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Abstract

Euvolutionary Algorithms are often well-suited for op-
timization problems. Since the mid-1980’s, interest
in multiobjective problems has been erpanding rapidly.
Various evolutionary algorithms have been developed
which are capable of searching for multiple solutions con-
currently in a single run. In this paper, we proposed a
genetic symbiosis algorithm (GSA) for multi-object op-
timization problems (MOP) based on the symbiotic con-
cept found widely in ecosystem. In the proposed GSA
for MOP, a set of symbiotic parameters are introduced
to modify the fitness of individuals used for reproduction
s0 as to obtain a variety of Pareto solutions correspond-
ing to user’s demands. The symbiotic parameters are
trained by minimizing a user defined criterion function.
Several numerical simulations are carried out to demon-
strate the effectiveness of proposed GSA.

‘1 Introduction

Many real-world problems involve simultaneous opti-
mization of several incommensurable and often compet-
ing objectives. Often, there is no single optimal solution,
but rather a set of alternative solutions. These solutions
are optimal in the wider sense that no other solutions
in the search space are superior to them when all objec-
tives are considered. They are known as Pareto-optimal
solutions. A tool exploring the design space for Pareto-
optimal solutions is very useful to aid the designer in
arriving at a final design.

Since the mid-1980’s, there has been a growing inter-
est in solving multicriteria optimization problem using
evolutionary approaches. Several algorithms are avail-
able which are capable of searching for multiple Pareto-
optimal solutions concurrently in a single run. For get-
ting a variety of Pareto-optimal solutions, let us pay
attention to ecosystems ghich hold a very wide. diver-
sity. Every species seeks their habitants called niche by
adapting themselves to the ever changing environments.
And in the niche they are interacted with one another
by competing, exploiting and benefiting. These rela-
tions are generally called symbiosis. In this paper, we
present a genetic algorithm (GA) for multiobjective op-
timization problems, in which a Genetic Symbiosis Al-
gorithm (GSA) [1] and Pareto-based Ranking method
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[2] are adopted and it scarches for a variety of Parcto-
optimal solutions based on the symbiotic concept found
in the ccosystems.

GSA has been developed to obtain many kind of so-
lutions for optimization problems, which are optimal in
oue case or suboptimal in another case depending on
the user’s requests. In this paper, the GSA is extended
to treat not only concentrative optimization problems
but also multi-objective optimization problems, where
many kinds of Pareto-optimal solutions can be obtained
according to the user’s requirements.

This paper is organized as follows. Next section intro-
duces key concepts used in the field of evolutionary mul-
ticriteria optimization. Basic idea of using the concept
of symbiosis to modify the fitness is described in section
3. Section 4 states symbiosis parameters, and section
5 is devoted to summarize the training method RasID
[3] mainly used for training symbiosis parameters. Sec-
tion 6 gives the simulation results of some general mul-
tiobjective problems. The last section offers concluding
remarks and future perspectives.

2 Multiobjective Problem
2.1 Definitions

A general multi-objective problem is formulated by

(fl(x)’f'l(x)v T fL(x))

(z1,22,...,zar) € X

min f(x)

subject to  x
1

where f(x) is multi-objective function vector, fi(z) is {th
objective function, x is input vector, L is the number of
objective functions, M is the dimension of input space.

2.2 Pareto Optimality

The scalar concept of optimality does not apply di-
rectly in the multiobjective setting. A useful replace-
ment is the notion of Pareto optimality. Essentially, a
input vector x* € X is said to be Pareto optimal for
(MOP) if all other vectors x € X have a higher value
for at least one of the objective functions fi(x) , or else
have the same value for all objectives. Formally speak-
ing, we have the following definition:

A point x* € X is said to be (globally) Pareto optimal
or a (globally) efficient solution or a non-dominated or
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a non-inferior point for (MOP) if and only if there is no
x € X such that fi(x) < fi(x*) for all l € {1,2,...,L},
with at least one strict inequality.

Pareto optimal points are also known as efficient,
non-dominated, or non-inferior points.

2.3 Multiobjective Ranking Methods

With a single objective problem, according to fitness,
the genetic algorithm can allocate that the fitter mem-
bers of the population have higher chance of producing
more offspring than the less fit members. However, with
multiobjective problems, every solution has a number of
fitness values, one for each objective. This presents a
problem in judging the overall fitness of the solutions.

Most researchers of genetic algorithm are favor to the

problem of ranking populations. Pareto-based ranking

was first proposed in [4]. The fitness of the separate ob-
Jjectives are treated independently and never combined,
with only the value for the same objective in different
solutions being directly compared. Solutions are ranked
into 'non-dominated’ order, in which the fittest is the
solutions dominated the least by others.

However, various evolutionary algorithms can only
be capable of searching for multiple solutions in a single
run because of Genetic Drift. In the next subsection, we
give some explanation about the effect of Genetic Drift
in solving multicriteria optimization problems.

2.4 Genetic Drift

Genetic drift is a term borrowed from population ge-
netics where it is used to explain changes in gene fre-
quency through random sampling of the population. It
is a phenomenon observed in GA due to the stochastic
nature of the selection operator, and is one of the mech-
anisms by which the population converges to a single
member.

For various evolutionary algorithms for MOP, we can
analyse them as two steps. The first step is when not all
points x are Pareto optimal points and the second step
is when all points x are Pareto optimal points. Let us
pay attention to the second step, all points are non-
dominated or non-inferior, so each point has a same
chance of producing offspring and we can consider the
offsprings of them are random selected. If we decou-
ple the effect of mutation and crossover, we can see the
effect of Genetic Drift directly.

Alex Rogers and Adam Priigel-Bennett [5] have
pointed out that the convergence of population is due to
two factors. One factor is selection pressure producing
multiple copies of fitter population members while the
other factor is independent of population member fit-
ness and is due to the stochastic nature of the selection
operator-genetic drift. And the method of calculating
the convergence rate of genetic drift in terms of chang-
ing population fitness variance has been developed in
the paper [5]. Using this method, it is obviously shown
that all points converge to a single run in the second
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Fig. 1. Structure of GSA for MOP.

step and the rate of convergence is determined by the
selection schemes.

3 Basic Structure of GSA for MOP

As presented in the previous section, all Pareto so-
lutions are non-dominated, so the selection pressure
equals 0 in the second step. However paying attention
to ecosystems, we can find that the selection pressure
can be produced not only some objective conditions
such as temperature, food, but also some interactions
among species and some interactions among objective
conditions. So in this paper, the symbiosis parameter
01i; and 0., are introduced. The symbiosis parameter
0,:; represents the symbiosis relations which is devel-
oped in [1], such as competition, exploitation and ben-
efiting between the individuals and the symbiosis pa-
rameter 6,,; describes the interactions among objective
functions. These parameters can change the selection
pressure and hold Pareto solutions in a wide diversity.

As described in Fig.1, GSA for MOP is structured in
such a way that there is an outer loop for training sym-
biosis relations besides the main GA loop which includes
the calculation of symbiosis parameters.

In the Main GA loop, we use symbiosis parameters
0,;; and 0,,,; to modify the fitness and use the modified
fitness to calculate rank of each individual. Reproduc-
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Fig. 2. Pareto-based ranking.

tion is done as in the ordinary GA after diversification
processing such as mutation and crossover. In the outer
loop, the symbiosis relations are trained by using a mod-
ified random search method called RasID [3]. In this pa-
per, optimization of real coded functions is considered.

3.1 Ranking Population

The rank of each individual is calculated based on
the modified fitness of individuals. The ranking method
presented in [2] is used for this calculation; if individ-
ual ¢ dominates n other individuals, then the rank of
individual ¢ is 1 + n. Figure 2 shows an example of the
Pareto-based ranking.

3.2 Fitness Modification

We use symbiosis parameters 0;;; and 0,; to modify
the fitness (1,...,,..., L) of each individual as follows.

F (@) =D Omiles) + Y Ous(ei)lfulzs)  (2)

meL iEN

where ; is phenotype or genotype of individual j, fi(x;)
is fitness of individual j for function ! before modifi-
cation, f7(z;) is fitness of individual j for function [
after modification, 0 (z;) is function symbiosis param-
eter from function m to function I, 8;;(x;) is genetic
symbiosis parameter for function ! from individual 3 to
individual j, N is the Number of individuals, L is the
number of functions.

4 Symbiosis Parameters

4.1 Symbiosis Parameter 6,,,

As stated in the previous section, symbiosis parame-
ter 6,,; describes the interactions among objective func-
tions. We can calculate it from distance fn(x;) of
fi(z;) and fm(z;) for each individual j by using fuzzy
inference as follows.

If fm[(zj) is Fy then 0y, is O,
m,le LandqgeQ (3)

Membership functions of fuzzy set F; and O, are as
follows.

(fml - lLM)Q

froFu) =e 24 (4)
_ (0111[ _Aﬂ'9q)2
forlOm) = 2% (5)

where

fml = fnl(-rj) - fl(xj)

r fml

fml - !fmax - fmin'

fmin .<_ f'm(xj)7 fl(xj) S fmax

Q is the number of fuzzy rules

In the fuzzy inference, Gaussian membership func-
tions are adopted for if part and then part of the fuzzy
rules, and 6,,; can be calculated by (3)-(5) using the
following center-of-gravity method.

Z ffq(f—ml) Hoq Taq

Omi = ace = (6)
l Z Frq(fmi) 00q

q€Q

4.2 Symbiosis Parameter 6;;;

Since symbiosis 8;;; describes the interactions among
individuals, we can calculate it from distance 7;; of x;
and z; and distance fi;; of fi(z;) and fi(z;) by using
fuzzy inference as following rules.

If ri; is Ry and flij is Fiq then 65 is 014
,,jENand g€ Q (7).

Membership functions of fuzzy set Ry, Fiy and O, are
as follows.

 (Tij — prtg)?

frig(Ti5) = e 203“’ (8)
_ (fuj = pr1q)?
_ 2
frig(fiz) = e 2%51q 9)

B (815 — potg)?
- 2
foig(8ii;) = e 29514 (10)
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where

Tij = Z (Tim — Tjm)
mechM
Tij

r_ij = v
A[(mmax - Imin)

fuj = filz:) — filxy)

7 fuij

fli] B ,fmax - fmin’

Zmin < Tim, Tjm < Tmax

fmin < fi(@i), fi(25) < frmax

Q is the number of fuzzy rules

M is the dimension of input space

Symbiosis parameter 6;;; can be calculated by (7)-
(10) using the following center-of-gravity method.

D {Frial#5) 0 Fria(Juss)} porg 61

by = =2 (11)

> a7 0 fia(Fuig)y o0

q€Q

5 Learning of Symbiosis Relations

From the previous section, it has become clear that
symbiosis parameter can be calculated by the inference
rules that have many membership function (MF) param-
eters like tirq, 0rq5 Hog, 06q; rig, Origs Hflg, Oflg, Holg
and og;q. Learning of symbiosis relations here means
that MF parameters are trained to meet the designer’s
requirements on the distribution of the individuals.

5.1 Criterion Function

User’s requirements can be described as criterion
functions. For example, we can give a criterion func-
tion as follows.

L = kr)_ R(z) (12)
jEN
+kege ¥ 4 kv Y (Dmg(x;) — Ef)?
JEN
+kere 5 kv Y (Dme(as) — Er)?
JEN
where

Dy(ij) = [ (filz:) = fulz;))?

leL
Doys(x;) = min{Dg(ij)} ¢ €N
1
Er=+ > Dus(z;)
JEN
D, (if) =135
Door(zj) = min{D,(i5)} i€ N
1
Er = N Z Dmr(zj)

JEN

where R(z;) is the rank of individual j. kg, kgy, kvy,
kgr, kvr, « and B are the weighting factor. Dy (ij) and
D,(ij) are the distance in the gnome and the fitness
space for individual j. Dps(z;) and Dp.(z;) are the
minimum distance for individual j.

In this criterion, we can consider the individual i
which is the nearest to individual j in the genome or
the fitness space as the neighbor of individual j in the
gnome or the fitness space. The expectation of Dy, (z;)
and Dp,r(z;) is trained to maximum and the variance
of D, s(z;) and D,y,-(z5) is trained to minimum. It can
make the solutions well-distributed. On the other hand,
minimizing the sum of rank for each individual can get
Pareto solutions. Of course, it is the most important
condition, so we should make the weighting factor kg
larger than others. The weighting factor kg, kvy, kgr,
kv can be changed by user’s requirements. So this cri-
terion function means searching a variety of Pareto so-
lutions and make them well-distributed in Pareto space.

5.2 Learning Algorithm: RasID

The gradient-based method is often used to train pa-
rameters, but the gradient information cannot be avail-
able in the proposed model. In this paper, we train
the MF parameters by using a modified random search
method called RasID (Random Search with Intensifica-
tion and Diversification)

RasID(Random Search with Intensification and Di-
versification) is a kind of random search optimization
methods and executes intensified and diversified search
in a unified manner using information on success and
failure of the past searching. Basic idea of RaslID is that
it continues to iterate the searching in the following way.
When there is quite a possibility of finding a better so-
lution around the current one, intensified search is exe-
cuted near the current solution, and when finding a bet-
ter solution can not be expected because of falling into
local minima, then diversified search is executed looking
for a better solution. One of the distinguished features
of RaslD is that the probability density function for ran-
dom searching is changed adaptably depending on the
success and failure information of the past searching.
So, by using RasID, gradient calculation is not needed,
faster computation is expected and escaping from local
minima becomes possible.

5.3 Learning Procedure

Summarizing the learning procedure, MF parameters
are trained in order to minimize the criterion function
L obtained by execution the main GA procedure, that
is, the inner loop of GSA for MOP in Fig. 1. In other
words, first the main GA loop procedure is carried out
with MF parameters being fixed until the solution is ob-
tained. Then, MF parameters p, and o, are trained to
minimize the criterion function L. And, the above in-
ner loop and outer loop calculations are done iteratively
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Fig. 3. GSA for MOP simulation 1.

until sufficient symbiosis relations are obtained.

6 Simulations

6.1 Simulation 1
In simulation 1, a very simple test function for mul-
tiobjective optimizers is defined as follows

min (fi(x), fo(x), fa(x))
fi(z) = (z-08)°
f2(z) = (z — 0.85)°
f3(z) = (z - 0.9)°
z €10,1]

where

Obviously, the Pareto-optimal points are located in the
range z € [0.8,0.9]. In this simulation, the number of
individuals N is 30, the number of generations is 500,
and the number iterations for RasID training MF pa-
rameters is 1000. Mutation rate is 0.05, and as for
crossover, Michalewicz crossover [6] is used because of
the real value coding and kg = 10 and kgy = kyy =
kgr = kyr=1and a = 8 = -50.

The results are shown in Fig.3. It can be observed
that GSA for MOP is able to well approximate the
Pareto-optimal front.

0.02°
Fig. 4. GSA for MOP simulation 2.

6.2 Simulation 2
A two-dimension test function for multiobjective op-
timizers is defined as follows.

min

where

(fl(l'vy): f2($7 y)v fS(xvy))
filz,y) = (z —0.8)2 + (y — 0.6)°

folz,y) = (z — 0.85) + (y — 0.7)2
falz,y) = (z — 0.9)2 + (y — 0.6)°
z,y € [0,1]

In simulation 2, the number of individuals N is 30, the
number of generations is 500 and the number of itera-
tions for RasID training MF parameters is 1000. Mu-
tation rate is 0.05, and as for crossover, Michalewicz
crossover [6] is used because of the real value coding
and kgp =1 and kgy = kyy = kgr = ky, = 0. It means
we don’t consider the distribution of solutions.

The results are shown in Fig.4. It is clear that so-
lutions are searched in a single run as the conventional
evolutionary algorithms.

6.3 Simulation 3

Simulation 3 uses the same two-dimension test func-
tion and initial conditions with simulation 2 except
kEf = kv[ = kg, = ky, = 0.1 and a = /3 = —-50.
It means we consider the distribution of solutions.
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The results are shown in Fig.5. It can be observed
that GSA for MOP is able to well approximate the
Pareto-optimal front according to the criterion function.
In other words, the results are what we expect to get.

7 Conclusion

In this paper, GSA for MOP which is based on the
concept of symbiosis found widely in ecosystems is pre-
sented. It can approximate the Pareto-optimal front to
user’s requirement.

Distinguished points of GSA for MOP are that (1)
calculation of ranking is executed using the modified fit-
ness f{(z;) instead of the original fitness fi(z;), (2) sym-
biosis parameter is calculated by fuzzy inference, and
(3) fuzzy parameter can be trained by RasID learning
to realized the required distribution in the gnome and
the fitness space.
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