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Abstract– Optimization based on genetic algorithms is ap-
plied to the design of multilayered coatings, incorporat-
ing both coating-geometry and material-property optimiza-
tion. The latter is based on parametric modeling of di-
electric and magnetic properties of homogeneous materi-
als, and effective-medium modeling of composites. Our ap-
proach treats physical laws to be obeyed by the models as
constraints. Moreover, efficiency in thickness is considered
in two ways: as a constraint on its upper limit, and in a
multi-objective setting where we study both aggregation and
Pareto optimality.

1. INTRODUCTION

Anti-reflection coatings are widely used for optical and high-
frequency applications such as dichroic filters in optics, or
microwave absorbing materials for electromagnetic com-
patibility. Even though a single-layer coating may be suf-
ficient to obtain low reflection coefficients, its efficiency is
usually reduced to a narrow bandwidth and to a specific
polarization and incidence angle. In such a case, analyt-
ical expressions can be obtained [1, 2], even for strongly
anisotropic mediums [9], to define the criteria (refractive
index, dielectric permittivity, magnetic permeability) that a
monolayer has to satisfy in order to achieve the desired anti-
reflection properties. Nevertheless, these criteria are usually
approximate close-form expressions that are based on cer-
tain hypotheses.

In order to extend the performance of anti-reflection coat-
ings to wider ranges of frequency and incidence, a multilay-
ered structure has to be considered. The problem of optimal
design of a multilayered coating has been studied in the past
using analytical – the conjugate gradient – and stochastic
methods such as simulated annealing (see [11] and refer-
ences therein). Thus, the optimization of such complex ar-
chitectures may consist either in optimizing the thickness of
well-defined materials chosen from a database in a purely
combinatorial problem [11], or in determining parameters
involved in functional descriptions of the main properties of
materials.
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In this study, we focus on the optimal design of the
material properties themselves, in addition to the geome-
try of the coating (thickness for a 1D problem). We also
consider heterogeneous layers in order to achieve perfor-
mance that may not be easily obtained with homogeneous
layers. Thus, the optimization of such complex multilayered
coatings now entails the determination of many parameters
(e.g. we shall consider a problem with 21 unknowns) that
may not be easily solved in an analytical approach. As the
models describing each material or composite are complex
parametric functions of frequency, constraints are imposed
to ensure that the materials obtained have physical signifi-
cance.

The present approach fits into the class of of constrained
multivariable, multi-objective design problems to which GA
has demonstrated remarkable applicability, e.g. [3, 10]. In
particular, we adopt binary coding which allows the control
of the search space to correspond to realistic manufactura-
bility. Moreover, we study multi-objective problems using
the technique of Pareto optimality, which yields a selection
of designs of equal merits vis-a-vis the trade-off between
reflectivity and thickness.

2. PROBLEM DESCRIPTION

Consider the multilayered coating shown in Figure 1 which
consists of M layers of different materials covering a per-
fectly electrical conductor at the base. For our purpose, the
material in the k-th layer is characterized by its dielectric
and magnetic properties, as well as its thickness, i.e. by
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Figure 1. Multilayered Coating



the triplet (εk, µk, hk) for k ∈ {1, ..., M}. In all that fol-
lows, we shall adopt the e2πft convention to describe the
propagation of an electromagnetic wave incident on a mate-
rial. Then, for homogeneous materials that either constitute
a monolayer or inclusions embedded in a host, the permit-
tivity and permeability can be written as functions of the
frequency f :

εk(f) = ε′k(f) − ε′′k(f)

= (ak +
bk

f
+ ckf) − (a′

k +
b′k
f

+ c′kf), (1)

µk(f) = µ′
k(f) − µ′′

k(f)

= αk +
βk + β′

kf

γk − f2 + γ′
kf

. (2)

where ε′k,...,µ′′
k are real-valued functions, and ak,...,c′k and

αk,...,γ′
k are real coefficients, Equation (2) is known as the

Lorentz formula. The combination of (1) and (2) models
a wide range of materials that includes lossless and lossy
dielectric and magnetic materials [6].

For composite materials,we consider models proposed
by various effective medium theories, such as the Brugge-
man and the Maxwell-Garnett models. For example, in the
Bruggeman model, if the material in layer k is composed
of spherical inclusions A with electrical resistivity ρk and
radius rk, embedded in a host B with filling factor φk, then
it has the effective permeability µk governed by the follow-
ing equation which depends on the parameters (rk, ρk, φk)
[4, 13, 14]:

φk

µA(f, rk, ρk) − µk(f)

µA(f, rk, ρk) + 2µk(f)
+(1−φk)

µB(f) − µk(f)

µB(f) + 2µk(f)
= 0.

(3)
With the above description, the problem becomes one

of parametric design. Let the various parameters defining
permittivity, permeability and thickness be collectively de-
noted vi, for i = 1, ..., n where n is the total number of
parameters. The design objective consists in manipulating
the vi’s such that the coating exhibits low refl ection. Let
then the refl ectivity cost function be defined by the average
of refl ection coefficients R(fp, θq) over a discrete range of
frequencies fp(p = 1, ..., Nf ) and incident angles θq(q =
1, ..., Nθ):

R(v1, ..., vn)
�
=

1

NfNθ

Nθ
∑

q=1

Nf
∑

p=1

R(fp, θq). (4)

R takes values between 0 and 1. The optimal coating is
therefore one that minimizes R over an admissible set A of
parameters:

R∗ = min
A

R(v1, ..., vn). (5)

In addition, the design may be subject to a penalty on
the extra weight contributed by the coating. This may be ac-
counted for through two basic approaches: in Section 3 we

impose on the design a maximum allowable total thickness.
In Section 4, we further explore the multiple-objective prob-
lem where one desires to obtain minimum refl ection with
minimum coating thickness.

We employ for the present problem a basic form of ge-
netic algorithms, i.e. with fixed-size populations, gray bi-
nary coding, and crossover and mutation operators for bi-
nary strings (see Figure 2). In addition, the selection oper-
ator is based on the principle of stochastic tournament with
replacement. The reader may refer to [5, 7], for example,
for descriptions of such an algorithm and comparisons with
other variants. In the following, we shall discuss in more
details the formulation of objective functions and constraint
penalties for the particular problem we are studying. Note
also that we work in the minimization setting, i.e. a fitter
solution has a lower fitness value.
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Figure 2. Flowchart of Genetic Algorithm with Penalty on
Constraint Violation

3. SINGLE-OBJECTIVE OPTIMIZATION

For single-objective optimization of the coating, the fitness
function of a design equals the cost function R(v1, ..., vn)
penalized by the constraint-handling process described be-
low. A design is considered non-feasible if it contains non-
physical materials or if its total thickness exceeds the al-
lowed maximum. Handling constraints by penalizing in-
stead of simply eliminating the non-feasible designs has the
advantage of allowing the latter to participate in the evolu-
tion process, thus keeping a genetically diverse population
while favoring feasible designs.



3.1. Constraint on physical admissibility

The parametric representation of materials proposed in Sec-
tion 2 entails a question on its physical admissibility. In-
deed, in order for a representation to comply with the physi-
cal law of dissipation, the imaginary parts ε′′k and µ′′

k must be
positive for all frequencies. For the Lorentz formula (2) this
condition corresponds to some algebraic constraints on the
parameters. Moreover, as (2) is an abstract form of Gilbert’s
frequency response model [6], the coefficients in (2) are not
mutually independent. For composite materials, the admis-
sibility condition becomes even more complex.

Instead of dealing with the algebraic constraints on the
parameters whose forms depend eventually on the perme-
ability function, we choose to simply compute the imagi-
nary part µ′′

k(f) over the frequency range of interest, and
define the following penalty function for the k-th layer:

Ck =















0 if µ′′
k(f) ≥ 0 ∀f,

∑

i−

|µ′′
k(fi−)|

/

Nf
∑

i=1

|µ′′
k(fi)| otherwise.

(6)

where i− are the indices for which µ′′
k(fi−) are negative.

Note that Ck equals 0 for physically admissible materials,
and takes positive values up to 1 for non-physical materials.
Then the total penalty on the coating is simply the sum:

C =

M
∑

k=1

Ck. (7)

This approach is obviously independent of the modeling
function used.

3.2. Constraint on total thickness

Let the total thickness be denoted by H =
∑M

k=1
hk on

which one imposes an upper limit Hmax. The correspond-
ing penalty function on a design is defined as

D =

{

0 if H < Hmax,

H/Hmax − 1 otherwise.
(8)

D is therefore the fraction of Hmax by which a design vio-
lates the thickness constraint.

3.3. Superiority of feasible points (SFP)

The penalty functions C and D are used to penalize the fit-
ness of a design. First, consider the following penalized cost
function:

J = R + pcC + pdD, (9)

where pc and pd are constant penalty coefficients to be cho-
sen. However, the above does not guarantee that a feasi-
ble solution has a better (smaller) fitness than a non-feasible
one. To do so, we adopt a basic SFP approach [12]:

Algorithm 1. Let J+ denote the maximum value of the cost
function (9) among the feasible solutions, and J− the mini-
mum among the non-feasible ones. Then, the SFP fitness is
given by

F = R + pcC + pdD + δSFP, (10)

δSFP =

{

0 if solution is feasible,

max(J+ − J−, 0) otherwise.
(11)

Moreover, if all solutions are feasible or if all solutions are
non-feasible, δSFP is zero for all solutions, i.e. no adjust-
ment is needed.

4. MULTIPLE-OBJECTIVE OPTIMIZATION

In this section we shall further consider the problem of mul-
tiple objectives. Indeed, here we seek a design that produces
minimum refl ection with minimum thickness. This consid-
eration is reasonable from a practical and economical view-
point. However, from a physical viewpoint, such a solution
may not exist. Indeed, for relaxation-type dielectric or mag-
netic materials, thicker coatings means lower refl ection [8].
So, in general, the two objectives are incompatible. Note
also that treating thickness as an objective function does not
exclude imposing on it an upper limit at the same time.

4.1. Aggregate Cost Function

A straight-forward approach to multiple objectives consists
in aggregating the two cost functions by a linear combina-
tion; thus, the SFP fitness function as given in (10) now
becomes:

FSFP = λrR + λhH + pcC + pdD + δSFP, (12)

where λr and λh are weights to be chosen, and δSFP is cal-
culating as defined in Algorithm 1. Optimization then pro-
ceeds in exactly the same manner as for the single-objective
problem. This approach is similar to that in [11]. It is well-
known that the solution produced by aggregation is sensi-
tive to the choice of the weights λr and λh. In particular,
choosing the coefficients requires a priori knowledge of the
relative orders of magnitude of R and H (see Section 5.1).

4.2. Pareto Optimality

Instead of aggregation, we also consider multi-objective op-
timality in the sense of Pareto [3, 5, 7]. We may in the first
place consider the fitness of a design be defined as its Pareto
rank. Note that in our context of minimization, rank zero
corresponds to non-dominated designs, and higher ranks are
assigned to successive Pareto fronts. Now, in order to ex-
tend the notion of superiority of feasible points to the cur-
rent setting, we adopt the principle that a feasible solution



necessarily dominates a non-feasible one. This yields the
following modified SFP algorithm:

Algorithm 2. Let the cost functions:

J1 = R + pcC + pdD, (13)

J2 = H + pcC + pdD. (14)

Using the same notation as in Algorithm 1, consider the
following SFP adjustments in the general case (the special
cases where all designs are feasible or all are non-feasible
need no adjustment):

δi =

{

0 if solution is feasible,

max(J+
i − J−

i , 0) otherwise;
(15)

with i ∈ {1, 2}. Then, the multi-objective SFP cost func-
tions to be used in the Pareto ranking process are simply
given by

Fi = Ji + max(δ1, δ2), i ∈ {1, 2}. (16)

Let ρ denote the Pareto rank of a design. Simple rank-
based fitness assignment may lead to genetic drift, i.e. the
populations tend to converge to a localized point on the
global Pareto front instead of spanning the whole front. To
prevent this, we adopt the fitness sharing approach based on
the principle that similar designs (according to the Ham-
ming distance) mutually decrease each other’s fitness by
competing for the same resources. Isolated solutions are
thus given a greater chance of reproducing [3, 7]. The re-
sulting shared fitness of a design has S the form:

Fshared(S) = ρ(S) + σ(S), (17)

where the sharing function σ takes values in [0, 1). The ef-
fect of sharing on a design is that its Pareto rank is deterio-
rated (augmented) by as much as it is genetically “crowded”.
However, a solution is never “demoted” to the next rank as
the augmentation is always less than 1.

5. NUMERICAL RESULTS

We present here two single-objective examples, and a third
on multi-objective optimization where we shall compare the
aggregate and Pareto approaches. The refl ection coefficients
are computed at normal incidence and over the frequency
range 1–20 GHz using a Maxwell equation solver. In the
following, let Np denote the population size1. Without loss
of generality, we shall consider in the examples that follow
a simplified form of the permittivity function (1):

εk(f) = ak − 
b′k
f

. (18)

1These examples should meanwhile be treated as numerical demon-
strations of the proposed approach; whether the resulting designs can be
practically fabricated remains to be studied.

5.1. Single-Objective Examples

In this section, we consider two examples where the fitness
function is the refl ectivity function (4).

Example 1 consists of a two-layers of homogeneous,
lossy dielectrics with permittivities described by (18). The
thickness of each layer is fixed at 5 mm. A population
size of 20 is chosen. As shown in Figure 3, convergence is
achieved after about 700 iterations, i.e. 35 generations. The
spectral refl ection coefficient is shown in Figure 5, where
one can see that 15 dB attenuation or better is achieved
mainly in the 8-16 GHz range.

Example 2 is a two-layer structure of composite materi-
als with a maximum total thickness of 5 mm. Each layer is
composed of lossy dielectric and magnetic inclusions with
properties described by (2) and (18), embedded in a lossless
host. The macroscopic properties of each composite are ap-
proximated by the Bruggeman model (3). The population
size is 100, and the refl ectivity converges to -14.7 dB in 100
generations, as shown in Figures 4. The final design is sum-
marized in the following table.

Example 2: Final design of 2-layer composites

Substrate: ε = 1.45, µ = 1.0.
Layer 1 inclusion properties, composition and thickness:
ε1 = 3.02 − 320.0

f
, µ1 = 1 + 1995.7+0.319

197.2−2+0.449
,

r1 = 1µm, ρ1 = 185, φ1 = 22.5%, h1 = 1.43 mm.
Layer 2 inclusion properties, composition and thickness:
ε2 = 3.35 − 1730.0

f
, µ2 = 1 + 1920.3+0.273

0.0−2+0.061
,

r2 = 3µm, ρ2 = 197.5, φ2 = 30.0%, h2 = 3.57 mm.

This example demonstrates the ability of the approach
to handle complex structures. Compared to the dielectric
design in Example 1, the composite structure in Example 2
yields lower refl ectivity despite having only half the total
thickness (see Figure5). Better than 15 dB attenuation is
achieved over a wider range of 4-16 GHz.

5.2. Multi-Objective Example

Here, we consider a two-layer structure of magnetic mate-
rials, each described by the lossy dielectric and magnetic
model given by (2) and (18). Three cases are considered:

Case A: Single objective, where the fitness equals the re-
fl ectivity function (4). Population size equals 100.

Case B: Linear combination of refl ectivity and thickness
through the aggregate fitness function (12), with λr=1,
λh=10−6. Population size equals 100.

Case C: Multi-objective Pareto optimality. Here, popula-
tion size equals 400.



The penalty coefficients used in Algorithm 1 or Algorithm 2,
depending on the cases, are pc = 1 and pd = 0.5.

As shown in Figures 6 and 7, Case A produces a lower
refl ectivity than Case B (R∗

A = −77.7 dB,R∗
B = −65.5 dB),

while Case B produces a thinner structure (H∗
A = 2.1 +

4.1 mm,H∗
B = 1.3 + 3.2 mm). This is due to the fact that

in Case B, as R descends below -60 dB which equals the
weight λh, the thickness becomes dominant in the aggre-
gate cost function. As a result, the aggregate method seeks a
thinner structure instead of one with lower refl ectivity. This
shows that the approach is sensitive to the choice of weights.
The spectral behavior of the final designs for Cases A and
B are compared with those of Examples 1 and 2, where one
can see that much better broad-band attenuation is achieved
by optimizing two homogeneous magnetic layers as in the
present example.

Finally, Figure 8 shows the points forming the Pareto
fronts of successive generations, which reveal a part of the
global Pareto front after 20,000 iterations. This result is not
entirely satisfactory as the Pareto front does not either in-
clude or dominate the final solutions of Cases A and B as
one would expect. The populations have a tendency to con-
verge toward the upper part of the front, in spite of fitness
sharing.[10] Nevertheless, the advantage of Pareto ranking
is evident in its ability to reveal a set of designs of equal
merit. For example, some of these yield -35 dB with a thick-
ness of only 1 mm, a result that would have been difficult to
obtain with the single-objective or aggregate methods.

6. DISCUSSION & CONCLUSION

For single and aggregate objective problems, the optimiza-
tion algorithm in this paper is similar to that employed in,
say, [11]. However, the two approaches differ in material
modeling where the cite reference employed a combination
of known materials while presently, we are optimizing un-
known materials. Comparing the results of Example 2 and
Cases A and B of Example 3, with the broad-band results
BB1 and BB2 in [11], one can say that similar or better
broad-band results can be achieved in the present approach
with two-layer structures, whereas [11] required five lay-
ers, although the net thicknesses are comparable. With re-
cent advances in composites where one may obtain desired
permittivity and permeability functions by manipulation pa-
rameters such as fill factor and grain size, we believe the
present approach offers an useful tool for determining the
target designs in material synthesis.

Nevertheless, the multi-objective problem is particularly
difficult, where simple fitness sharing is not sufficient to
explore the global Pareto front. One may consider the se-
lection sharing method in [10]. However, the front is ge-
netically diverse and may require additional mechanisms to
explore.

The present work is limited to one-dimensional optics.
Future work consists in extending to quasi two dimensions
where incidence angles are more realistically determined by
the shape. Moreover, it will be interesting to apply more so-
phisticated techniques such as parallelization and hierarchi-
cal algorithms in order to alleviate the heavy computation
loads in 2D design [15].
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Figure 3. Two-layer dielectric structure (Example 1)
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Figure 4. Two-layer composite structure (Example 2)
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Figure 5. Refl ection coefficients
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Figure 6. Evolution of Refl ectivities (Cases A & B)
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Figure 7. Evolution of total thickness (Cases A & B)
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