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Abstract

In this paper a Multi-criterion Decision Making (MCDM) model is introduced to
tackle bottleneck machines and exceptional parts in manufacturing cell formation. In
a given part-machine grouping scheme, bottleneck machines can be eliminated
through machine duplication and exceptional parts may be removed by means of
subcontracting. The developed multi-criterion model simultaneously takes into
account 4 conflicting criteria regarding: inter-cell part movement, total cost of
machine duplication and part subcontracting, overall utilization of the cells, and
imbalance of the workloads among the cells. A Multi-objective Genetic Algorithm
(MOGA) is then developed to seek for non-dominated or non-inferior solutions to
assist the decision maker in his/her final selection. Comparative results in a number
of cell formation problems show promising capabilities of the proposed solution
approach.

1. Introduction

Cellular Manufacturing (CM) is an important application of Group Technology (GT)
in which sets (families) of parts are produced in manufacturing cells or a group of
various machines, which are physically close together and can entirely process a
family of parts. Identification of part families and machine groups in the design of
cellular manufacturing systems is commonly referred to as cell design/formation.

Many solution approaches for the common cell formation problem have been
proposed during the last three decades. Readers may refer to Mansouri et al. (2000) 
[1] and Offodile et al. (1994) [2] to review these solution approaches.

One of the major problems associated with the design of independent
manufacturing cells arises due to the existence of Exceptional Elements (EE’s), i.e.
exceptional parts and bottleneck machines. The EE’s are the major cause of a



number of difficulties in further implementation of cellular systems as; intercellular
part movements and unbalance of the workload across the cells. Machine
duplication and part subcontracting, have been suggested to overcome the EE’s in a
cellular design, say by Shaffer et al. (1992) [3] and Seifoddini (1989) [4]. 

In this paper a systematic approach based on Multi-criterion Decision Making is
proposed for dealing with the EE’s in a given cellular design. The problem is
modelled as a Multi-objective Optimization Problem (MOP). The developed model
requires simultaneous optimization of competing criteria or objectives in which
usually there is no single optimal solution, but rather a set of alternative solutions.
These solutions are optimal in the wider sense that no other solutions in the search
space are superior to them when all objectives are considered. They are known as
non-dominated or Pareto-optimal solutions. A Multi-objective Genetic Algorithm
(MOGA) is then developed to find non-dominated solutions to the model. A number
of cell design problems are solved to evaluate various measures of effectiveness of
the proposed algorithm. Finally, corresponding results are presented and conclusion
is made.

2. Problem Definition
An exceptional part is a part that can not be completely processed in a single cell. A
bottleneck machine is assigned to a cell while needed by some parts from other cells.
Figure (1-a) demonstrates initial machine part incidence matrix in a 4 machines, 6 
parts problem. In Figure (1-b), the sorted matrix is shown along with a
decomposition scheme which separates all the machines and parts in two
interdependent clusters as: Cluster 1: {(M2, M1), (P1, P3, P6)}, and Cluster 2: 
{(M4, M3), (P2, P4, P5)} where M and P stands for Machine and Part, respectively.
There are two exceptional parts (P1 and P4) and two exceptional (bottleneck) 
machines (M2 and M4) in the decomposition scheme proposed in the Figure (2-b).
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Figure 1. Initial and final machine-part incidence matrix



2.1. Assumptions

It is assumed that the cellular system is to be formed based on an existing Job Shop
facility in which a grouping scheme is proposed for machine cells and part families.
Moreover part subcontracting and machine duplication have been considered as two
possible alternatives for the elimination of EE’s. Finally it is assumed that partial
subcontracting is not allowed, that is if an exceptional part is to be subcontracted, all
of its demand should be supplied by subcontractors.

2.2.  Problem Formulation

In this section, the multi-criterion model for tackling the EE’s is formulated.

2.2.1.  Notation
 Set of indices

i: Index for machine types, i=1,...,m
j: Index for part types, j=1,...,p
k: Index for cells, k=1,...,c

 Decision variables
Two binary decision variables are defined to formulate the problem as : Xj = 1 if
part j is subcontracted and Xj=0 otherwise; Yik=1 if machine i is duplicated in
cell k and Yik=0 otherwise.

 Set of parameters

2.2.2. Objective Functions
This sub-section gives a brief explanation of the importance and formulation of the
objectives included in the MCDM model:

Dj : annual demand for part j;
Sj : incremental cost of subcontracting a unit of part j;
tij : processing time of a unit of part j on machine I;
PMji : number of intercellular transfers required by part j as a result of machine type i

not being available within the part’s manufacturing cell;
Mi : annual cost of acquiring an additional machine I;
CMi : annual machining capacity of each unit of machine i (minutes);
HFk : set of parts assigned to cell k;
MCk : set of machines assigned to cell k;
GFk : set of parts assigned to the cells other than k but require some of the machines in

cell k;
BMk : set of the bottleneck machines required by the parts in cell k;
EPk : set of exceptional parts in cell k;
EMj : set of bottleneck machines required by the exceptional part j;
CSk : number of machines assigned to cell k;
MCS : maximum cell size;
c : number of cells.



Objective 1:  minimizing intercellular parts movement
Intercellular movement of parts is one of the major problems associated with the
EE’s in a cellular design, which complicates production and inventory management
functions. Minimization of the intercellular parts movement is sought through the
following objective function:
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Objective 2: minimizing total cost of machine duplication and part subcontracting
Any reduction in intercellular parts movement by machine duplication and / or part
subcontracting will result in cost increment. Hence minimization of sum of part
subcontracting and machine duplication cost is included in the model as follows:

Objective 3: minimizing overall machine under-utilization
Since machine duplication and / or part subcontracting will deteriorate level of

utilization in the cellular system, minimization of the overall machines under-
utilization, which is equivalent to maximization of their overall utilization, is taken
into account employing the following objective function:
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where OU stands for the Overall Utilization and:
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denotes the Utilization of Cell k.

Objective 4: minimizing deviations among utilization of the cells
Significant differences in the level of utilization among the cells may result in major
problems in the managerial functions the following objective function is included to
minimize deviations among the cells’ level of utilization:
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Among the aforementioned objectives, minimizing intercellular parts movement
(objective 1) is of special importance due to the fact that intercellular movements are
the main cause of cells interdependencies. However any effort to reduce intercellular
parts movement by means of machine duplication and part subcontracting, increases
cost, deteriorates overall utilization of machinery, and imbalances levels of
utilization among the cells. Objectives 2, 3 and 4 have been included in the model to 
overcome these side effects, respectively.

2.2.3. Constraints
Two sets of constraints are included in the model as follows:
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Constraints (6) prevent cell sizes from exceeding a pre-determined upper bound.
Relations (7) restrict the decision variables to get either a value of 0 or 1.  

Complexity of the model along with extensive computations required to find
satisfactory solutions, justify application of an efficient solution approach especially
in the real world problems. For this purpose, a solution approach based on Multi-
objective Genetic Algorithms was developed, which will be discussed in the
subsequent section.

3. The Proposed Genetic Algorithm Approach 
In simple GAs, a candidate solution is represented by a sequence of genes and is
known as a chromosome. A chromosome’s potential as a solution is determined by
its fitness function that evaluates a chromosome with respect to the objective
function of the optimisation problem at hand. A judiciously selected set of
chromosomes is called a population and the population at a given time is a
generation.

In order to apply genetic algorithms to the developed MCDM model in a
problem with n decision variables, a chromosomal structure consisting n genes is
considered. Each gene in the chromosome may take either a value of “0” or “1” that 
reflects value of its corresponding binary decision variable.

The objective values are normalized so that they lie in the interval of 0 and 1 by 
means of the following formula:
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where: Fi is the fitness value, fi is the objective value and Ci is the normalizing factor
concerning the objective i.

3.1. The XGA Algorithm

This section introduces the main steps of the developed MOGA called XGA.

3.1.1. Notation
Following notation have been used in describing the XGA algorithm:

Pop : Population;
PS : Population Size;
ENSi : Expected Number for the Selection of individual i;
MP : Mating Pool;
CNDF : Current Non-Dominated Front;
DFV : Dummy Fitness Value;
NCi : Niche Count of the individual i ;
di,j : Distance between the individuals i and j;
NP : Niching Parameter;
Sh[di,j] : Sharing value between the individuals i and j;
SFVi : Shared Fitness Value of the individual i;
PSelecti : Probability for the Selection of the individual i;
ES : Elite Set;
ITP : Initial Transfer Probability;
EN : Epsilon Niche of the individuals in the Elite Set (ES);
DF : Degrading Factor for Transfer Probabilities of the individuals in the EN

of a selected individual;
MS : Mating Set;
ESS : Elite Set Size;
CR : Crossover Rate;
IP : Inversion Probability;
MR : Mutation Rate;
SNDF : Successive Non-Dominated Fronts (number of successive generations in

which all non-dominated solutions of the current generation have
remained non-dominated when compared against the non-dominated
frontiers of previous generations);

Min_SNDF : Minimum number of the SNDF.

3.1.2. Steps of the XGA Algorithm
Major steps of the XGA algorithm is illustrated in a flow chart presented in Figure 2. 
Some steps of the algorithm are discussed in more details in the following sub-
sections.



Figure 2. Flow chart of the XGA algorithm
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3.1.3. Calculation of Shared Fitness Values   
The Shared Fitness Values (SFVs) are calculated based on the non-dominated
sorting method of Srinivas and Deb (1994) [5].

3.1.4. Selection
For selection, a novel scheme is employed that makes use of the Reminder
Stochastic Sampling Without Replacement in conjunction with a new Elitism
operator, called RSSWR_UE. Major steps of the selection scheme are depicted in
Figure 3.

3.1.5. Recombination
All selected individuals are then shuffled and mutually recombined, with probability
CR, through single-point crossover. In single-point crossover, the two selected
parents are cut from a random point along their length into two sections. Section 1 of 
parent 1(2) attaching section 2 of parent 2(1) form offspring 1(2). A small portion of 
genes in the population are then mutated according to the probability MR from “1” 
into “0” and vice versa through the mutation operator.

3.1.6. Updating the Elite Set
In many multi-objective problems, size of the elite set and how to update the set so
that its size does not exceed a predetermined limit have significant effect on the
elitism. The updating mechanism of the Elite Set in the XGA algorithm employs the
notion of niching to improve diversity of the individuals in the set.

3.1.7. Stopping Criteria
The algorithm terminates either as soon as it has been converged to a robust non-
dominated front or a predetermined number of generations (MG) have been
completed. A robust non-dominated front has been reached if the SNDF reaches the
Min_SNDF. The SNDF is updated in each generation.

3.2.  Parameter Setting

In order to find a good set of values for the parameters of the XGA, two medium-
sized cell design problems were selected. Their true non-dominated fronts were
found through total enumeration and employed as the references for the evaluation
of the algorithm. Three measures for judgement on the effectiveness of the set of
parameters were used as follows:

MP1 : Quality of non-dominated solutions: ratio of true non-dominated solutions in the
final non-dominated front of the algorithm

MP2 : Diversity of solutions in the final non-dominated front, measured by the number of
solutions in the front

MP3 : CPU time



Figure 3. Flow chart of the selection scheme

Considering these measures, extensive experiments were conducted with various
combinations of the parameters and the set of parameters was selected as: PS=150, 
CR=0.50, MR=0.03, NP=0.60, IP=0.00, Min_SNDF=15, EP=1.00, ITP=0.10, 
EN=0.30, ESS=50 and DF=0.80.
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4. Evaluation of the XGA Algorithm
In order to evaluate the XGA algorithm, 6 cell formation problems in different sizes 
were selected from the literature. Major characteristics of the test problems are
presented in Table 1. The size of solution space associated with the test problems 
ranges from a space having 210 = 1024 solutions to a space with 243 = 8.796× 1012 

solutions. Moreover maximum number of mutual comparisons required for total
enumeration of these problems, ranges from (210!)/[(2!)(210-2)!] = 523,776 to 
(243!)/[(2!)(243-2)!] = 3.869× 1025 where complete enumeration is impossible.

Table 1. Main characteristics of test problems

Performance of the XGA was compared against three multi-objective genetic
algorithms, namely: VEGA (Schaffer 1985 [12]), NPGA (Horn and Nafpliotis 1993 
[13]) and NSGA (Srinivas and Deb 1994 [5]). All the algorithms were coded in C++ 
and implemented on a Pentium-II (Celeron) CPU at 333 MHZ with 64 MB of RAM 
under Windows 2000. For the reference algorithms the parameter set employed by
Zitzler et al. (2000) [6]  was adopted. Zitzler et al. (2000) [6] employed these set to 
compare a number of MOGAs, including those selected for our comparisons, on a
number of multi-objective test problems. It should be noted that no further tuning
were applied to the reference algorithms for current research.

To evaluate quality (MP1) of the non-dominated front found by the algorithm, a
reference set for every problem was formed. In small to medium sized problems, i.e.
the problems with less than or equal to 15 decision variables, the reference sets 
werecreated through total enumeration. Concerning the large problems, i.e. the
problems with more than 16 variables, where total enumeration was practically 
impossible, a refining scheme was devised to establish a set of near non-dominated
frontiers. In the refining scheme, successive runs of the XGA were conducted, each
run using a randomly selected set of parameters. Non-dominated solutions of the
first run were adopted as a preliminary reference set. Adding non-dominated
solutions of the next run into the reference set, a mutual dominance check was
performed between the old members of the set and the new entrants. Dominated
solutions were removed and the remaining solutions formed the new reference set.
This procedure was repeated 50 times for each problem and the final reference set 
was adopted for later comparisons of the algorithm.

Quality of each run (MP1) of an algorithm is then calculated by comparing the
final results against the corresponding reference sets. The diversity was simply
measured by the number of non-dominated solutions found and represented by MP2.

Number of:Problem Reference
Decision Variables Machines Parts Cells

VN92 [7] 10 15 30 3
Bur69 [8] 15 20 35 5
KLA97 [9] 19 24 40 7

ACGV91 [10] 30 12 19 3
Sei89 [4] 35 16 43 5
BC91 [11] 43 20 35 4



Table 2. Comparative results

CPU time (MP3) was also measured and used as the third measure. Each problem
was then solved 20 times by each algorithm. Table 2 presents the average results of 
these runs.

In order examine the mean difference between the measures of XGA and those
of the reference algorithms (using the parameter set of Zitzler et al. (2000) [6]), 
pair-wise comparisons were made at significance level α = 0.05 employing one-tail
t-test. Table 3 shows summary of these comparisons.

As it can be derived from Table 3, XGA with confidence level of 95% dominates 
the reference algorithms when parameter set of Zitzler et al. (2000) [6] is used. It is 
superior to the reference algorithms regarding MP1 measure from 22.2% to 65.1%. 
In this relation, NSGA comes next followed by VEGA and NPGA respectively.
Concerning MP2, XGA shows better performance over the others from 19.8% to 
53.1%. NSGA once again takes the second position, followed by NPGA and VEGA. 
With respect to the MP3 measure, XGA outperforms the reference algorithms from 
28.9% up to 54.2%. Considering this measure, VEGA takes the next place followed 
by NSGA and NPGA respectively.

Table 3. Summary of paired comparisons between XGA and reference algorithms

Superiority of XGA over reference algorithms at α = 0.05 based on:Reference
algorithms MP1 MP2 MP3

NSGA 22.2% 19.8% 31.7%
VEGA 34.0% 53.1% 28.9%
NPGA 65.1% 33.4% 54.2%

5. Conclusion
In this paper, the problem of dealing with exceptional elements in the design of
manufacturing cells was addressed as a Multi-criterion Decision Making (MODM)
problem. Due to the conflicts among the objectives and complexity of the developed
model, a Multi-objective Genetic Algorithm (MOGA) was developed to seek for
non-dominated or non-inferior solutions. The developed MOGA was evaluated in a

Performance Measures of the Algorithms

Problem  NPGA VEGA NSGA XGA

MP1 MP2 MP3 MP1 MP2 MP3 MP1 MP2 MP3 MP1 MP2 MP3

VN92 0.532 18.3 171.7 0.467 8.8 31.2 0.766 22.8 32.3 0.983 30.6 18.9
Bur69 0.087 28.3 247.2 0.071 8.5 37.5 0.700 54.6 38.2 0.789 75.3 22.8
KLA97 0.032 33.5 303.8 0.051 13.4 44.8 0.240 50.9 47.9 0.396 74.8 17.7

ACGV91 0.046 56.1 514.1 0.441 29.7 33.3 0.220 67.9 40.1 0.599 101.4 22.5
Sei89 0.073 47.4 563.0 0.445 35.5 48.6 0.359 67.0 58.2 0.695 106.5 30.7
BC91 0.029 57.5 701.1 0.169 34.1 53.6 0.216 69.2 67.2 0.596 97.1 24.8



number of cell design problems and its results compared with those of three other
MOGAs. The obtained results were promising in three aspects of performance, i.e.
quality, diversity and CPU time.
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