smin = minz∈Z s∞(z, zref) (or in different301

terms, s(z⋆∞, zref)). All these points would be located in the dark region shown302

in Figure 1.

Space compared using the

Achievement function

Space compared using 

Pareto dominance

Figure 1: Illustration of how the objective
space is divided, and how the vectors in each
subspace are compared.

Figure 2: Nondominated solutions with
respect to the Chebyshev relation.

303

Nevertheless, as we can see in the figure, we obtain both Pareto and dom-304

inated solutions. In order to obtain exclusively Pareto solutions we compare305

those solutions using the Pareto dominance relation. By doing so, only the306

Pareto nondominated solutions in the square region shown in Figure 2 are con-307

sidered as the nondominated solutions with respect to the new preference rela-308

tion developed. In some sense, we can consider that the new relation divides309

the feasible objective space in two parts as can be seen in Figure 1. The larger310

part of the feasible objective space is compared with the achievement function,311
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while the remainder of the space is compared adopting the usual Pareto domi-312

nance relation. For the sake of simplicity, we will refer to this new relation as313

the Chebyshev preference relation. Now, we can give a formal definition of the314

Chebyshev preference relation.315

Definition 10 (Chebyshev preference relation). A solution z1 is preferred316

to solution z2 with respect to the Chebyshev relation (z1 ≺cheby z
2), if and only317

if:318

1. s∞(z1, zref) < s∞(z2, zref) ∧ {z1 /∈ N(zref, δ) ∨ z2 /∈ N(zref, δ)}, or,319

2. z1 ≺pareto z2 ∧ {z1, z2 ∈ N(zref, δ)},320

where N(zref, δ) = {z | s∞(z, zref) ≤ smin + δ}. That is, the set N(zref, δ) is321

composed of vectors with an achievement value better than smin + δ with respect322

to the vector of aspiration levels zref.323

As an illustration of the preference relation, consider solutions z1 and z2324

presented in Figure 2. Since z2 /∈ N(zref, δ) and s∞(z1, zref) < s∞(z2, zref),325

then z1 ≺cheby z2.326

Figure 3 shows the use of the Chebyshev preference relation in NSGA-II [14]327

and Strength Pareto Evolutionary Algorithm 2 (SPEA2) [55]. As we can see in328

Figure 3, unlike some distance metrics, the achievement function (Eq. (7)) allows329

a MOEA to find points in problems with nonconvex Pareto fronts. Moreover,330

the figure shows how the DM can provide both feasible and infeasible reference331

points. Also, we have to note the result obtained in problem DTLZ2. If we had332

used the Euclidean distance to define the preference relation, with zref = 0 we333

had obtained nondominated solutions over the entire Pareto front. The reason334

for this, is that all the vectors in DTLZ2’s Pareto optimal front are situated on335

a sphere of radius 1.336

In order to incorporate the Chebyshev relation into the two previously men-337

tioned MOEAs we only have to change the usual Pareto dominance checking338

procedure by the function that implements the new relation. In order to have339

an efficient procedure, the evaluation of the achievement function was computed340
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(b) ZDT2: infeasible reference point and con-
cave Pareto front.
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(d) DTLZ2: infeasible reference point
and concave Pareto front.

Figure 3: Illustration of the Chebyshev preference relation incorporated into NSGA-II and
SPEA2, using feasible and infeasible reference points. z

⋆
∞ is the optimum of the achievement

function with respect to the current population of the MOEA. In all the examples, we used a
threshold δ = 0.2.

and stored for each solution before each ranking process. This way, the com-341

parisons required to rank the current population use the stored values of the342

achievement function.343

In practice, it might be difficult to set a value for the parameter δ since344

it does not have an upper bound that is known a priori. In order to have a345

better control of this parameter during the search, we can set it in terms of346

the proportion of the current range of the achievement function values (namely,347

the difference between the minimum and maximum achievement with respect348

to a given solution set P ). If τ ∈ [0, 1] is that proportion, then δ = τ · (smax −349

smin), where smax = maxz∈P s∞(z, zref) and smin = minz∈P s∞(z, zref). As a350
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Figure 4: Ratio of the extension of PFapprox and PFopt in terms of the Chebyshev distance
in problem DTLZ2.

consequence, for τ = 0 we would only find the minimum of the achievement351

function, whereas if τ = 1, then we would get the usual Pareto dominance352

relation since for every solution z ∈ P , z ∈ N(zref, δ). The idea of the parameter353

τ is to determine the size of the region of interest in terms of the extension of354

the current approximation set. Usually, in the first iterations the extension of355

the approximation set is wide, however even in that case, the value of τ is useful356

to bound the exploration area. On the other hand, as the search progresses, the357

extension of the approximation set tends to equal the extension of the Pareto358

optimal front. That means that when the approximation of the Pareto front359

is close to the Pareto optimal front, the value of τ represents the extension of360

the Pareto optimal front. Figure 4 shows the ratio of the extension of PFapprox361

and PFopt in terms of the achievement function value. As can be seen, after362

generation 100, the extension of PFapprox is almost equal to that of the Pareto363

optimal front.364

In that way, for example, if the DM sets τ = 0.2, then the region of interest365

will cover around 20% of the extension of the Pareto optimal front. Therefore,366

the DM can use the value of τ for adjusting the size of the region of interest367

around solution z⋆∞. In our approach, the values of the weight vector, λ, that368

appears in Eq. (5) are set according to Eq. (8). The vectors z⋆⋆ and znad are369
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approximated using the current PFapprox achieved by the MOEA.370

4.2. Central-guided Chebyshev Preference Relation371

As previously mentioned, in many-objective problems the number of points372

needed to represent a Pareto front accurately grows exponentially with the num-373

ber of objectives. Therefore, in many cases trying to approximate the whole374

Pareto front is not convenient. Additionally, in a many-objective context it375

might be very difficult for the DM to select a final solution.376

When the DM does not have any knowledge about the MOP to be solved377

(e.g., trade-offs among the objectives, variation range of the objectives), a good378

idea might be to aim to converge to the ideal point, in which all the objectives379

are minimized simultaneously. In some cases, the solution that minimizes the380

distance to the ideal point is located in the central part of the Pareto front. If381

the Pareto front is symmetric, the closest solution to the ideal point is equivalent382

to the so-called knee of the front [10, 32, 3, 40]. In some cases the Pareto front383

is not symmetric, and therefore is not clear to define a central part of the front.384

Nonetheless, for the sake of brevity, we will use the term ‘central part’ to denote385

the region around the nearest solution to the ideal point.386

In order to achieve the desired behavior we need to approximate the ideal387

point during the search process of the MOEA. To do so, we will use the lower388

bounds of the current approximation of the Pareto front. At each iteration389

we will determine one of the vectors that minimizes each objective separately.390

That is, we need to find the set of k vectors in PFapprox, Φ = {z1, . . . , zk | zi =391

f(x⋆
i ), i = 1, . . . , k}, where x⋆

i yields the minimum in objective fi(x).392

There are some works, in which an evolutionary algorithm has been used393

to approximate the ideal point [40] or the nadir point [12]. Nonetheless, these394

approaches require a modification in a particular component of the MOEA (for395

instance, in the crowding operator or in the archive). In order to maintain396

the preference relation independent of an external module, e.g., an archive, we397

propose to modify the Chebyshev relation to implicitly maintain the extreme or398

boundary solutions Φ. To this end, besides emphasizing the points close to the399
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Figure 5: Illustration of the central-guided Chebyshev preference relation incorporated into
NSGA-II. In these plots zref is the approximation of the ideal point, and z

⋆
∞ is the vector that

we consider the central point of the Pareto front. In these examples we used τ = 0.1.

central part of the Pareto front, the relation does not allow that extreme points400

are dominated.401

Definition 11 (Central-guided Chebyshev preference relation). A solu-

tion z1 is preferred to solution z2 with respect to the central-guided Chebyshev

preference relation (z1 ≺c-cheby z
2) if and only if:

z1 ≺cheby z2, and z2 /∈ Φ.

Figure 5 shows the Pareto front approximation obtained by NSGA-II using402

the central-guided Chebyshev preference relation with the approximated ideal403

point as a reference point. The figure shows the extreme points of problems404

ZDT1 and DTLZ2. It is worth noting that in both problems, the approximation405

of the ideal points is very accurate. Later in this section, we will quantitatively406

evaluate the accuracy of the approximation of the ideal point.407

This variant of the proposed preference relation might be very useful in408

many-objective problems in which traditional visualization techniques, such as409

2D or 3D plots, are no longer available. In this case, the DM can be assisted410

by the preference relation to find a set of solutions around the (usually) most411

interesting region of the Pareto front.412
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In order to assess the accuracy of the approximation of the ideal point yield413

by the central-guided Chebyshev relation we will compare the true ideal point414

against the obtained approximation. In these experiments, we use the Euclidean415

distance between the ideal point and its approximation as a measure of the error416

of the approximation. In these experiments we adopted the problems DTLZ2417

and DTLZ7. The ideal point of the former is the origin of Rk, while for the418

latter, z⋆i = 0 for i = 1, . . . , k − 1 and z⋆k = min fk(x), where xi ∈ [0, 1], for419

i = 1, . . . , n. The error was measured along the 200 generations of the search.420

Figure 6 shows the mean of the error over 30 runs using problem DTLZ2 with421

4, 8, and 12 objectives. As we can see, after generation 20, the error is clearly422

below 0.005, which is a very good approximation.

Figure 6: Distance between the ideal point
and its approximation using the central-guided
Chebyshev relation in problem DTLZ2.

Figure 7: Distance between the ideal point
and its approximation using the central-guided
Chebyshev relation in problem DTLZ7.

423

The mean and the standard deviation of the error at generation 100 is shown424

at Table 2. From those results we can say that after generation 100, the relation425

uses a very good approximation of the ideal point.426

# objs. Mean Std. Deviation

4 2.0133e-04 2.1932e-04
8 1.4873e-04 1.8505e-04
12 2.0693e-04 2.7470e-04

Table 2: Statistics at generation 100 of the
distance between the ideal point and its ap-
proximation using the central-guided Cheby-
shev relation in problem DTLZ2.

# objs. Mean Std. Deviation

4 0.0086 0.0015
8 0.0139 0.0026
12 0.0160 0.0030

Table 3: Statistics at generation 100 of
the distance between the ideal point and
its approximation using the central-guided
Chebyshev relation in problem DTLZ7.
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The results of the error of the approximation of the ideal point for problem427

DTLZ7 are shown in Figure 7 and Table 3. From those results it is clear to428

see that the ideal point of DTLZ7 is harder to approximate than in the case of429

DTLZ2. However, after generation 40 the error is below 0.1, which is a useful430

approximation to guide the search towards the ideal point. We have to point431

out that, although the ideal point is approximated very well, even if the ap-432

proximation is far from the ideal point, when τ reaches a value of 1, the whole433

Pareto front can be generated.434

One of the advantages of the basic Chebyshev preference relation and the435

central-guided variant over other preference relations is their low time complex-436

ity. The evaluation of the achievement function for the entire population has437

complexity O(km), where m is the size of the population and k is the number of438

objectives. Regarding the central-guided variant, the process of finding the ex-439

treme points has complexity O(km). Therefore, the total process of the central-440

guided variant also has complexity O(km). In order to illustrate the computa-441

tional savings using the Chebyshev relation, let us take as an example, the rank-442

ing procedures of NSGA-II and Multiobjective Genetic Algorithm (MOGA) [24].443

Both NSGA-II’s nondominated sorting [44, 14] and MOGA’s nondominated rank-444

ing [23] have complexity O(km2) using the Pareto dominance relation. Using445

any of the Chebyshev relations we need to compare a single real value instead of446

a k-dimensional vector for each pair of solutions. Therefore, using the Cheby-447

shev relation, these ranking procedures have complexity O(km+m2). Figure 8448

shows the complexities of the ranking procedures using the Pareto relation, and449

any of the Chebyshev relations, respectively. In this discussion we have assumed450

that the entire population is exclusively compared using the achievement func-451

tion. In practice, however, the actual complexity depends on the proportion of452

solutions compared using the achievement function and the usual Pareto dom-453

inance relation. Nonetheless, for small values of τ and a set of points evenly454

distributed over the objective space, the resulting complexity is similar to the455

one defined above. For instance, if τ = 0.1, then approximately 90% of the456

population is compared using the Chebyshev relation.457
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Figure 8: Plots of the complexity of NSGA-II and MOGA’s ranking procedures using the
Pareto dominance relation (O(km2)), and the Chebyshev relation (O(km+m2)).

4.3. An Interactive Method Using the Chebyshev Relation458

The two variants of the Chebyshev preference relation can be used in an459

interactive way. When the DM does not have enough knowledge about the460

problem to provide a reference point, the central-guided Chebyshev relation461

can be used to obtain a first set of solutions. However, in real situations it462

is common that the DM counts with a previous best known solution of the463

given problem. In that case, the previous solution can serve as a good reference464

point. Then, the process can follow the usual steps of the interactive techniques.465

That is, at each iteration the DM must provide new aspiration levels in the466

form of a reference point. Additionally, the DM can change the value of the467

threshold τ that controls the size of the region of interest. Initially, a default468

value τ = 1 can be used to obtain a first approximation of the entire Pareto469

front. Later, the user can, for example, set τ = 0.5 in order to obtain about470

half of the Pareto front around the reference point. This helps the DM to know471

the trade-offs among the objectives. At subsequent iterations, the value of τ472

could be reduced to concentrate the search towards a region of interest chosen473

by the DM. In order to show the set of solutions of the region of interest, some474

visualization tool designed for problems with more than three objectives could475
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be used, such as parallel coordinates plots, heatmap graphs, or scatter plots (see476

e.g., [4]). To ease the visualization of the solutions, a technique for truncating477

the approximation set can be used. For example, a clustering technique can be478

employed, such as the one used in SPEA2 [55], or a technique similar to that used479

in archiving methods. Therefore, the interactive process requires an additional480

parameter indicating the number of solutions to visualize. If the number of481

nondominated solutions found by the MOEA is lower than the number requested482

by the DM, then all solutions are visualized.483

In a next step, the employed MOEA is again executed using the Chebyshev484

relation in order to find a new set of solutions that best satisfies the aspirations485

of the DM. This process continues until the DM is satisfied with a solution of486

the current set of solutions. Algorithm 1 shows the whole interactive process.487

The user also has to decide the parameter values for the MOEA employed, for488

instance the number of generations to stop each search of Step 2.489

Algorithm 1 Interactive technique using the Chebyshev preference relation.

Step 1: Ask the DM to specify the threshold τ .
If the DM has some knowledge about the problem, he/she can pro-
vide a reference point. Otherwise, the central-guided preference
relation can be used to converge towards the ideal point.

Step 2: If a reference point was provided, then
Execute the MOEA using the Chebyshev relation with the ref-
erence point provided by the decision maker.

else

Execute the MOEA using the central-guided Chebyshev relation.
Step 3: Ask the DM to define how many solutions of the current approxi-

mation should be shown.
Additionally, from the use of the central-guided relation the DM

can be informed of the current ideal point in order to decide the
new aspiration levels.

Step 4: If the DM is satisfied with some solution of the current set, then
stop.

else

Go to Step 1.
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5. Experiments using the interactive method490

In order to illustrate the interactive method presented in the previous sec-491

tion we will use three variants of a multiobjective aerodynamic airfoil shape492

optimization problem adapted from [46]. An airfoil is the cross-section of a493

lifting surface such as an airplane’s wing. The goal in this set of problems is494

to optimize the shape of a standard-class glider, aiming at obtaining optimum495

performance for a sailplane at different flight conditions. We experiment with496

problems with 2, 3, and 6 objectives.497

5.1. Geometry parameterization498

In all the variants of the aerodynamic airfoil shape optimization problems, we499

adopt a modified PARSEC airfoil representation [42]. Figure 9 illustrates the 12500

basic parameters used for this representation: rleup / rlelo leading edge radius for501

upper/lower surfaces, Xup/Xlo location of maximum thickness for upper/lower502

surfaces, Zup/Zlo maximum thickness for upper/lower surfaces, Zxxup/Zxxlo cur-503

vature for upper/lower surfaces, at maximum thickness locations, Zte trailing504

edge coordinate, ∆Zte trailing edge thickness, αte trailing edge direction, and505

βte trailing edge wedge angle. The PARSEC geometry representation adopted506

allows us to define independently the leading edge radius, both for upper and507

lower surfaces (the original representation uses the same value both for up-508

per and lower surfaces). Thus, 12 variables are used in total. We employed509

two different instances of the problem A720 presented in [46] (for the 2- and510

3-objectives problem), and one instance of problem NLF0416 described in [51]511

(for the 6-objectives problem). Their allowable ranges are defined in Table 4.512

The PARSEC airfoil geometry representation uses a linear combination of

shape functions for defining the upper and lower surfaces. These linear combi-

nations are given by:

Zupper =

6∑

n=1

anx
(n−1)/2, Zlower =

6∑

n=1

bnx
(n−1)/2. (9)
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Table 4: Parameter ranges for the PARSEC airfoil representation for problems A720 (2 and 3
objs.) and NLF0416 (6 objs.).

A720 NLF0416

Variable Lower Upper Lower Upper

rleup 0.0085 0.0126 0.0055 0.0215
rlelo 0.0020 0.0040 0.0055 0.0215
αte 7.0000 10.0000 -2.0000 21.0000
βte 10.0000 14.0000 1.0000 15.0000
Zte -0.0060 -0.0030 -0.0200 0.0200
∆Zte 0.0025 0.0050 0.0000 0.0000
Xup 0.4100 0.4600 0.2875 0.5345
Zup 0.1100 0.1300 0.0880 0.1195
Zxxup -0.9000 -0.7000 -1.0300 -0.4200
Xlo 0.2000 0.2600 0.3060 0.5075
Zlo -0.0230 -0.0150 -0.0650 -0.0500
Zxxlo

0.0500 0.2000 -0.0490 0.8205

The coefficients an, and bn are determined as function of the 12 geometric513

parameters by solving two systems of linear equations, one for each surface. It is514

important to note that the geometric parameters rleup/rlelo , Xup/Xlo, Zup/Zlo,515

Zxxup
/Zxxlo

, Zte, ∆Zte, αte, and βte are the actual design variables in the op-516

timization process. In turn, coefficients an, bn serve as intermediate variables517

for interpolating the airfoil’s coordinates, which are used by the Computational518

Fluid Dynamics (CFD) solver (we used the Xfoil tool proposed in [17]) for its519

discretization process.520

Figure 9: PARSEC airfoil parametrization.
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5.2. Airfoil Shape Problem with 2 Objectives521

The goal in the 2-objective problem is to optimize the shape of a standard-522

class glider, aiming at obtaining optimum performance for a sailplane.523

5.2.1. Objective functions524

Two conflicting objective functions are defined in terms of a sailplane average525

weight and operating conditions [46]:526

1. Min f1 = CD/CL, s.t. CL = 0.63, Re = 2.04× 106, M = 0.12.527

2. Min f2 = CD/C
3/2
L , s.t. CL = 1.05, Re = 1.29× 106,M = 0.08.528

Objective f1 represents the inverse of the glider’s gliding ratio, whereas f2 rep-529

resents the sink rate. Both objectives are important performance measures for530

this aerodynamic optimization problem. Each objective is evaluated at differ-531

ent prescribed flight conditions, given in terms of Mach (M) and Reynolds (Re)532

numbers, and the drag and lift coefficients, denoted by CD and CL respectively.533

The aim of solving this MOP is to find a better airfoil shape, which improves a534

reference design.535

Next, we will show a simulation of the interactive process using NSGA-II with536

the Chebyshev relation using a reference point given by the DM. We adopted537

the following parameters for NSGA-II: a crossover probability of 0.9, a mutation538

probability of 1/n (n is the number of decision variables), and the distribution539

indices for crossover and mutation were set as 15 and 20, respectively. A popula-540

tion composed of 60 individuals was employed. It is worth mentioning that the541

evaluation of the objective functions is very expensive in terms of processing542

time. A run for the 6-objective problem with 60 individuals and 80 genera-543

tions (4800 evaluations) required around 9 hours using a processor running at544

2.67GHz.545

In all the experiments included in this paper, we used ρ = 10−5 for Eq. (7).546

In the first step of the process, we used τ = 0.8 in order to get a global per-547

spective of the entire Pareto front. As a reference point we employed the vector548

zref = [0.007610, 0.005236]. This reference point corresponds to the evaluation549
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of the reference airfoil shape A720 [46] in both objectives. Then, NSGA-II was ex-550

ecuted for 15 generations. The resulting approximation set is shown in Figure 10551

(denoted by triangles). As can be seen, the reference point was dominated by552

almost all solutions in the approximation set. This illustrates how the relation553

is able to correctly compare solutions better than the reference point provided.554

On the other hand, due to the nature of the objective space of the problem,555

only 25 solutions, from the total of 60, are nondominated. Therefore, in this556

case, the clustering technique to reduce the size of the approximation set was557

not needed.

Figure 10: Approximation sets obtained dur-
ing the simulation of the interactive method
applied on the 2-objective problem A720.

Figure 11: Most preferred airfoil from the
simulation of the interactive method applied
on the 2-objective problem A720.

558

Since the initial reference point was improved, we decided to choose one559

solution of the approximation set as the next reference point, namely, the nearest560

solution to the ideal point (diamond). For the next execution, the region of561

interest was reduced to τ = 0.2. Similar to the previous DM interaction, the562

next reference point was the nearest solution of PFapprox to the ideal point.563

In order to obtain a final approximation to select the most preferred solution,564

the region of interest was reduced to a small region using τ = 0.05. This time,565

NSGA-II was executed for 40 generations. At this stage only 8 solutions were566

obtained and the most preferred solution for the DM was the one with objective567

values [0.006754, 0.004957]. Figure 11 shows the airfoils corresponding to the568

initial reference point and to the most preferred solution. In this example,569
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an improvement of approximately 11.24% and of 5.32% was attained for the570

first and second objective, respectively. From a practical point of view, these571

improvements are quite significant in increasing the aerodynamic efficiency of572

the sailplane.573

Figure 10 also shows the PFapprox achieved by NSGA-II with no preferences574

during the same number of generations than that used in the interactive method.575

As one can expect, the final approximation set obtained articulating preferences576

is closer to the ideal point than the one generated with no preferences. This can577

be explained by the fact that the incorporation of preferences concentrates all578

the function evaluations to improve the region of interest. On the other hand,579

when the task is to approximate the entire Pareto front, some function evalua-580

tions are used to approximate regions outside the region of interest. These are581

clearly different tasks, and therefore, a fair performance comparison is not pos-582

sible. Nonetheless, we want to emphasize the computational savings of using an583

interactive approach over an a posteriori approach, specially when the function584

evaluations are expensive in terms of CPU time.585

5.3. Airfoil Shape Problem with 3 Objectives586

In this section the interactive method is evaluated using the airfoil shape587

optimization problems with 3 objectives. Unlike the previous example, in this588

case we will simulate the DM using the Chebyshev achievement function. That589

is to say, at each interaction point, the new reference point will be the solution in590

the current PFapprox with the best achievement value (which is to be minimized).591

To solve this problem we used 4 interaction points with the DM during the search592

using a total of 100 generations. The parameters at each interaction point are593

shown in Table 5. The initial threshold for both problems was set to τ = 0.8.594

In order to evaluate the performance of the interactive method we carried out595

30 runs of the interactive method. As for NSGA-II, we adopted the same param-596

eter values used in the 2-objective problem. For each run, the best achievement597

value of the final PFapprox was measured. As a reference, we also computed598

the best achievement value obtained by NSGA-II with no preferences. The 3-599

28



Figure 12: Airfoil with the best achievement value and the reference airfoil for the problem
with 3 objectives.

objective problem is a variant of the problem A720 in which the first and third600

objectives are objectives f1 and f2 of the 2-objective problem of the previous601

section. The second objective is defined as602

• Min f2 = CD/CL, s.t. CL = 0.86, Re = 1.63× 106, M = 0.1.603

The bounds for the variables are the same described in Table 4. For this604

problem, we used the vector [0.007610, 0.005895, 0.005236] as our initial refer-605

ence point. The results for the 3-objective problem are shown in Table 6. As can606

be seen, both approaches yield achievement values results less than zero, which607

means that the reference point was improved in all cases. In addition, as ex-608

pected, the interactive approach obtained better results than the approach with609

no preferences articulated. The solution with the best achievement value was610

[0.006772, 0.005244, 0.004960]. Objectives were improved by 11.01%, 11.04%611

and 5.27%, respectively. The airfoil of this solution is presented in Figure 12,612

along with that of the reference point.613

Table 5: Parameter values at each interaction point.

Problem Int. 1 Int. 2 Int. 3 Int. 4

3-obj
Gen 15 35 55 80
τ 0.5 0.2 0.1 0.025

6-obj
Gen 15 35 55 –
τ 0.43 0.18 0.025 –
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Table 6: Statistics of the achievement function values obtained with preferences and without
them in the 3-objective problem.

Best Median Worst Std. dev.
Preferences -0.2196 -0.2111 -0.1982 0.0047
No prefs. -0.2183 -0.2020 -0.1816 0.0101

5.4. Airfoil Shape Problem with 6 Objectives614

The 6-objective airfoil optimization problem presented in this section was615

taken from [51]. The goal of this problem is to optimize the airfoil shape of a616

low-speed unmanned aerial vehicle to cover a range of different flight condition617

(e.g., take-off and cruise). The 6 objectives to be minimized are described in618

Table 7, whereas the bounds for the variables are presented in Table 4.619

First, we will present the simulation of the interactive process in order to620

see how the DM might guide the search in a problem with more than 3 ob-621

jectives. In this experiment we used a population composed of 40 solutions.622

However, the DM can decide to visualize a lower number of solutions. As refer-623

ence point we employed a representative airfoil of the NLF series [49], namely the624

NLF0416 [43], zref = [0.00523, 0.00595, 0.01048, 0.33373, 0.90135, 2.93083]. Given625

the low number of function evaluations used in this simulation (4000 using 40626

solutions during 100 generations), we do not expect to improve an airfoil such as627

NLF0416, which was specially designed for real aerial missions. Nonetheless, the628

experiment is a good example to show the simplicity of the interactive method629

even in problems with a large number of objectives.630

In Step 1, a value of τ = 1 was adopted, i.e., an approximation of the631

entire Pareto front. After 45 generations, 36 solutions are presented to the DM.632

Those solutions were selected using a clustering technique. The set of solutions633

are presented in the parallel coordinate plot shown in Figure 13. In this plot,634

the objective values are normalized with respect to the minimum and maximum635

values obtained in each objective. The closest generated solution to the reference636

point is [0.0057, 0.0054, 0.0236, 0.4230, 0.7306, 8.0836].637

Since the third objective is far from being achieved, the DM decides to relax638

the aspiration level of that objective in the hope of improving the others. The639
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new reference point is then [0.0055, 0.0059, 0.02, 0.333738, 0.901354, 2.9308].640

In addition, the value of τ is reduced to 0.2. After 35 more generations, the641

set of solutions shown in Figure 14 are presented to the DM. This time, the642

DM decides that 20 solutions are enough. The closest generated solution to the643

reference point is [0.0057, 0.0053, 0.0243, 0.3756, 0.7144, 6.5218]. As can be644

noted, all the objectives, except for objective 3, were improved.645

For the next and last optimization phase, NSGA-II is executed for 20 gener-646

ations (a total of 100 generations). The same reference point is used. However,647

the value of τ is reduced to 0.05 to find solutions very close to the reference648

point in order to choose a final solution. The final set of solutions is presented649

in Figure 15. Only 8 solutions are presented to the DM. Finally, the DM se-650

lects the closest generated solution to the reference point, i.e., [0.0057, 0.0053,651

0.0260, 0.3326, 0.6472, 2.7616]. The airfoil shape corresponding to the preferred652

solution is shown in Figure 16.653

Besides the parameters of the MOEA, the parameters that have to be selected654

by the DM are the reference point, τ , and the number of solution to be visualized.655

We consider that selecting a new reference point is an easy task to the DM since656

its interpretation is intuitive. In turn, the parameter τ can be easily set since657

it is given in terms of the current range approximation of the Pareto front.658
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Figure 13: Set of solutions presented to the
DM after 45 generations for the 6-objective
problem. The dashed line is the reference
point, and the dash-dot line is the closest
solution to the reference point.
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Figure 14: Set of solutions presented to the
DM after 80 generations for the 6-objective
problem. The dashed line is the reference
point, and the dash-dot line is the closest
solution to the reference point.
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Table 7: Objectives of the airfoil design problem with 6 objectives (to be minimized).

Objective Comments
f1 = CD CL = 0.5,Re = 4× 106,Ma = 0.3

f2 = CD/C
3/2
L Re = 4× 106,Ma = 0.3

f3 = C2
m0

Re = 4× 106,Ma = 0.3
f4 = 1/C2

max Re = 4× 106,Ma = 0.3
f5 = 1/C2

L α = 5◦,Re = 2× 106,Ma = 0.15
f6 = 1/xtr α = 5◦,Re = 2× 106,Ma = 0.15

In the remainder of this section, we use the 6-objective airfoil problem to eval-659

uate the interactive method simulating the DM through the Chebyshev achieve-660

ment function. For this problem we used 3 interaction points and a total of 80661

generations. The value of threshold τ was modified as shown in Table 5.662

The results presented in Table 8 show that for this problem the reference663

point was not improved by any of the two approaches. However, the inter-664

active approach found better airfoils than the those of the approach without665

preferences. The solution corresponding with the best achievement value found666

by the interactive approach is the following: [0.004962, 0.007022, 0.007275,667

0.346273,0.920056, 2.929393]. This solution improves objectives f1, f3 and f6668

by an amount of 5.12%, 30.58% and 0.04%, respectively. The airfoil of this669

solution is presented in Figure 17.670
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Figure 15: Set of solutions presented to the
DM after 100 generations for the 6-objective
problem. The dashed line is the reference
point, and the dash-dot line is the closest so-
lution to the reference point.
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Figure 16: Airfoil corresponding to the so-
lution selected by the decision maker at
the end of the simulation of the interactive
method applied on the 6-objective prob-
lem.
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Table 8: Statistics of the achievement function values obtained with preferences and without
them in the 6-objective problem.

Best Median Worst Std. dev.
Preferences 0.0047 0.0473 0.0914 0.0183
No prefs. 0.0157 0.2506 0.4787 0.1480

Figure 17: Airfoil with the best achievement value and the reference airfoil for the problem
with 6 objectives.

6. Conclusions and Future Work671

In this paper, we have proposed a new preference relation based on an672

achievement scalarizing function. The purpose of the new preference relation673

is to provide an easy approach to integrate decision maker’s preferences into a674

MOEA without modifying the original structure of the MOEA. In addition, an675

interactive method including the new preference relation was presented.676

The new preference relation divides the objective function space into two677

subspaces. The solutions of one of these subspaces are compared adopting678

the usual Pareto dominance relation, while the other is compared using the679

achievement function. Besides finding the optimal solution of the achievement680

function, the new preference relation allows us to find a set of solutions around681

such an optimal solution. Additionally, the size and range of that set can be682

easily regulated by the DM. In order to incorporate preferences into a MOEA,683

the user only needs to change the Pareto dominance checking functions by the684

new preference relation.685

The interactive optimization method proposed was evaluated using 3 dif-686
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ferent instances of an airfoil shape design problem (2, 3 and 6 objectives).687

From solving those problems, we can see that setting the parameters is an intu-688

itive task. Likewise, the experimental results show that the interactive method689

achieves better results than those obtained by its a posteriori counterpart.690

Since our preference relation is able to induce a finer order on the objec-691

tive space (in terms of number of dominance ranks) than one generated by the692

Pareto dominance relation, we believe that it can be used to overcome the scal-693

ability problems observed in Pareto-based MOEAs to deal with many-objective694

problems.695

As previously indicated, the current implementation of our preference rela-696

tion compares solutions using the achievement function and the Pareto dom-697

inance relation. However, it is possible to couple the achievement function698

with a different preference relation. Thus, in the future, we want to assess the699

performance of the achievement function coupled with a different preference700

relation. In particular, we want to investigate preference relations recently pro-701

posed that have shown promising results in many-objective problems, e.g., the702

average Hausdorff distance indicator proposed by Schütze et al. [39]. Finally,703

we also want to investigate the suitability of the proposed preference relation to704

approximate the entire Pareto front in many-objective problems.705
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