Rule Extraction from Neural Network by
Genetic Algorithm with Pareto Optimization

Urszula Markowska-Kaczmar Pawet Wnuk-Lipinski

Wroclaw University of Technology, Poland
kaczmar@ci.pwr.wroc.pl

Abstract. The method of rule extraction from a neural network based
on the genetic approach with Pareto optimization is presented in the
paper. The idea of Pareto optimization is shortly described and the de-
tails of developed method such as fitness function, genetic operators and
the structure of chromosome are shown. The method was tested with
well known benchmark data sets. The results of these experiments are
presented and discussed.

1 Introduction

In some application of neural networks (NN) the fundamental obstacle is the
trouble with understanding the method, in which the solution is produced by
NN. This is the reason to develop methods extracting knowledge from NN in the
comprehensible way [3], [2], [4]. Often it has the form of propositional rules. In
the last few years many rule extraction methods were developed. The expressive
power of extracted rules varies depending on the method. Many of them are
dedicated to problems with binary attributes [6] or they need special training
rule [5], so the need for developing an efficient method of rule extraction still
exists.

In the paper we describe new rule extraction method based on evolutionary
algorithm and Pareto optimization, called GenPar!. Genetic algorithm (GA) is
the well known technique for searching single optimal solution in a huge space of
possible solutions. In the case of rule extraction we are interested in acquiring the
set of rules and satisfying different criteria. This possibility offers multiobjective
optimization in Pareto sense [7].

2 Multiobjective Optimization in Pareto Sense

A a lot of problems require to make allowances for different objectives f;(i =
1,.., k). Sometimes they are mutually exclusive. In most cases there may exist
several comparable solutions representing different trade-offs between objectives.
In the Pareto approach each individual is evaluated for each single objective f;.

! This work was supported by Polish Committee for Scientific Research under grant
number 4 T11 E 02323

The quality of the specific solution is expressed by the objective vector. The
solutions can be categorized as dominated or nondominated. The solution a is
dominated if there exists other solution b and the following is satisfied: f;(a) <
fi(b) for each 1 <3 <k. If the solution is not dominated by other solution it
is called nondominated or Pareto-optimal [7]. It represents the solution, which
is the best for all objectives. The problem is how to find nondominated vectors.
One of the possible approach is its calculation as a product of components f; of
the objective vector, which is implemented in GenPar.

3 Basic Concepts of the GenPar method

GenPar is the method of a NN description in classification problems by means
of genetic algorithm. For that reason NN produces the training examples for
developed method. In other word, it is used as an oracle for the proposed rule
extraction method. General idea of GenPar in pseudocode is presented in Table
1. It can be easily noticed that the evaluation of one individual (set of rules)
needs a cycle, which is composed of some steps. At the beginning, the chro-
mosome is decoded to a rule set. Afterwards, the set of training patterns are
applied to the rule set and NN. Each individual is evaluated on the base of accu-
racy (interpreted as fidelity decreased by the number of misclassified examples)
and comprehensibility (expressed by the number of rules and the number of
premises). Then, the algorithm searches for nondominated individuals and cal-
culates the global adaptation value for each of them. In the last step individuals
are drawn to the reproduction and finally by applying genetic operators the new
population is produced.

3.1 The form of chromosome

Each rule has IF — THEN form. The body of the rule is a conjunction of premises.
Each premise imposes a constraint on the values of attribute given on the neural
network input. After THEN stands a class label (code) and it forms the con-
clusion part of the rule. For the real type of attribute a; the premise shows the
range of values [@imin; Gimaz], for which the rule is active. For attribute b; of
enumerative type premise contains the subset B; of values, for which rule can
fire.

In the GenPar the hierarchic way of coding is applied. On the first level
there is a list of genes, which codes the set rules (Fig.1). The second level is
created by genes representing single rules. That form of an individual produces
the solution directly by decoding a chromosome but it increases the complex-
ity of the chromosome. Even so, we implemented the chromosome in that form
because GA is very fast searching wide spaces of solutions and the perspective
to obtain the set of rules directly from one chromosome seems very promising.
On the second level a code of a single rule is composed of genes representing
premises (constraints set upon attributes) and one gene of conclusion. Before
each gene representing real type attribute stands flag (A). It can take two values

Table 1. Pseudocode of the Genpar method

For every individual in the population do
Decode genotype in the rule set
For every pattern do
Calculate the neural network response
Calculate the rule set response
Compare both responses
End {For}
Calculate the accuracy part of the fitness function
Calculate the comprehensibility part of fitness function
End {For}
While in the base population exist individuals do
Find nondominated individuals in the base population
Set nondominated individual’s fitness as:
1/(number of nondominated individuals +
number of earlier evaluated individuals)
move evaluated individuals to the temporary population
End {While}
base population := temporary population
While size of the offspring population is less than size of parent’s population do
Draw two parents from parent’s population
Make offspring from the drawn parents
Add that offspring to the offspring population
End {while}
the offspring population becomes the base population

0 or 1. Only when it is set to value 1 the premise is active. The flag is followed
by two limits of a range [@imin; Gimaz|. Enumerate parameters are coded in the
bit sequence form, where for every possible value of the attribute stands one bit.
If a bit is set to 1, rule is active for that value of attribute. Binary attribute is
treated as enumerative one.

3.2 Genetic operators

In the GenPar two genetic operations are implemented. That is crossover and
mutation. Because the individual is a list of genes with variable length, the
operators differ from their standard form. Individuals are selected by applying
roulette wheel method. Because of individuals have different genotype length, we

First : g \ - A

level ‘Gene ofrule | Pointer | |Gene of rule | Pointer f**| Gene ofrule | Null
\j

1See;ce(ind A‘ Premise ‘ A‘Premise ‘ ceenes ‘ A‘ Premise. ‘ Conclusion

Fig. 1. The form of chromosome in the GenPar

have to assure that both parents have equal gene contribution in the offspring
chromosome. During the crossover, the offspring chromosome is created by a
random choice of a gene from one of parents according to (1), till to the length
of shorter parent.

X! when p<1-— "2
Y, = ? r1+72 1
! {XZ2 in other case (1)

In (1) X} is i-th gene of the first parent; X? is i-th gene of the second parent; Y;
is i-th gene of offspring; 71 is the number of genes coding rules of the first parent;
9 is the number of genes coding rules of the second parent; u is a random number
between 0 and 1. Genes of longer parent that do not posses their counterparts at
the second parent are copied to the offspring chromosomes with the probability
p given in (2), where the meaning of symbols is defined by (1).

T2

(2)

P= 1 T1 + T2
There are two forms of mutation. The first one, on the higher level, adds or
deletes a gene representing a single rule. On the second level it is realized as
a random change of binary values like: flag or a bit in the binary sequence for
enumerative parameters. Limit values of real attributes, which are implemented
as 32 bits numbers, are mutated in the same way.

3.3 Fitness Function

Individuals are evaluated because of two objectives: accuracy and comprehen-
sibility. Because of Pareto optimization, for both objectives single evaluation
function is created. The first one called accuracy expresses the fidelity between
classification based on the set of rules and that one made by NN for every pat-
tern, which is decreased by the number misclassified patterns (3).

accuracy = fidelity — misclassified (3)

In other words, fidelity in (3) is the number of properly classified patterns by
the set of rules, while misclassified is the number of misclassified patterns by
the set of rules (in the sense of classification made by NN). Comprehensibility
of the set of rules is described by (4). It depends on the rule number (nrules) in
the individual and the number of premises (npremises) in rules.

X

(4)

comprehensibility = z + (nrules + npremises)

Parameter x enables the user to determine, which criterion is more impor-
tant. For large value of z, the number of rules and premises is not significant,
so the comprehensibility is not important in the final fitness value. For a small
value of z, comprehensibility is near to x/(rulenumber + premisenumber) and
that objective will dominate. In the Pareto optimization in order to calculate

the global fitness value nondominated individuals have to be found. In GenPar
it is implemented by means of product of the accuracy and comprehensibility
adaptation values. Next, nondominated individuals get the highest global fit-
ness value and they are moved to the temporary population. After that, from
remaining individuals nondominated individuals have to be found in the new
base population. They get a little bit smaller value of the global fitness value
than the former nondominated individuals. That cycle is repeated until the base
population will be empty. In the next step, the temporary population becomes
the new base population.

4 Experiments

The experimental study has the aim to test whether the proposed method works
effectively independently on the type of attributes. All presented further exper-
iments were performed with multilayered feedforward neural network, with one
hidden layer, trained by backpropagation. In experiments we use Iris, Monk,
LED and Quadruped Mammals benchmark data sets included in [1]. The char-
acteristics of these data sets and the classification level of neural network are
shown in Table 2. In all presented experiments population consists of 30 individ-
uals. Each individual in the initial population is created by the choice of 20 rules
in random. On the base of initial experiments the probability of mutation was
set to 5 %. The results of experiments are shown in Table 3, where for different
values of z the results are the round averages from 5 runs of program.

It is easy to notice that for the small value of the parameter z (Iris data set),
GenPar found the most general rule, which properly classified all 50 examples
from one class. With the increase of the value z, grew the number of properly
classified examples (fidelity). These observation in experimental way confirm the
appropriate influence of the parameter z. The fidelity of GenPar is about 96 %,
what is comparable with the results of other methods (for example 97 % for
FullRe [6]), but it offers the user the easy way to decide which objective is the
most important one. Monk Problems were chosen in order to test efficiency of the
method for enumerative type of attributes. The results are not included in Table
3, but for Monk-1 and Monk-3, the method easily found the set of appropriate
rules (respectively 6 and 2 rules). The most difficult problem was Monk-2. It is
because of the training examples were created on the base of the relationship
between two input attributes what was not detracted in the form of rule assumed

Table 2. Characteristic of data sets used in experiments

problem ‘attributes ‘ classes ‘ examples ‘ NN classification in %l

Iris 4 3 150 98
Monk 5 2 124 100
LED-7-100 7 10 100 89
LED-7-1000 7 10 1000 67
LED-24-1000 24 10 1000 69
Mammals 72 4 500 97

Table 3. Results of experiments for GenPar

Iris LED- 7-1000 Mammals
X [n. of rules[ﬁdelity X [n. of rules[ﬁdelity X [n. of rules[ﬁdelity
100 1 50 100 1 87 1000 2 182
500 2 94 500 4 324 5000 4 468
1000 2 94 1000 5 473 {10000 4 471
2000 4 137 {|2000 13 918
5000 5 144 {|5000 13 928

in the GenPar. The data set Mammals was used in order to test scalability of the
method. In this experiment population consists of 50 individuals. Each of them
initially contained 30 rules. Finally, only 4 rules were found that have fidelity
equal to 90 %. In the last experiment LED problem was used. LED-7-1000 in
Table 3 is the abbreviation for 7 input attributes and 1000 noisy examples.
Thanks of the NN ability to remove noise it was much easer to find rules for this
difficult LED problem than directly from data.

5 Conclusion

Even the GenPar was tested with the feedforward NN it is independent on the
NN architecture. There is no need for special learning rule during rule extraction,
as well. Experimental study has shown that it works efficiently for both contin-
uous and enumerate attributes. Thanks to Pareto optimization it easy for the
user to indicate, which criterion is more important for him. Developed method
treats the neural network as a black box. It means that it uses NN to produce
training example for the rule extraction method. GenPar can be easily used for
extracting set of rules directly from data. However because of the good ability
of NN to remove noise its using is recommended.

References

1. Blake C. C., Merz C.: UCI Repository of Machine Learning Databases, University
of California, Irvine, Dept. of Information and Computer Sciences (1998)

2. Darbari A.: Rule Extraction from Trained ANN:A survey, Technical report Institut
of Artificial intelligence, Dep. of Comp. Science, TU Dresden (2000)

3. Mitra S., Hayashi Y.: Neuro-fuzzy rule generation: Survey in soft computing frame-
work, IEEE Transaction on Neural Networks, (2000).

4. Santos R., Nievola J., Freitas A.: Extracting Comprehensible Rules from Neural
Networks via Genetic Algorithm, Proc.2000 IEEE Symp. On Combination of Evo-
lutionary Algorithm and Neural Network (2000) pp. 130-139, S. Antonio, RX, USA

5. Setiono R.: Extracting rules from pruned neural networks for breast cancer diagno-
sis, Artificial Intelligence in Medicine, Vol: 8, Issue: 1, Feb. (1996) pp. 37-51

6. Taha I., Ghosh J.: Symbolic Interpretation of Artificial Neural Networks, Technical
Rep. TR-97-01-106, University of Texas, Austin (1996)

7. Zitzler E, Thoele L.: An Evolutionary Algorithm for Multiobjective Optimization:
The Strength Pareto Approach http://citeseer.nj.nec.com/225338.html

