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Abstract 
 
 
“Optimisation Techniques for Gas Turbine Engine Control Systems” is an 
external project in collaboration with the Control & Systems University 
Technology Centre supported by Rolls-Royce at the Automatic Control & 
Systems Engineering Department at the University of Sheffield. A Multi 
Objective Genetic Algorithm (MOGA) optimizer was implemented to 
optimise different jet engines’ parameters influenced by several variables 
such as altitude measure, fuel flow, thrust and the amount of power 
requested by the pilot. The project’s core is to improve the MOGA technique 
currently used by implementing a Memetic Algorithm (MA), a more 
elaborate Evolutionary Algorithm that consists basically of hybridizing a 
Genetic Algorithm (GA) with a local search technique. The resulting 
strategy will be implemented in an optimization tool that is currently being 
piloted by Rolls-Royce (RR) for controller parameter tuning.  
 
In this project, three of the most popular types of local search techniques 
used in MAs are successfully implemented, tested and contrasted. A detailed 
analysis of their performance is described, highlighting their major 
differences, advantages and disadvantages. These local search techniques are: 
Hill Climbing technique, Simulated Annealing technique and Tabu Search 
technique.  
 
This report provides wide background information about Genetic 
Algorithms and a critical evaluation of Memetic Algorithms. Finally, 
suggestions are made for future testing and improvements. 
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CHAPTER 1-INTRODUCTION 

1 Introduction 

1.1 Introduction 
For testing the efficiency and accuracy of response of jet engines, Control engineers at Rolls-Royce (RR) 
spend a lot of time measuring and collecting data fed back by control systems and sensors. This is done in 
order to calculate and reduce errors, consequently optimising engines and control system parameters for 
better performance. Fig. 1.1 illustrates a typical situation that is often encountered when testing engines: 

                                                                          B                
                                             Feed Back                           
 
                                C  
         

            A                                                           

                              
Figure 1.1: Engines Testing Situation 

 
In Fig 1.1, the pilot lever requests a certain amount of power from the engine by moving to a certain angle. 
Ideally, we want the engine’s thrust to exactly match the amount requested by the lever. A sensor is placed 
within the engine to measure the amount of thrust produced by the engine in response to the pilot’s 
demand. The measurements recorded by the sensor are fed back to the control system, which calculates the 
error between the requested amount of power and the actual value produced. The control system will then 
act to reduce the error in achieved thrust by adjusting the fuel flow rate to the engine. The parameters of the 
control system determine how effective this error reduction process is. The role of the Control Engineer is 
to identify a set of controller parameters that will provide optimal control performance in terms of error 
reduction. In practice, the process of identifying an optimal set of controller parameters for an engine is a 
time consuming and expensive process. An alternative approach to solving this problem is the use of an 
optimization routine. An optimization routine would employ a simulation environment to automatically 
tune the controller parameters in a quicker and more cost-effective manner whilst also providing a control 
system that improves the performance of the engine. 

At the Control & Systems University Technology Centre (UTC) in the Department of Automatic Control & 
Systems Engineering (AC&SE), an optimisation tool, based in Matlab and Simulink is being developed, 
which enables the user to tune controller parameters in a simulation environment. The Control Engineer 
defines a set of objective functions, against which the control system’s parameters are tuned. The controller 
parameters are then optimised in an attempt to meet the goals that have been defined for each objective. 
The optimisation routine employed in the tool is a Multi Objective Genetic Algorithm (MOGA). Genetic 
Algorithms (GAs) are a generational, evolutionary technique that imitates the biological evolution of living 
species. The optimisation tool is implemented to optimise three specific parameters (Gain (K), Lead Time 

Pilot 
Lever 

Sensor 
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(Tnum) and Lag Time (Tden)). The user specifies target or goal values for each of the different 
performance objectives. These include time domain objectives such as overshoot, overshoot time and other 
objectives. The performance of each candidate set of controller parameters will be evaluated in Simulink 
for every new optimisation values of the three parameters reflecting their performance in the real domain. 

The search range for the parameters and the software path for the MOGA will be specified as well by the 
user using the Graphical User Interface (GUI). A specific search range for each parameter is defined around 
an initial value or guess, usually proved to be a good solution from previous engines. The genetic algorithm 
then searches for the optimum control system performance by adjusting each controller parameter within a 
neighbourhood defined as being a fixed percentage either side of the initial guess. 

1.2 Project Aim 
 
The aim of the project is to try to improve on the Genetic Algorithms used in the actual system by 
implementing a Memetic Algorithm (MA). This is a further extension to multiobjective algorithms and 
relatively a more recent technique whose application in certain domains is still under further investigations 
and research. Memetic algorithms are a more elaborated version of multiobjective algorithms, and their 
implementation is a challenge that may “hopefully” provide better optimisation results. 

1.3 Structure of This Report 
 
First this report opens with a detailed literature review that ensures an overview of Genetic Algorithms, 
defining these algorithms and illustrating a comparison with other traditional techniques. In this literature 
review, the general background for the project will be discussed, the major elements of the Genetic 
Algorithm will be explored and a definition of the four essential functions of Genetic Algorithms, which 
are successively the selection function, the crossover function, the mutation function and the reinsertion 
function, will be described. The termination of Genetic Algorithms and their different applications will also 
be allocated proper sections for their discussion. The last sections of the literature review will be dedicated 
to the illustration of a comprehensive presentation of Memetic Algorithms, pinpointing their additional 
functionality and differences from typical Genetic Algorithms using a simple Pseudocode example. 

After the Literature Review, the main core of this project will be presented in details in the Requirements 
and Analysis Chapter, where the actual optimization system, used at the Automatic Control & Systems 
Engineering Department at the University of Sheffield, will be clearly elucidated. The system’s 
requirement will be then detailed, coupled with a requirements’ analysis pinpointing the major issues that 
should be considered while designing the system and implementing the requirements. 

The system’s design will be then demonstrated in Chapter 4, using some functional diagrams and 
examples’ illustrations that will clarify the intended system’s design, to be implemented throughout the 
project. The 3 local search techniques to be hybridized with the multiobjective genetic algorithm will be 
clearly explained and contrasted. 

In Chapter 5, the implementation process of the memetic algorithm will be discussed, illustrating some 
code’s portions for better understanding. Mainly, three major issues will be discussed in this Chapter; the 
neighbourhood setting process, the local search functionality, and the acceptance steps of the local search 
algorithms. At the end of this Chapter, the testing process of the implemented local search techniques is 
ensured, illustrating some output results from the optimisation process, and using a simple created scenario 
to validate the correct functionality of the memetic algorithm. 

Chapter 6 will be dedicated for the results and the major findings’ listings. A statistical analysis will be 
made, highlighting the performances’ differences of the genetic algorithm and the memetic algorithm. 
Future work is also described at the end of this Chapter. 

At the end of this report, a summarizing conclusion will be stated, recapitulating the major results and 
findings of the project. 
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CHAPTER 2- LITERATURE REVIEW 

2 Literature Review 

2.1 Introduction: What are Genetic Algorithms? 
According to the Darwinism view, the human physical and mental status that we are privileged with is the 
chronological result of successive biological evolutions. Prehistorically, the principle of “survival of the 
fittest” was applied to primates’ populations, where the best individuals were able to survive several 
biological crises and climatic breakdowns, adapting to new environments. This has resulted the humans’ 
actual position at the end of this evolutionary chain. 

 
 
The Genetic Algorithm is a stochastic global search method that imitates this process of natural biological 
evolution, operating on “populations” of potential solutions by applying the law of the jungle where the 
survival is for the fittest, hopefully producing better approximations to a given application’s solution. Until 
a stopping criterion is reached (e.g. certain number of generations or a mean deviation in the population), a 
new set of approximations is created at each generation. 

2.2 Motivation for the Use of GAs 
The motivation for using GAs is partly dependent upon the nature of the application. In other words, if the 
optimization problems under investigation are reasonably well behaved, then the obvious and best choice 
will be the use of the conventional deterministic techniques, such as deterministic gradient-based-and 
simplex-based search methods. Unfortunately, these conventional deterministic optimization techniques 
face major difficulties in several scenarios, such as when the objective function is discontinuous or 
characterized by many local optima and points at which gradients are undefined, or when the estimation 
problem involves many parameters that interact in highly non-linear ways. In these situations, heuristic 
methods like GAs are a powerful alternative for exploring search spaces and finding good solutions that 
cannot be detected by conventional numerical techniques. 

2.3 How Genetic Algorithms work?  
Starting from a population of potential solutions ensured by the user, the GA works on improving these 
solutions by filtering out relatively bad ones and discovering better approximations by searching the 
neighbourhood around some solutions and applying operators borrowed from natural genetics. The 
populations’ individuals are encoded as strings composed over some alphabet and are assimilated to 
“chromosomes”, the basic unit of genetics. The chromosomes’ values or “genotypes” are mapped in a 
“one-to-one” fashion onto the decision variable domain or “phenotype”. Binary representations (i.e. {0, 1}), 
integer representations and real valued representations are different kinds of chromosomes’ representations 
in GAs, although the first one is the most commonly used representation.  
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Example of Binary representation: 

1 0 0 1 1 0 1 0 0 1     1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 

           X1                                           X2 
Figure 2.1: Binary Representation 

 
Chromosome X1 is encoded with 10 bits whereas X2 is constituted of 15 bits. The number of bits 
determines the resolution of the search within the search space. Although the search process of GAs 
operates uniquely on this encoding of the chromosomes, it is only with their decoding into the respective 
phenotypic values that the meaning within the decision space can be determined. The fitness and 
performance of the chromosomes in their application domain can then be determined by assessing the 
objective function values. A function “phen” is allocated the functionality of mapping the encoding of a 
chromosome into its phenotypic value, and then an objective function, formulated by the user and specific 
to the domain of the application, is processed using the phenotypic values represented by the chromosomes 
that were outputted from the “phen” function. Note that this function won’t be necessary in cases where 
real value representations are used. Each objective function’s role is to assess the fitness of an individual 
within the application’s environment and will consequently attach to it a value or score reflecting its 
performance with respect to that objective. The objective function value for each objective is then 
converted into a fitness value. The fitness values will be the basis of the individual’s selection for mating to 
form the next generations of potential solutions. Generally the fitness function’s role is to transform the 
values produced by the objective function into non-negative values reflecting probabilities. Once the fitness 
values are assigned to the individuals, they can be chosen to recombine with a probability according to their 
fitness values. After their selection, the chromosomes will be recombined accordingly similar to the 
reproduction process in biological evolution, thus exchanging genetic information between each other, 
based on the assumption that certain individuals genes’ parts produce on average fitter individuals. 

There are several types of recombination operators but the simplest one is that of the single-point crossover 
described in Figure 2.3. Consider the following two parent binary chromosomes (Figure 2.2): 

P1 = 1 0 1 0 0 1 1 1 1 0 
P2 = 1 0 0 1 1 0 1 0 0 1 

Figure 2.2: Binary Chromosomes 
 
 
An integer position along the length of the chromosome is randomly selected between 1 and the 
chromosome’s length (L) minus one. (Note that a chromosome is indexed like an array, i.e. 0 is the index of 
the first element. This range is logical, because crossing over 2 chromosomes at index 0 will simply give 
back the same parents). Consider a crossover using P1 and P2 at index 5. This will result in the following 
offspring: 

 

Index 0 1 2 3 4 5 6 7 8 9 
P1 =    1   0   1   0    0   1   1   1    1   0 
P2 =    1   0   0   1    1   0   1   0    0   1 
 
O1 =    1   0   1   0   0   0   1   0    0   1 
O2 =    1   0   0   1   1   1   1   1    1   0 
 

Figure 2.3: Single Point Crossover 
Note that when the pairs of chromosomes are chosen to breed, the crossover operator is applied with a 
certain probability and hence not necessarily on all the strings of a population. After recombination, another 
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operator, the mutation operator, is applied to the offspring. Again, the application of this operator is not 
guaranteed but based on a user-defined probability. This is generally a low value just like in the natural 
world. The mutation operator will cause a single bit to change its state, i.e. in case of binary 
representations, 0Æ1 and 1Æ0. For example, mutating offspring O2 at its last index will generate the 
following individual:  

O2m =    1   0   0   1   1   1   1   1    1   1   
Mutation is generally a backup operator assuring that the probability of searching a specific subspace of the 
problem space is never null. 

After the selection, recombination and mutation operators, the cycle is repeated for another generation. The 
objective function is processed again on the encoding of the offspring, evaluating their performance within 
the application environment, and a respective fitness value for each candidate solution is allocated 
correspondingly. Generation by generation, the process continues, stochastically propagating genetic 
material through subsequent generations until a predefined stopping criterion is reached. 

2.4 What makes GAs so special? 
In Table 2.1, the major elements that differentiate the Genetic Algorithms optimisation technique from 
other traditional methods are illustrated, essentially noting that GAs provides a population of optimised 
candidate solutions rather than one unique solution. The choice of a final solution will be left for the user. 
The use of GAs is particularly appropriate in situations where a problem possesses a family of equivalent 
optimal (Pareto-optimal) solutions, as with multiobjective optimisation and scheduling problems.  

GAs versus Traditional Methods 
GAs Traditional Methods 

Search a population of points in parallel Operate on single points 

Do not require derivative or auxiliary information Generally requires derivative information 

Use probabilistic transition rules Generally use deterministic transition rules 

Work on an encoding of the parameter set (except 
in real-valued representations) 

Work on the parameter set itself 

Table 2.1: GAs versus Traditional Methods 

2.5 Pseudo-code of a simple Genetic Algorithm 
The pseudo-code illustrated in Figure 2.4 is an outline of a simple Genetic algorithm (Goldberg, 1989): 

Figure 2.4: GA Pseudocode 
 
 
 
 
 
 
 
 
 
 
 
 

Procedure GA 
  Begin 
               T=0;                           %T denoting the Time variable 
    Initialise P(t);              %Generally Consists of a Random initialisation  
                                                               of the initial population, at time T=0  
              Evaluate P (t);             %Assess the performance of the individuals in  
                                                                the current population. 
               While not finished do 
               Begin 
                                    t = t+1;   %Increment The Time variable By 1 
                                    Select P (t) from P (t-1); 
                                    Reproduce pairs in P (t); % denotes the reproduction  
                                    Evaluate P (t)                            phase, reproducing new 
                 End                                                                     Offspring by cross over 
End                                                  
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2.6 Population Representation 
As stated earlier, GAs operate on an encoding of the parameter set, which constitutes a population of 
potential solutions. In typical situations, it is shown that a population size of 30 to 100 individuals is most 
commonly used, although a variant of GAs, the “micro GA”, operates on smaller populations’ sizes with 
more restrictive operators.  

Many chromosomes representations are widened and used although the single-level binary representation is 
the most spread. In this representation, chromosomes are constituted by the concatenation of binary strings 
inspired from the decision table. Despite its popularity, binary representation suffers from several 
deficiencies such as the representational bias of this kind of representation, the Hamming distance between 
adjacent values is constant, and as validated by Caruana and Schaffer (1988), large Hamming distances 
between adjacent values can mislead the search process locating the optimal solutions. Some solutions 
though were advocated for overcoming these weaknesses, such as the use of Gray coding or logarithmic 
scaling while converting the chromosomes’ encoding into their domain’s values, as suggested by 
Schmitendorgf et-al (1992). Alternatively, real valued and integer representations are increasingly 
achieving usage interests, as they can result in several advantageous effects. Specifically, more efficient 
GAs will be produced, as the adoption of this representation eliminates the need for converting 
chromosomes into their phenotypic values, in addition less memory will be needed for the whole process 
and the loss of precision that can result from the discretisation of phenotypic real values to binary encoding 
will be totally avoided. After selecting the type of representation that best suits the application 
environment, the next step is to create an initial population of potential solutions for the GA. Alternative 
methods for this process are widely adopted. One way of initialising the population consists of creating a 
random generation of the required number of individuals (Nind) using a random number generator that 
uniformly distributes numbers in the desired range from the set {0, 1}, each of the same specific length, i.e. 
number of bits (Lind). An alternative way is the “extended random initialisation” procedure (Bramlette, 
1991) whereby a given number of random initialisation trials is processed for each individual, which will 
be initialised to the best performance trial. In situations where the nature of the application is well 
understood in advance, or where the GA is used in conjunction with knowledge based systems, the 
initialisation can be held in the vicinity of good solutions previously known, like it is the case in this 
project. 

2.7 The Objective and Fitness Functions 
The objective functions reflect the raw performance of each individual in the problem domain. Two 
approaches can be adopted, minimisation and maximisation. In the case of minimisation the fittest 
individual will be allocated the smallest numerical value resulting from each objective function, and vice 
versa in the case of maximisation. This function only reflects the raw performance of each individual. The 
fitness function then transforms the objective function’s values into a non-negative measure of relative 
fitness, which will be used by the GA for selection and breeding purposes, i.e.: 

                                   F (x) = g (f (x))   
Where “f” is the objective function, “g” transforms the value of the objective function into a non-negative 
value, and “F” is the resultant fitness value. Many versions are adopted for the Fitness function; the 
proportional fitness function (equation 2.1) and the linear transformation (equation 2.2) are the most often 
used ones. 

∑
=

=

Nind

i
Xif

Xif
iXF

1
)(

)()(

               Proportional fitness function                     (2.1) 
Nind is the population size, Xi is the phenotypic value of individual i 
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While this function (the proportional fitness function) ensures that each individual is allocated a probability 
for reproduction proportional to its relative fitness, it does not take into consideration negative objective 
function values. 

 

               F (x) = a*f (x) + b           Linear Transformation                                (2.2) 
“a” is positive scaling factor in case of maximisation and negative vice versa 

“b” is an offset ensuring that the resulting fitness value is positive 

 

This method (Equation 2.2) though has uncovered another kind of undesired situation, the case of rapid 
convergence towards possible sub-optimal solutions. 

A suggested solution (Baker, 1985) consists of adding constraints on the reproduction range by limiting the 
number of offspring an individual can produce to a certain maximum, so that no individuals will generate 
an excessive number of offspring, and thus preventing “premature convergence”. The fitness function can 
be used in several environments and problem domains whilst the objective function is domain-specific and 
should be thus created by the user. 

2.8 The Selection Operator  

2.8.1 Introduction 
Having allocated a reproduction expectation value for every individual, the next step will consist of a 
probabilistic selection of pairs of individuals for reproduction, based on their relative fitness values. 

Roulette wheel selection, Steady-State selection, Stochastic Universal selection and Rank selection are all 
different kinds of selection methods commonly used in a wide range of application domains. In order to 
assess the quality of the selection process, Baker (1987) introduced three performance measures for 
selection algorithms: bias, spread and efficiency. Bias is defined as the absolute difference between the 
actual selection probability resulting from the selection process, and the expected selection probability 
reflected in its relative fitness value. The optimal zero bias is therefore achieved when the individual’s 
actual and expected number of trials are identical. While bias is a good measure of accuracy, spread is 
another more flexible measure of consistency, defining a specific acceptable range for the actual number of 
trials for each individual that spans both sides of the expected value by a certain offset. Finally, like its 
name indicates, the “efficiency” measure is a process aiming to efficient selection processes, ideally 
targeting to zero bias while maintaining a minimum spread range. 

2.8.2 Roulette Wheel Selection 
One of the most commonly used selection schemes is the roulette-wheel selection, also called stochastic 
sampling with replacement (SSR). The individuals are allocated contiguous intervals of length’s range [0 
sum], where “sum” determines the sum of the individuals’ expected selection probability or raw fitness. A 
random number is generated in the range [0 sum] and the individual whose segment spans the random 
number is selected. The process is repeated iteratively until the desired number of individuals is obtained.  

Table 2.2 shows the selection probability for 4 individuals, Individual 1 being the most fit individual that 
occupies the largest interval, whereas individual 3 is the weakest one and correspondingly occupies the 
smallest interval (see figure 2.5).  

Number of individual 1  2  3  4  
Selection probability 0.45 0.30 0.10 0.15 

 
Table 2.2: Selection probability 
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Figure 2.5: Roulette Wheel Selection 
 
Consequently most fit individuals will occupy larger intervals and will have higher probabilities for 
being selected to breed and propagate to the next generations. 
In the Roulette wheel method described above, the segment size and thus the selection probability remain 
invariant through the whole process; logically any individual with segment size > 0 could entirely fill the 
next population. In order to avoid this situation and decrease the chances of early convergence, another 
selection method, Stochastic Sampling with Partial Replacement (SSPR) enhances SSR by reducing 
(generally by 1.0) the interval’s size of an individual once selected, which is set to nil if it becomes 
negative. 

2.8.3 Stochastic Universal Sampling 
Stochastic Universal Sampling (SUS), despite the Roulette Wheel selection, is another selection method, 
which uses N equally spaced pointers for selecting the individuals (Figure 2.6), where N denotes the 
number of selections needed. This method starts with a random shuffle of the population’s placement over 
the wheel. Then a single number is generated randomly from the range [0 Sum/N]. This number will 
constitute the position of the first pointer on the wheel, and the N-1 pointers left will form a series of 
equally spaced pointers, usually based on the following distribution: [ptr, ptr +1,… ptr + N-1], and 
consequently, the individuals whose intervals are pointed at by one of the N pointers will be chosen for 
reproduction. This method seems to be more efficient and time saving compared to the Roulette wheel 
selection, which uses one pointer, selecting thus just one individual at a time. Selection methods are very 
numerous and each one possesses its different characteristics, advantages and drawbacks. 

  1 

 
Figure 2.6: SUS with 8 pointers 

 

Individual           Selection Probability
1 0.45 
2 0.30 
3 0.10 
4 0.15 
 
 
 

 
 
 

 
       1 
                         
                            2 
 
 
     4                  

3
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2.9 The Crossover Operator 

2.9.1 Introduction 
Crossover is the commonly used technique for implementing the reproduction process, and is the basic 
operator for the creation of new individuals in a generation. Its notion is essentially borrowed from the 
natural reproduction process in the real world, where an offspring inherits specific parts from both his 
parents. Just like the selection process, Crossover has many versions and types, the single-point crossover 
described in the introduction being the simplest. An extension of the single point crossover is the Multi-
point Crossover, which will be described in the section 2.9.2 

2.9.2 Multi-point Crossover 
The major idea behind this kind of crossover is that instead of one single point crossover, “M” unduplicated 
crossover positions are selected randomly in the range {1, 2, … L-1} (L denotes the length of the 
Chromosome), and sorted in an ascending order, once again noting that a chromosome is indexed starting at 
the index zero. The bits spanning consecutive crossover positions will be than exchanged between the 
parents producing consequently offspring sharing specific parts of both parents, and who will be assessed 
and allocated a fitness value based on their performance later on in the GA. Figure (2.7) illustrates a Multi-
point crossover at two positions: 

 
 

Figure 2.7: Multi-point Crossover 

2.9.3 Uniform Crossover 
This kind of Crossover (Syswerda, 1989) is more general than both the single point and the Multi-point 
Crossovers where precise locations between crossover points to be switched by the parents are identified. 
Uniform Crossover (Figure 2.8) generalises this notion by making any single bit of a chromosome a 
potential crossover point. This is due to a randomly created Crossover mask of the same size as the 
chromosomes, which will be applied to the parents chosen for recombination by choosing bits from the 
parents based on an agreed parity of the Crossover Mask. 

 
 Parent 1 
 
 Parent 2 
 
 Mask 
 
 Offspring 
 

Figure 2.8: Uniform Crossover 
For each bit, the parent who contributes its variable to the offspring is chosen randomly with equal 
probability. In the previous example (Figure 2.8), taking the bit from parent 1 if the corresponding mask bit 
is 1 or the bit from parent 2 if the corresponding mask bit is 0 has produced the offspring.  

0 1 1 1 0 0 1 1 0 1 0 

1 0 1 0 1 1 0 0 1 0 1 

0 1 1 0 0 0 1 1 0 1 0 

1 1 1 0 1 1 1 1 1 1 1 
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Other Crossover operators are also widely known and used in several varieties of problems. The “Shuffle 
“operator (Caruana et al, 1989) operates on a pair of chromosomes chosen for reproduction by selecting a 
single random crossover point just like in the single point crossover, although in this kind of crossover, 
before the designated bits of the parents are exchanged to form an offspring, they are randomly shuffled, 
and the final part of this operator will consist on “unshuffling” the bits of the resultant offspring. The 
“Reduced Surrogate” (Booker, 1987) operator is another kind of crossover, which constrains the process to 
always generating new offspring by adding restriction to the location of crossover points. Alternatively, real 
valued chromosome representations possess a whole series of crossovers operators such as the 
“Intermediate Recombination” (Mühlenbein and Schlierkamp-Voosen, 1993), which consists of producing 
offspring phenotypes intermediate to the parents’ numerical values and the “Line Recombination” 
(Mühlenbein and Schlierkamp-Voosen, 1993) which is an extension of the Intermediate Recombination 
adding some constraints on the process. The choice of individuals’ representation and consequently the 
version of crossover operator is a challenging issue, which directly depends on the nature of the problem 
under investigation. 

2.10  The Mutation Operator 
After a crossover is performed, mutation takes place. Just like in natural evolution, Mutation is a random 
process, which consists of replacing a certain allele of a gene resulting in a new genetic structure. Mutation 
is intended to prevent the situation where all solutions in a population fall into a local optimum of the 
solved problem, and thus it constitutes a background operator which guarantees that the probability of 
searching a specific subspace is not zero. Mutation operation randomly changes the offspring resulting 
from crossover. Typically, it is applied with low probabilities in the range 0.001 and 0.01. In the case of 
binary encoding, mutation consists of switching few randomly chosen bits from 1 to 0 or from 0 to 1. 

                     Mutation point 

Original Chromosome 

Mutated Chromosome 

Figure 2.9: Mutation 
With Real value and Integer representations two conventional methods are applied, either by perturbing the 
chromosomes values or by randomly selecting new values within a specific allowed range. For these kinds 
of representations (Integer and Real value), it is argued (Tate and Smith, 1993) that higher mutation rates 
can be more desirable and lead to better solutions than the reduced mutation rates. Another variation of the 
standard Mutation operator consists of directing the mutations towards low fitness individuals in order to 
explore new subspaces without taking the risk of losing information from fit individuals. 

2.11  The Reinsertion Operator 
After selecting individuals for reproduction based on their fitness values, crossover and mutation processes 
have resulted new individuals in the population. Now the fitness value can be determined for the 
individuals of the new generation. Sometimes though the recombination process produces fewer individuals 
than the number of individuals of the previous population, resulting a fraction difference. Note that the 
number of individuals in a population should be conserved through all the generations. This fraction 
difference between the initial number of individuals and the new one is called a generation gap (De Jong 
and Sarma, 1993), and a process of insertion will be then required in order to maintain the number of 
individuals in a population, although other reasons such as the fact of producing higher number of offspring 
will necessitate the reinsertion scheme. The most commonly used strategy of Reinsertion is to fill the 
generational gap by inserting the best-fit individuals from the previous population. Although this strategy 
seems logical enough, it has been proved (Fogarty, 1989) that no significant convergence differences are 
noted with other reinsertion schemes such as inserting randomly or even the least fit individuals. However, 

0 0 0 1 1 0 0 0 1 0 

0 0 0 0 1 0 0 0 1 0 



Salem Adra                           Literature Review 
 

 

11

11

a more successful strategy is to reinsert the oldest members of a population, i.e. the individuals that were 
able to survive and propagate through several generations, consequently demonstrating good performances 
and qualities. 

Termination of the GA And some useful GA’s 
Applications 

 

2.12  Termination of the GA 
Due to the stochastic nature of the GA’s search and optimisation techniques, it is usually ambiguous to 
determine specific convergence criteria, as at some stages the fitness of a population may be stabilized for a 
number of generations, and thus the timing for a convergence is unpredictable. A commonly used practice 
consists of terminating the Genetic algorithm after a certain predefined number of generations, which will 
enable the user to test the quality of the resultant population of solutions against the problem domain, and 
restart the GA for another specific number of generations if the quality of the previous solutions was not 
acceptable or of a certain standard. Another termination strategy is to stop the GA when a particular point 
in the search space is encountered or a mean deviation in the population is reached. 

2.13  GA’s Applications 
Genetic algorithms have been proved to be of great efficiency and usability in different problems and 
domains such as in Machine Learning for evolving simple programs to solve various problems; they have 
been also used in totally different domains, like arts, for evolving pictures and music. 

Genetic Algorithms have been successfully implored in the following domains: 

• Non-linear dynamical systems - predicting, data analysis  
• Designing neural networks, both architecture and weights  
• Robot trajectory  
• Evolving LISP programs (genetic programming)  
• Finding shape of protein molecules  
• Functions for creating images 

To get an idea about some problems solved by GAs, here is a short list of some applications (source: 
Evonet’s website funded by the European Commission, http:// www.evonet.com//): 

“Genetic Algorithms in Parametric Design of Aircraft” (Bramlette and Bouchard), is a project devoted to 
the optimization of aircraft designs by optimizing lists of special parameters. The project was based on an 
approach that uses real number representation’s genetic algorithm, which starts by generating a large 
number of individuals constituting the initial population and processing only the good members. The 
work’s domain is aeronautical engineering and is relatively similar to the “Optimisation Techniques for Gas 
Turbine Engine Control Systems” project. 

Other interesting problems of various domains solved by genetic algorithms: 

• “Dynamic Anticipatory Routing in Circuit-Switched Telecommunications Networks” (Cox et al), 
is a project which deals with an optimization problem of the routing of telephone networks in 
order to minimize the costs to West US. The project’s approach was based on a performance 
comparison of an order-based genetic algorithm and several other optimization techniques, into the 
problem’s domain. The project achieved two major results: Firstly, Genetic Algorithms are highly 
successful especially when the problem under investigation is of complex nature. Secondly, the 
hybridization of Genetic algorithms with other local search techniques is a potential improvement 
of performance, which is basically the essence of investigation of this MSc project. 
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• “A Genetic Algorithm Applied to Robot Trajectory Generation” (Davidor), is a project, whose 
core is the application of genetic algorithm techniques in the study case of a path planning 
problem of a robot arm, moving from one point in the space to another. The project uses variable-
length chromosomes and devises some novel crossover operators. 

• “Strategy Acquisition with Genetic Algorithms” (Grefenstette), is an application concerned with 
maneuvering a simulated airplane in order to evade a simulated missile. The project applied 
variable length chromosomes and has employed a special genetic algorithm, named “SAMUEL”, 
capable of learning new techniques. 

• “Genetic Synthesis of Neural Network Architecture” (Harp and Samad) is an interesting project 
that aimed to encode neural network architectures on binary chromosomes; the approach has 
deployed a genetic algorithm with variable length chromosomes. 

• “A Genetic Algorithm Approach to Multiple Fault Diagnosis” (Liepens and Potter), is a project 
that has implemented a genetic algorithm for finding the most plausible combination of causes for 
alarms in a microwave communication system. The approach employed binary representations of 
chromosomes and has deduced that higher performances could be achieved with hybrid systems. 

• “A Genetic Algorithm for Conformational Analysis of DNA” (Lucasius et al), is a project that has 
employed bit strings to encode molecular structures, in an environment aiming to develop a 
genetic algorithm for determining the structure of a sample DNA, based on spectrometric data. 

• “Interdigitation: A Hybrid Technique for Engineering Design Optimization” (Syswerda), is a 
project that aimed to explore the use of genetic algorithms to solve the problem of scheduling 
interrelated activities in a laboratory. The approach of this project used an order-based 
chromosome to represent schedules. 

2.14  GA Discussion 
One of most advantageous scheme of GAs is their parallelism, i.e. the strategy that GAs use for travelling 
search spaces using an entire population of individuals rather than optimising just a single value. Their 
operation on encodings of the variables (genotype) rather then the variable itself (phenotype) is another 
creative and distinctive usage of GAs, which reduces the likelihood of getting stuck at a local extreme like 
it is the case with some other methods.  

Genetic Algorithms are relatively easy to implement. Once the basic GA is implemented, the 
implementation of a new chromosome object is quite straightforward and problem-dependent. The same 
encoding scheme is generally used in GAs independently from the application’s domain; an objective 
function is however required and should be implemented by the user. Conversely, for several reasons, 
choosing and implementing the chromosomes’ representation and objective function can be confusing and 
difficult. On the other hand, one of GAs’ disadvantages is their complex computational time as they can be 
very slow in some applications especially when compared to other traditional methods’ time complexity. 
But the possibility of terminating the computation at any time eases the problem and makes the longer run 
time acceptable especially with faster computers.  

Overview of Memetic Algorithms 
2.15  Introduction: What are Memetic Algorithms? 
“Memetic Algorithm” is a concept first introduced in 1989 (Pablo Moscato, 1989), the term “Memetic“ 
having its roots in the word “meme” introduced in Richard Dawkins’ book “The Selfish Gene” (1990) and 
which denoted the “unit of imitation” in cultural transmission. The essential idea behind Memetic 
Algorithms is the use of local search heuristics within a population-based strategy, such as Genetic 
Algorithms. Memetic Algorithms share most of the GAs characteristics although they introduce a new 
improvement procedure based on local search in the neighbourhood of newly generated individuals 
resulting from the recombination operators. The main difference between Genetic Algorithms and Memetic 
Algorithms is the approach and view of the information’s transmission techniques. Whereas genetic 
information carried by genes is usually transmitted intact to the offspring (e.g. Genetic Algorithms), 
“memes” the base unit of Memetic Algorithms are typically adapted by the individual transmitting them. 
Just like in the real world, while individuals can inherits from their parents the eyes and skin’s colour 
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genetically transmitted to them intact, they will independently adopt new cultural dependent characteristics 
through their life span, such as their intelligence, their ability to drive and swim etc.  

2.16  Why do we need Local Search? 
Local Search techniques are mostly useful for controlling exponentially growing solution spaces, as it is the 
case in most practical problems. Another benefit of local search techniques is their ability to deal with the 
ambiguity of some problems’ models and solve it, as well as they have proved to assure ease of use of 
problem specific knowledge compared to other classical optimisation techniques. 

2.17  Memetic Algorithm Pseudocode 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 
Figure 2.10: Memetic algorithm pseudocode 

 

The Pseudocode described in figure 2.10, is the Pseudocode of a Memetic Algorithm coupled to a Genetic 
Algorithm (Digalakis and Margaritis, 2000) 

2.18  Memetic Algorithm Applications 
Although the common view of Memetic Algorithms categorizes them as a GA hybridised with a local 
search procedure, the concept of Memetic Algorithm is more general than that, as they can be used with 
any other meta-heuristic technique, and not just Genetic Algorithms, and they have been found to be of 
significant efficiency (Moscato, 1999) in certain domains like multiobjective optimisations compared to the 
Genetic Algorithms’ performance. Memetic Algorithms were used in a variety of applications domains and 
they have showed efficiency in performance leading to good quality results. Table 2.3 is a list of general 
applications where Memetic Algorithms were applied and proved to be very efficient: 

Memetic Algorithm Applications 
Scheduling Problems 
Transport Problems 
Logistic Problems 
Network Optimisation 
Process Optimisation 
Space Craft Trajectory Optimisation 
Bio informatics 
Planning Problems 
Timetabling Problems 
Evolvable Hardware And Hardware Design 

Initialise P randomly (P = Population)
For i = 1 to m (m = population size) 
    Perform local search in the neighbourhood of i  
                (i being the current individual) 
              Evaluate fitness of i and its neighbourhood explored 
              Make i the best individual found 
End For 
Repeat 
         Select parents from P 
         Generate offspring applying recombination 
                   to the parents selected 
               If an individual is selected to undergo mutation, 
                    then apply local search      
                    Evaluate fitness of current individual and its neighbours 
                    Adopt best individual   
Until stopping condition is reached 
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Robotics 
Telecommunications 
Mechanical And Structural Engineering 

Table 2.3: Memetic Algorithm Applications 
 
Relatively similar work to this MSc project has been conducted (Kosmas Knödler et al) at the Department 
of Computer Architecture at Wilhelm-Schickard-Institute of Computer Science (contact: 
knoedler@informatik.uni-tuebingen.de, website: www.ra.informatik.uni-tuebingen.de.). The project, whose 
industrial partner is the BMW group Munich, consisted on implementing a Memetic Algorithm which aims 
to get the Optimal Calibration of modern automotive combustion Engines. In a brief description, the 
memetic algorithm used in the “Optimal Calibration of modern automotive combustion Engines” project 
consisted of a Genetic Algorithm hybridized with a “Hill Climbing” local search which sets a 
neighbourhood for some special parameters and iterates until a stopping criterion is met, while exploring 
the neighbourhood space, only accepting good solutions. Note that this Hill Climbing approach will be 
explored in this MSc project in addition to other commonly used techniques of local search. 

2.19  Memetic Algorithm Advantages and Disadvantages 
 
Memetic Algorithms have proved to be very useful and efficient in single-objective combinatorial 
optimisation. The main reason behind this success seems to be the process of local search, which has been 
proved (Borges and Hansen, 1998) to bring better solutions in several applications domains, compared to 
the performance of traditional Genetic Algorithms. The extension of Memetic Algorithms to multiobjective 
optimisation problems is very promising due to the fact that the process of local search exploits the global 
convexity, which has been used in single-objective optimisation to explain the high concentration of good 
solutions to some combinatorial optimisation problems in only a small fraction of the entire solution space. 
On the other hand, their use in nonlinear continuous multiobjective combinatorial optimisation problems is 
not very straightforward, especially because in these situations, the “global convexity” property does not 
hold anymore (Jaszkiewicz, 1998). Another notable disadvantage of Memetic Algorithms is the 
considerable amount of time and memory needed for the improvement of their performance (Jaszkiewicz, 
2000). 

2.20  Comparison between Memetic Algorithm and Genetic 
Algorithms 

 
As an optimization technique, Genetic Algorithms simultaneously examine and manipulate a set of possible 
solutions. GAs constitute a robust technique, which can deal successfully with a wide range of problem 
areas, including those that are difficult to handle by other methods. They are not guaranteed to find the 
global optimum solution to a problem, but they are generally good at finding "acceptably good" solutions to 
various problem domains. Generally, where specialized techniques exist for solving particular problems, 
they are more likely to out-perform GAs in both speed and accuracy of the final result.  

Although Genetic Algorithms are good at exploring the solution space due to their search from a set of 
candidate solutions and not just from a single point, they are not well suited for fine-tuning structures that 
are close to optimal solutions. Incorporation of local improvement operators into the recombination step of 
a Genetic Algorithm is essential to deal with such situations. Memetic Algorithms (MAs) are evolutionary 
algorithms that apply a separate local search process to refine individuals. Combining global and local 
search is a strategy used by many successful global optimization approaches, and MAs have in fact been 
recognized as a powerful algorithmic paradigm for evolutionary computing. In particular, the relative 
advantage of MAs over GAs is quite consistent on their complex search spaces. 
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CHAPTER 3- REQUIREMENTS AND 
ANALYSIS 

3 Requirement and Analysis 

3.1 Current System 
The Multi Objective Genetic Algorithm’s optimizer used in the Optimisation techniques for Gas Turbine 
Engine Control Systems project is a global search technique, which explores a relatively vague vector 
spaces of parameters’ values by operating on individuals composed of a certain number, N, of parameters, 
while optimizing the values of a certain number, M, of objectives. 
At the beginning of the Genetic Algorithm, each of the N parameters constituting the population’s 
individuals is bounded by an invariable upper and lower limit value which should not be violated all along 
the optimization process, i.e. the Genetic Algorithm will operate on the individuals parameters by exploring 
new values within the predefined range. In this project, a binary representation of chromosomes is applied, 
and thus the multi objective genetic algorithm starts by creating a binary population composed of a certain 
fixed number of individuals. The GA assesses then the fitness of the newly created population by running 
the objective function on each of the individuals inhabiting the population. A fitness score is consequently 
allocated for each individual, which will be the basis of selection for the recombination process and the 
propagation to the next generations. Figure 3.1 summarizes the general functionality of the MOGA 
technique used in the system 
 
 

 
 

 
Figure 3.1: MOGA 

 

Gen=Gen+1

no
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Retrieve results 

Start

Create initial random population. (Binary representation)

Gen = 0

Select two individuals Based on fitness

Evaluate Fitness of each Individual
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END 
Perform Crossover
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1st- First an initial population is randomly generated and encoded into binary strings representing 
the genotypic values of its inhabitants. 

2nd- A predefined function in the MOGA toolbox converts the binary representations of 
the population into real number values denoting the phenotypic values. 

3rd- Each individual in the population is assessed through the objective function. (In 
Simulink). 

4th– Each individual is assigned a fitness value (usually the value of the fitness value is 
determined in the range [0 1] denoting a probability) reflecting its performance assessed 
through the objective function. 

5th- Couples of individuals are selected stochastically for reproduction. Each individual 
has a probability of being selected for recombination proportional to its fitness value, 
accordingly individuals with higher fitness values will have higher chance of being 
selected for breeding and vice versa. 

6th- The genotypic representations of the selected individuals are bred via specific 
techniques such as crossover. Basically, this part denotes the genetic exchange between 
individuals. 

7th- The mutation operator operates in a stochastic fashion on the newly generated 
offspring resulting from crossover; usually this operator takes place with relatively low 
probability just like in the biological environment. 

8th- The objective function takes place again assessing the performance of the new 
individuals. The mechanism restarts again, following the same logical order, until a 
stopping criterion is met. 

 

3.2 System Requirement 
The main system requirement is to hybridize the Multi Objective Genetic Algorithm technique with a local 
search process, which aims to fine-tune locally the solution space vector of each individual’s parameter for 
the exploration of new good solutions, thus improving the optimization results. Actually, research (Baker, 
1998) has proved that Genetic Algorithm alone, or Evolutionary Algorithm in general, are not well suited 
for fine tuning optimization, partially because they tend to operate on large vector spaces of solutions, and 
thus in special situations starting with initial good guesses close to the global optimum, it is more likely that 
genetic algorithms will consume a lot of time evaluating and exploring sub-optimal solutions mainly due to 
their lack of local search tuning. This mechanism of hybridizing a genetic algorithm with a local search 
technique is more commonly known as a memetic algorithm. 
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3.3 Requirement Analysis 
When it comes to hybridizing a genetic algorithm with a local search technique, several design issues will 
have to be carefully considered (Krasnogor, 2002). 
As its name denotes, local search explore “locally” a subspace of values, or in other word the 
neighbourhood of a potential solution. The question that arises first is: How do we define the 
neighbourhood? Unfortunately this question cannot have a single answer, but it’s essentially related to the 
application domain under investigation.  

Once the neighbourhood is defined, the other design issues that should be analysed when engineering a 
Memetic Algorithm are the following: 
¾ Which individuals in the population should be improved by local search?  

For the purpose of this project and due to its experimental nature it was decided to apply the local 
search algorithm on the entire population, and to experiment other approaches such as directing the 
local search towards relatively fit individuals in order to improve their performance and get better 
offspring later on if the time permits. 

 
¾ What kind of local search technique should be hybridized to the genetic algorithm? 
 

According to statistics and research (Krasnogor, 2002), it has been showed that the most commonly used 
local search techniques in Memetic Algorithm are the Hill Climbing techniques, Simulated annealing 
techniques and the Tabu Search techniques, although other extensions and techniques (GRASP, FAN…) 
are also used in a wide range of applications For this project it was decided to experiment with the three 
most commonly used local search techniques; Hill Climbing, Simulated Annealing and Tabu Search. 
 

¾ How long should the local search run? 
 

It turned out that this question is related to the nature of the local search technique used in the system. 
Experimentation and trials were dedicated to solve this conflict and further information will be explained in 
the following Chapters when the three kinds of local search will be discussed in details. 

 
Figure 3.2: Outline of a General Local Search Algorithm 

 
Note: The previous diagram is taken from the Internet. 
The Author’s email is:umetani@amp.i.kyoto-u.ac.jp, 



Salem Adra                                  Design 
 

 

18

18

   Global Search 
  

 
 
    Local Search 

CHAPTER 4- DESIGN 

4 Design 

4.1 Introduction 
Many Local search techniques were considered for the hybridization process with the genetic algorithm 
used in the actual system, and it was decided to start by adding the local search improvement phase after 
the recombination (Crossover) process for each individual of the population. The entire optimization 
process will be reshaped consequently to the following logical order at each generation:  
 
1st- The objective function is processed for the entire population. 
2nd- A fitness value is assigned to each individual based on its performance. 
3rd- Couples of individuals are selected for recombination. 
4th- Recombination process takes place, generating new offspring. 
5th- The population is shifted to the local search process where each individual can be improved locally.  
6th- A new population, potentially improved by the local search technique, is returned back to the global 
search phase of the genetic algorithm. 
7th- The mutation operator applies to the newly returned population from the local search phase. And the 
cycle of Global search intersected with the Local Search- restarts again. 
 
 
 
                                        A 
 
                               D Mutation                                    B Crossover 
 
                                         C 
 
 
 

Figure 4.1: Global search/Local search cycle 
 

 
The local neighbourhood of each parameter constituting an individual is to be set by the local search 
algorithm, which receives as one of its argument the global range of definition for each parameter from the 
Genetic Algorithm. After defining the local range of search for each individual’s parameter, the local 
search algorithm starts to explore the neighbourhood in a random fashion by perturbing the parameters of 
each individual by a certain allowed fraction within the local range, creating an entire new population. The 
objective function will be processed consequently on the new potential solutions assessing their 
performance, and ultimately an acceptance phase depending on the nature of the local search technique 
used will decide whether to switch the old population received from the Genetic Algorithm with the newly 
generated population in the local search or not. 
 
The functional diagram shown in figure 4.2 summarizes the entire process of a GA coupled with a local 
search technique: 
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Figure 4.2: Genetic Algorithm Combined with local search 

 
In the case of this MSc project, the neighbourhood of an individual parameter’s value was decided to 
constitute 10% of the global search range of that specific parameter. For example, let’s suppose an 
individual phenotype is formed of 10 parameters (Figure 4.3), 
 
 
 

Figure 4.3: Individual’s Phenotype. 
 
 

And that the first parameter of an individual is set to have a phenotypic range of [0 20] which is fixed 
during the whole optimization process, i.e. the global search applied by the MOGA for the first parameter 
of an individual is only defined between 0 and 20: 

                          0                                                                    20                            
Figure 4.4: Global search Range for parameter P1 

Let’s suppose at one point of the MOGA process, the individual set to be passed to the local search 
algorithm for improvement has a numerical value of 5 for its first parameter P1. The local search will have 

Parameters 
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Retrieve results

Start

Create initial random population. (Binary representation)

Gen = 0

Select two individuals Based on fitness

Evaluate Fitness of each Individual

Insert new offspring into new population

Gen >= Max Gen 

Perform Crossover

Gen = Gen + 1 

Mutation 

End 

Local Search 
Improvement 

yes

no
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to search a range of width equal to 10% of the MOGA global search around the value of P1 constituting the 
actual individual. 
                                        10% 
                                   4              6 

0 20                                     
 
                                       P1=5 
      Local Search range    

Figure 4.5: Actual P1 value of the individual under processing 
 
In the following three sections, the three local search techniques hybridized with the genetic algorithm 
optimizer will be discussed in details. 

4.2 Hill Climbing Local Search 
Hill Climbing is basically considered as the simplest heuristic local search technique.  
It is usually applied in problem domains where the ultimate objective is finding a goal state regardless of 
the path followed to reach it. This local search technique is not an optimal one as it may choose suboptimal 
paths to find a solution and is usually described as a “Greedy” search mechanism. The time complexity for 
Hill Climbing algorithm is usually proportional to the cost of the longest path for a solution (Spears, 2001). 
Hill Climbing technique is a process based on iterative improvements. Its functionality is pretty much 
simple and straightforward. Improving a given state A, the Hill climbing local search systematically 
generates a neighbourhood for that state and moves to the first neighbour with lower cost in case of 
minimization problems and vice versa in case of maximization. The process terminates when the current 
state has no neighbours with better fitness. Figure 4.6 illustrates a simple Hill Climbing Pseudocode 
(Knödler et al): 
 
Procedure Hill Climbing 
Repeat N times 
        Generate neighbouring solution S’ from S 
        If Fitness(S’) > Fitness(S) 
        Then S = S’ 
End Repeat; 
Return S; 
 

Figure 4.6: Hill Climbing Pseudocode in a maximization problem 
 
Hill Climbing seems logical and beneficial especially in situations where the search space is of simple 
nature with no more than a single maximum or minimum; see Figure 4.7: 

.                              
                        

Figure 4.7: Search space with a single maximum point. 
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Unfortunately real search spaces can be very complex and represent many local maxima or minima; 
example Figure 4.8  

 
                                 

Figure 4.8: Complex Search space. 
 
In these situations, Hill Climbing local search faces the problem of getting trapped at local maxima or 
minima, totally different from the global ones (Spears, 2001). 
Figure 4.9 shows a situation where a hill climbing local search get trapped at a local minimum and not 
being able to find a neighbour with lower fitness in a minimization problem. 

 
Figure 4.9: Local search process trapped at local minimum 

 
Another Local Search technique, which deals with this problem, is the Simulated Annealing technique 
described in section 4.3. 

4.3 Simulated Annealing Local Search 

4.3.1 Annealing Process 

“Annealing” is a term essentially borrowed from thermodynamics, and it denotes the process where a solid 
material is melted under high temperatures and then gradually cooled by slowly reducing the temperature, 
or the process in which a liquid freezes and crystallizes. The key point of the annealing process is the slow 
decrease of temperature, which allows the liquid molecules to lose their thermal mobility gained at high 

Local 
minimum 

Global 
minimum   
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temperatures and form a pure ordered crystal, which constitutes the minimum energy for the system. On the 
other hand, if the cooling process wasn’t slow enough, the liquid ends up in suboptimal energy levels. 

4.3.2 Simulated Annealing 
Simulated Annealing also known as Monte Carlo annealing, probabilistic hill-climbing and stochastic 
relaxation was first introduced by Metropolis et al in 1953. It is an optimization method originated from the 
Annealing process of thermodynamics, where a solid achieves thermal equilibrium after being cooled 
gradually under slowly decreasing temperatures. The primary advantage of simulated annealing is its ability 
to escape local optima, in complex spaces representing different local optima. 

4.3.3 How does Simulated Annealing Works? 
Just like the Hill Climbing technique, Simulated Annealing (S.A) starts by perturbing a potential solution or 
state by moving to another state in its neighbourhood. The objective function is calculated for the new state 
and compared to the objective function of the previous state. In case of minimization, if the new state has a 
lower objective function than its predecessor, the new state is accepted replacing consequently the older 
one, and basically a step downwards is taken towards the global or local minima. On the other hand if it 
turns out that the new state’s performance is worse than its predecessor, oppositely to the hill climbing 
technique which directly rejects bad steps, simulated annealing may accept the new worse state based on a 
probabilistic model, i.e. a step upwards may be allowed in a minimization problem or a step downwards 
may be accepted in maximization situations (Sundermann, 1996). 
The simulated annealing process requires an initial temperature variable T to start with and a cooling 
schedule. At each temperature T a certain predefined number, N, of improvement iterations is performed on 
the individuals of a population. T will gradually be decreasing by a small constant multiplication factor K 
that constitutes the cooling schedule. For example, a logical Simulated Annealing situation may start with 
an initial temperature T =1, a cooling schedule as follows: TKT where a suitable value for K might be 
0.95 and a number of iteration N at each temperature equal to 100. 
Let’s consider the two following cases: 
 
The simulated annealing algorithm is processing a state. First the state’s value is perturbed by moving to 
another local state in its neighbourhood. The objective function is performed on the new state to assess its 
performance.  
 
1st case: The performance of the new state is better than its predecessor 
Result: 
The new state is accepted independently of the temperature value T; totally similar to the Hill Climbing 
process. 
 
2nd case: The performance of the new state is worse than its predecessor 
Result: 
First a random number N denoting a random probability is drawn from a uniform random distribution on 
the interval [0, 1]. 
 
Then the following Metropolis criterion is checked deciding whether to accept the new state or not: 
 

If (P=exp (-∆E/T))>N     (4.1) 
 
Where T denotes the actual temperature and ∆E denotes the difference between the fitness value or 
“Energy” of the new state and the previous state:  
 

∆E = Fitness (New State) – Fitness (Old State)    (4.2) 
 
Note that in the case of a minimization problem, a state is better than another state if its fitness value is 
lower than the other state’s fitness value and vice versa in maximization situations. In other words a bad 
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state will be only accepted if the Metropolis criterion (equation 4.1) is valid, and consequently a step 
upwards may be taken to escape local minima; see Figure 4.10. 
 
 

 
 
 
 

Figure 4.10: Simulated annealing process escaping local minima 
 
The idea behind this acceptance criterion (Spears, 2001), is that due to the decrease of temperature value all 
along the process, at very low temperatures, ultimately the exponential function, Exp (-∆E/T), will be 
tending to zero as the equation –∆E/T will be tending to minus infinity, and consequently the validity of the 
criterion will be nearly impossible, and thus the simulated annealing process will be acting like a Hill 
Climber local search at low temperatures, basically by only accepting good solutions. 

Although Simulated Annealing algorithms are relatively simple to implement, careful attention should be 
taken when configuring the two important parameters constituting the cooling schedule which represents 
the core of the simulated annealing process, these two parameters are the step size for the temperature 
perturbation, i.e. the temperature minimization factor K and the initial temperature T. Most researchers 
suggest step sizes and T values settings that allow approximately 80% of the poor moves to be accepted, 
although these two parameters are totally subjective to the nature of the application domain. Extensive 
results about widely used Simulated Annealing schedules and their corresponding performances can be 
found at the following website: http:// www.ingber.com. Other elements to consider while implementing a 
Simulated Annealing algorithm are that although SAs are proved to be efficient and reliable in several 
applications domains, they require much more response time or objective function evaluations then other 
techniques which may be tedious and time consuming in some applications’ environments, especially 
where the objective functions are of complex nature and time consuming. On the other hand, unlike other 
optimization techniques that attempt to make intelligent moves in the solution space, SA, which has been 
termed a “biased random walk”, takes the steps in a completely random fashion. 

A variation of the simulated annealing process (Spears, 2001) replaces the Metropolis Criterion:  
 

)/( TEeP ∆−= With the logistic function )1(
1
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also known as the sigmoid function (Figure 4.11), as an acceptance criterion for taking uphill or downhill 
moves. Simulated Annealing algorithms, which use the sigmoid function, are usually called “Stochastic 
Hill Climber”. 
 
 

 
Figure 4.11: The Sigmoid Function 

 
 
 
 

4.3.4 Simulated Annealing Pseudocode 
The pseudocode in Figure 4.12 illustrates a basic simulated annealing process of a minimization problem: 
 
Procedure simulated annealing 
 
Begin 
 Initialize temperature T 
 Starts at a current point or solution 
 Best_Solution  Current_Solution 
 Repeat for a certain number of iterations N 
    Select a new point or Solution randomly in the neighbourhood of the Current_Solution 
    If Performance (New_Solution) < Performance (Current_Solution) 
       Current_Solution  New_Solution 
 

    Else if random [0,1) > 
)/))_()_((( TSolutionCurrenteperformancSolutionNeweperformance −−

 
       Current_Solution New_Solution 
 
Temperature T  schedule (temperature) 
 Until Temperature < halting-criteria 
End 

Figure 4.12: Simulated Annealing algorithm. 
 
 

4.4  “Tabu Search” Local Search 

4.4.1 Tabu search: Introduction 
 
Despite their simplicity, “Hill Climbing” techniques have uncovered the problem of getting stuck at local 
optima in search spaces of complex natures representing multiple points of inflection. In order to solve that 
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common problem, Simulated Annealing technique has provided the possibility of accepting bad solutions in 
order to go uphill to escape a local minimum or downhill in case of local maxima. Unfortunately Simulated 
Annealing technique has uncovered yet another problem which could not be solved by the added expressive 
functionality of the technique. It has been demonstrated that in certain specific scenarios, Simulated 
Annealing can get trapped at local optima regions (Prasetio and Rhone, 2002). Due to the random nature of 
the step-taking process of the Simulated Annealing technique, in some situations, the SA algorithm might 
end up oscillating in a local optimum region by constantly making steps forwards followed by steps 
backwards or upwards and then downwards. The following scenario better illustrates the problem: 
In a minimization problem, the ultimate goal of a Simulated Annealing algorithm is to make steps towards 
the global minima while accepting upwards steps based on a probabilistic model in order to avoid 
entrapment at local minima. But due to the random nature of the movement, at local minima, the algorithm 
may accept a bad move and consequently go up the hill escaping the local minima, and then go back again 
to the local optima region by a random backward step, ending up in a cycling situation which may not halt 
ever. 

 
Figure 4.13: SA trapped in a cycling situation, which might run indefinitely 

 
In order to solve this conflict it was necessary to set a penalizing process, which forbids certain paths to be 
taken, and eliminates these cycling situations, which is the basic idea behind “Tabu Search” algorithms. 
Tabu search is a meta-heuristic search function, a relatively new technique originated around 1977 (Glover, 
1977), and which is still being researched and under investigations. As mentioned previously, the main 
additive improvement of Tabu search techniques is their ability to escape indefinite cycling situations. Its 
main concept is that there is no point of accepting a bad solution or step unless it is taken to escape cycling 
scenarios by avoiding a path already visited. Thus the need for a certain internal memory, which holds the 
paths already visited, emerges. Tabu search algorithms keep track of the previously visited paths by 
recording recent moves into a Tabu list, which constitutes the main element of a Tabu search algorithm. 
Tabu derived from the word “taboo” is generally used to describe something which is prohibited and 
inviolable. The Tabu list, usually implemented as an array, stack or queue, can be thought of as traffic law 
that forbids some paths, usually previously visited ones, to be taken, which ultimately eliminates the risk of 
oscillation or cycling. Figure 4.14 (Prasetio and Rhone, 2002) summarizes the iterative functionality of 
Tabu search algorithms: 
 
 
 
 
 
 
 
 
 

Current Solution 

Define 
neighbourhood 

Evaluate 
neighbourhood

Pick best non 
Tabu 

neighbour 
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     Figure 4.14: Tabu Search Functionality 
 
 
The major issues that should be considered when designing a Tabu search algorithm are basically related to 
the Tabu list, its organization, its length and implementation. That is besides the issues that relate to the 
greedy search algorithm itself, and the type of movement that should be applied for “jumping” from a 
solution to another. The Tabu list’s length is particularly a very delicate parameter, which should be 
carefully configured, as a wrong choice of the list’s length may lead to an inefficient algorithm. Research 
(Thesen, 1998) has shown that a Tabu list’s length in the range 7 to 15 is usually a suitable choice for a 
wide range of applications.  
 

4.4.2 Pros and Cons of Tabu Search 
To put in a nutshell, Tabu search algorithms are usually a very efficient approach for tracking good 
solutions most likely undetectable by other mechanisms. The Tabu search is not bounded by linearity, as 
local optima situations and cycling problems are preventable. In general, compared to other optimization 
techniques, Tabu search algorithms usually yield better quality results. On the other hand, Tabu search 
algorithms possess their own constraints. When designing a Tabu search, the designer should keep in mind 
that these optimization techniques do not guarantee optimality, rather the decision whether to stop the 
search process or not remains to the user to decide. In addition, just like Simulated Annealing techniques, 
Tabu search mechanisms requires a huge amount of performance evaluation, and consequently the running 
time of these algorithms in applications with complex objective functions may be unbearable. 
 

4.4.3 Tabu search Pseudocode 
 
Figure 4.15 illustrates a basic Tabu search Pseudocode, (Arne Thesen, 1998) 
Initialize 

Identify initial Solution 
Create empty TabuList 
Set BestSolution=Solution 
Define TerminationConditions 
Done=false 

Repeat 
If Value of Solution > Value of BestSolution Then 

BestSolution=Solution 
If no TerminationConditions have been met yet Then Begin 

Add Solution to TabuList 
If TabuList is full Then 

Delete oldest entry from TabuList 
Find NewSolution by some transformation on Solution 
If no NewSolution was found OR 

If no improved NewSolution was found for long time Then 
Generate NewSolution at Random 

If NewSolution not on TabuList Then 
Solution = NewSolution 

End 
Else Done = true 

Until Done = true 
 

Figure 4.15: Tabu Search Pseudocode 
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CHAPTER 5- IMPLEMENTATION AND 
TESTING 

5 Implementation and Testing 

5.1  “Hill Climbing” Local Search Implementation 
The first approach for hybridizing the multiobjective genetic algorithm technique used in the current system 
was to couple it with a simple Hill Climber local search which aims to make local improvements on the 
population’s individuals at each generation of the global search phase constituting the MOGA. As 
mentioned earlier in Chapter 4, it was decided to integrate the local search improvement just after the 
recombination process and before the mutation operator takes place. In other words, the out-coming 
population from the crossover process is passed to the local search mechanism in order to improve its 
performance and return it back to the genetic algorithm phase, where the mutation operator takes over again, 
by modifying, based on a probabilistic model, some bits of the newly returned population from the local 
search process, ensuring the possibility of searching any region in the search space. 
The logicality of the Hill Climber local search is very simple; the algorithm defines the neighbourhood for 
each individual constituting the population passed from the MOGA for local improvement. More accurately, 
the local search algorithm sets the range or neighbourhood for each of the variables composing an 
individual. In the current system, the phenotypic representation of an individual is constituted of ten 
variables: 
 
 
 

Table 5.1: Individual’s Phenotype. 

Note that the local search algorithm as well as the crossover operator, the objective function and the fitness 
function operates on the phenotypic representation of the individuals, i.e. the real valued encoding. Instead 
of processing just one individual at a time, the local search algorithm process the entire population, by 
setting the neighbourhood for each of the ten variables composing each individual in the population. The 
total number of individual per population was set to 50 individuals, which is a typical population length in 
genetic algorithms. The population is thus to be thought of as a matrix or two dimensional array composed 
of fifty rows denoting the total number of individuals, and ten columns denoting the number of variables 
which constitutes an individual: 
 

Number of variables per individual = 10 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
Table 5.2: A population of 50 Individuals 

 
Each of the individuals variables are bounded by an upper global limit and a lower global limit defined at 
the beginning of the genetic algorithm. These global limits are totally problem-related and should be 

Variable 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
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conserved all along the process; otherwise the algorithm might end up processing irrelevant data which 
might be totally illogical and irrational. It was decided that for the local search process, the search range 
should be reduced to 10 percent of the global search range at each variable. For a better understanding let’s 
consider the following scenario: 
 
Table 5.3: GlobalMax: 
50 70 20 100 50 88 60 30 90 100 
 
Table 5.4: GlobalMin: 
-50 0 -40 20 0 0 10 -30 -20 0 
 
GlobalMax and GlobalMin are two arrays containing correspondingly the upper and lower limits of each 
of the 10 variables constituting an individual. 
And let’s suppose that the following reduced (for simplicity) population was generated by the crossover 
operator and passed to the Hill Climber local search to improve it: 
 
Table 5.5: Actual Population 

Individual 1 
Individual 2 

 
Since the local range is locally set to be equal to 10 percent of the global range, the Hill Climber local 
search will first set the upper local and lower local limits for each of the two individuals’ variables by 
generating two matrices with the same dimensions as the population, one registering the local lower limits 
for the variables and the other storing the local upper limits: 
 
In the case of the previous reduced population of two individuals, the Hill Climber algorithm will produce 
the following local neighbourhoods. 
 
Table 5.6: Setting the local search neighbourhood 

GlobalMax 
 

Individual 1 
 
GlobalMin 

 
The width of the local range for each variable is equal to the absolute difference of the GlobalMax and the 
GlobalMin of that variable multiplied by 0.1: 
 
Local Range width= (Abs (GlobalMax-GlobalMin)*0.1) 
 

Local Range Width 

Table 5.7: Local Range Width 
 
Local upper and lower limits for Variable 1 of Individual 1: 
 
             -5         +5 
     -50 50 
 
                V1=10 

Figure 5.1: Local Neighbourhood Setting case 1 
 

So basically the upper local limit for variable 1 (V1) will be equal to 10 + 5 = 15 and its local lower limit is 
equal to 10 - 5 = 5. So the local range width is to be thought of as sliding range all along the global range 

10 2 18 50 30 30 40 -10 19 60 
30 50 -15 40 20 20 20 10 0 35 

50 70 20 100 50 88 60 30 90 100 

10 2 18 50 30 30 40 -10 19 60 

-50 0 -40 20 0 0 10 -30 -20 0 

10 7 6 12 5 8,8 7 6 11 10 
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width, and which aims to be centred at the actual variable’s value in order to determine its local upper and 
lower range limits. In extreme cases where the actual variable’s value is at a smaller distance than the half 
of the local range width to an upper or smaller global range value, the local upper or lower limit will be, 
depending on the situation, set to the global limit while the other limit will be set to the difference of the 
local width range and the distance between the current variable’s value and its nearest global limit, the 
second variable (V2) in the previous example summarizes the point: 
 
 
 
 
 
          -2         +5 
         0 70 
 
            V2 = 2 
 

Figure 5.2: Local Neighbourhood Setting case 2 
 
 
Since the distance between V2 and its global lower limit is less than its local width range divided by 2 
(local width range = 7), the local lower limit for V2 is set to be equal to its global lower limit, while its 
local upper limit is equal to its local width range minus its distance to the global lower limitÆ V2’s local 
limit = 7 – 2 =5 
Consequently the Hill Climber local search will set up the local bounds for each variable of the actual 
solution by storing it in the corresponding matrices: 
 
 
Table 5.8: Actual Population 

Individual 1 
Individual 2 
 

 
Table 5.9: LocalMin 

Individual 1 
Individual 2 
 

 
Table 5.10: LocalMax 

Individual 1 
Individual 2 
 

 
 
In order to function properly and set the local search range for each individual, the implemented Hill 
Climber local search required the allocation of nine parameters, among which are the two arrays “ubounds” 
and “lbounds” storing the global upper and lower limits of the variables which are defined at the beginning 
of the genetic algorithm. 
 
 
 
 
 
 

10 2 18 50 30 30 40 -10 19 60 
30 50 -15 40 20 20 20 10 0 35 

5 0 15 44 25 25,6 36,5 -13 13,5 55 
25 46,5 -18 34 15 16,4 16,5 7 -5,5 30 

15 7 21 56 35 34,4 43,5 -7 24,5 65 
35 53,5 -12 46 25 24,4 23,5  13 5,5 40 
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Figure 5.3 illustrates the code portion that creates the local neighbourhood for each individual: 
  
for i=1:nind 
            for j=1:nvar 
                if (phen(i,j) + delta(j)/2 <= ubounds(j)) & (phen(i,j) - delta(j)/2 >= lbounds(j)) 
                    local_ubounds(i,j) = phen(i,j) + delta(j)/2; 
                    local_lbounds(i,j) = phen(i,j) - delta(j)/2; 
                else if (phen(i,j) + delta(j)/2 > ubounds(j)) 
                        temp_prime = ubounds(j) - phen(i,j); 
                        temp_prime_prime = delta(j) - temp_prime; 
                        local_ubounds(i,j) = ubounds(j); 
                        local_lbounds(i,j) = phen(i,j) - temp_prime_prime; 
                    else if (phen(i,j) - delta(j)/2 < lbounds(j)) 
                            temp_prime = phen(i,j) - lbounds(j); 
                            temp_prime_prime = delta(j) - temp_prime; 
                            local_lbounds(i,j) = lbounds(j); 
                            local_ubounds(i,j) = phen(i,j) + temp_prime_prime; 
                        end 
                    end 
                end            Nind = number of individuals of the population 
            end                Nvar = number of variables that constitutes an individual 
        end                    Phen = A matrix of dimension (Nind, Nvar) containing the actual population.  
                                  Delta = An array of length Nvar containing the local range width for each variable. 
                                  lbounds = An array of length Nvar containing the global lower bound of the variables. 
                                  Ubounds =An array of length Nvar containing the global upper bound of the variables. 
                                  Local_lbounds = A matrix of dimension (Nind, Nvar) containing the local lower 
                                                    bounds of the variables constituting the individuals of the entire population. 
                                  Local_ubounds = A matrix of dimension (Nind, Nvar) containing the local upper 
                                                    bounds of the variables constituting the individuals of the entire population. 
 

Figure 5.3: Local neighbourhood setting’s code 
 
 
After having set the neighbourhood for each of the population’s inhabitants, the next task of the Hill 
Climber local search is to create a new population by randomly perturbing the variables of each individual 
in its local range previously determined, for the ultimate goal of improving the performance of the actual 
population. 
 
In Matlab the following command shown in equation (5.1) 
 

X = a + (b – a) * rand (n)     (5.1) 
 

generates a matrix named X of dimensions n by n whose elements are generated by a uniform distribution 
of random numbers on a specified interval, in this case [a, b]. In general the function rand generates arrays 
and matrices whose elements are uniformly distributed in the interval (0, 1). Multiplying the output of rand 
(n) by (b-a) consequently generates random numbers in the range (0, width of the interval (a, b)). Finally 
adding the lowest bound of the desired interval (in this case a), slides the random numbers generated 
between zero and the width of (a, b) to the desired interval, i.e. (a, b). 
For the Hill-Climbing algorithm, the goal was to randomly modify each individual’s variable in a 
predefined local range, i.e. (LocalMin, LocalMax). 
Figure 5.4 illustrates the process of perturbation of the individuals’ variables in order to move to another 
state or solution in the hill-climbing algorithm: 
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for i=1:nind 
    for j=1:nvar 
        temp_ind(i,j) = phen(i,j); 
        while(temp_ind(i,j) == phen(i,j)) 
            a = temp_lbounds(i,j); 
            b = temp_ubounds(i,j); 
            temp_ind(i,j)=a + (b -a) * rand(1); 
        end 
    end 
end                                Nind: number of individuals in the population 
                                      Nvar: number of variables constituting an individual 
                                      Phen: matrix of dimensions (Nind, Nvar) containing the entire 
                                                 Actual population 
                                     temp_ind: matrix of dimensions (Nind, Nvar) containing the 
                                                        Modified population 

  
Figure 5.4: Step taking process. 

 
A new potential population is thus created. At this point of the Hill Climbing algorithm, the objective 
function should be applied to the new population in order to assess its performance in the application 
domain, to decide whether to accept the new population or not. Note that the objective function is a 
problem-related process, which should be designed by the user, not the Hill Climbing designer.  
 
In the current system, the objective function, already implemented at the Automatic Control and Systems 
Engineering Department at The University of Sheffield, assigns a fitness score to each individual, by 
simulating its performance onto engines’ diagrams (implemented in Simulink). 
 
Figure 5.5 illustrates the objective function and the fitness function being applied to the new population 
created by the Hill Climbing algorithm: 
 
for indno=1:nind; 
        objv_temp(indno,:) = xobjvfn(local_ind(indno,:)); 
    end; 
 
    E_new=rank_prf(objv_temp,goalv,priorityv); 
 
Figure 5.5: performance evaluation 
 
Xobjvfn is the objective function, which simulates the engines response to the new population. The 
objective function assesses one individual at a time (the new individuals being stored in local_ind matrix), 
and evaluates its performance by controlling and testing a number of objectives. Note that this function 
assigns a raw fitness value to each individual, and returns a matrix obj_temp of dimension (Nind, Nobj) 
where Nind denotes the number of individuals in the population, and Nobj denotes the number of 
objectives functions being evaluated. The function rank_prf takes as one of its arguments the objective 
matrix produced by the objective function, and transforms the raw objective values of each individual into 
fitness scores. Basically the problem is a minimization situation, i.e. the individual with the least fitness 
value is the fittest one. The smallest fitness value that can be produced by rank_prf is zero. Thus an 
individual is better than another one if its fitness value, assigned by the rank_prf function, is lower, or in 
another words if the difference of fitness functions is negative. At the end the fitness of the new population 
is compared to the fitness of the old one, and only the new individuals with better fitness values then their 
predecessors are accepted (see Figure 5.6), which is the typical acceptance process of a Hill Climbing 
algorithm. 
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for i=1:nind  
   if(delta_E(i)<0)  %it means the new individual performed better...the best rank is zero 
          phen(i,:) = temp_ind(i,:);  % the new individual replaces the old one 
          E_old(i) = E_new(i);        % the new individual’s fitness replace the old one’s. 
     end 
end 
 
Figure 5.6: Acceptance process. 
 

5.2  “Simulated Annealing” Local Search Implementation 
The second approach for hybridizing the genetic algorithm of the current system with a local search process 
consisted on implementing a Simulated Annealing (SA) algorithm which is basically a more advanced and 
sophisticated process compared to the Hill Climber techniques, especially because of its added feature 
which allows the escapology from local optima. At the heart of the Simulated Annealing mechanism is an 
analogy with essential principles of thermodynamics, which describes the process by which solid materials 
are melted and then allowed to cool down through a slowly decreasing temperature’s environment. The 
Simulated Annealing techniques and the Hill Climbing techniques represent a lot of similarities especially 
due the randomness of the “step taking” process from one solution to another. Similarly to the Hill 
Climbing local search, the Simulated Annealing improvement algorithm was interleaved between the 
crossover operator and the mutation operator in the genetic algorithm process. First the SA local search 
algorithm starts by defining the local range of search for each of the variables constituting the populations’ 
individuals. The same neighbourhood setting process employed in the Hill Climber local search was 
applied in the Simulated Annealing approach. 
Differently to the Hill Climbing approach, which starts by perturbing the population after having defined 
the local neighbourhood, the Simulated Annealing algorithm, requires the initialization of a temperature 
variable, Temp, and a cooling schedule which decides the decreasing rate of the temperature all along the 
process. Note that the initial temperature initialization and the allocation of a cooling schedule are the 
major two requirements of a Simulated Annealing algorithm, they are totally problem related and thus one 
should make careful consideration choosing these features. Due to the experimental nature of the project, it 
was decided to initialize the initial temperature to 1 (Figure 5.7), which is a recommended value, based on 
previous research and experimentation in the field. The temperature decrease step was set to 0.02, which is 
a relatively small and suitable decrease step, for an annealing schedule. The minimal temperature was set to 
zero, although it would be more suitable in other programming environments (other then Matlab) to make it 
0, 02 in order to avoid special warnings or error messages especially with operations including divisions, 
(i.e. division by zero) when the temperature reaches its minimum value. 
 

%set initial temperature 
  Initial_Temperature=1; 

             % set up temperature schedule 
T_schedule=[1:-.02:0]; 

 
Figure 5.7: Initial temperature and temperature schedule settings 

 
Another essential element of Simulated Annealing techniques is the initialization of a number of search 
iterations N that should be accomplished at each temperature. In the workspace of this project it was 
decided to experiment with a number of iterations equal to 100 for each temperature. After the initialization 
of the initial temperature Temp, the temperature schedule and the number of search improvement’s trials 
per each temperature are set; the process starts by randomly modifying the actual population by moving to 
adjacent values in the local search range, applying the same approach used in the Hill Climber algorithm 
(Figure 5.4). The next step of the process consists of the objective function’s assessment for the new 
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randomly created population; note that the Simulated Annealing is a very long and time consuming process 
due to the requirement of huge amounts of objective function’s evaluations. In the case of the previous 
initializations, (Initial_Temp =1, Temp_schedule: TempÆTemp – 0, 02 until 0, and number of iteration N 
per temperature =100), the objective function was evaluated 5000 times for one single generation of the 
global search phase of the MOGA. 
The final phase of the SA local search consists of the acceptance step, which oppositely to the Hill 
Climbing’s acceptance step, which only accept good solutions, might accept bad individuals based on the 
Metropolis criterion, which enables the local search process to escape situations where it get trapped at 
local optima. (Equation 4.1) 
 
Figure 5.8 illustrates the acceptance step of the implemented simulated annealing local search: 
  
                           R =rand(1);%returns a random number between 0 and 1 
                           For i=1:nind               %  
                                   if(delta_E(i)<0)    % it means the new individual has performed  
        Same as                                           % better then its predecessor. The best rank is 0 
   Hill Climbing              phen(i,:) = temp_ind(i,:);   
  Acceptance step           E_old(i) = E_new(i);         
 
                                 elseif(exp(-delta_E(i)/Temp)>R) % accepts a worst individual if the  
                                                                                       % Condition is valid 
                                          phen(i,:) = temp_ind(i,:);  
                                          E_old(i) = E_new(i); 
                                end 
                        end 

Figure 5.8: Acceptance step of the simulated annealing algorithm 

5.3 “Tabu Search” Local Search Implementation 
The Tabu local search algorithm was the third approach for hybridizing the multi objective genetic 
algorithm used in the actual system, with a local search improvement phase. From a logical point of view, 
the tabu search mechanism seemed to be the best choice of local search process, mainly because of its 
expressive power to escape undesirable situations, such as the entrapment at local optima, a situation which 
the Hill Climber techniques occasionally suffer from, and the cycling situations at local optima regions 
which may jeopardize the termination of local search processes such as the Simulated Annealing algorithms. 
On the other hand, due to the random chaotic distribution of the solution’s values in the search space, the 
option of fitting a defined function to the solutions’ values in the local range space is not the suitable choice. 
Consequently no assumptions could have been made about the data points distribution in the local spaces, 
and thus the chances that Simulated Annealing technique and the Tabu search approach could be 
inappropriate for this application’s domain are probable, especially if the solution space does not actually 
present any local optima regions; in these situations the expressive features of the Tabu search and the 
Simulated Annealing approaches would not be too invested, but unfortunately, their performances will be 
costly in time due to their huge requirement of objective function’s assessment. 
The implemented Tabu search algorithm, similarly to the previous local search approaches (Hill Climbing 
and Simulated Annealing), was introduced after the crossover operator of the genetic algorithm. A potential 
population of individuals is passed by the MOGA to the Tabu search algorithm, for improvement. The 
Tabu search algorithm starts then by initializing a Tabu list, the major element of Tabu search algorithms, 
and which is to be thought of as an internal memory which keeps records of the previously visited solution 
points in the local neighbourhood, in order to impose the notion of discovering new data points and avoid 
cycling situations. On the other hand, memory cannot possess unlimited capacity, or in this case, storage 
capacity, so it was decided to limit the length of the Tabu list to ten solutions’ values pre-visited at a time, 
as research (Thesen, 1998) has showed that large Tabu list lengths may be too restrictive for the search 
process and may lead to insufficient exploration mechanisms. The Tabu list (Figure 5.9) was represented by 
a three dimensional array, of dimensions (Nind, Nvar, 10), where Nind denotes the number of individuals 
in the population, Nvar denotes the number of variables constituting an individual and 10 which denotes the 
length of the tabu list: 
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Figure 5.9: Tabu list Empty 

 
The initial population passed from the genetic algorithm and which is contained in a matrix of dimension 
(Nind, Nvar) fills the first level of the tabu list (Figure 5.10), denoting by that the first visited set of 
solutions’ values which should not be visited again for at least 10 exploration’s steps. 

 
Figure 5.10: Tabu list with a Filled slot 

 
Figure 5.11 illustrates the implemented piece of code designated with the initialization of the tabu list: 
 
tabu_lis t= zeros (Nind,Nvar,10);    %First the tabu list is initialized and filled with zeros 
 
index = ones(nind,1);                       % Index is an array which holds the index of the next  
                                                           %empty slot in the tabu list for all the individuals,  
                                                           %(i.e. maximum 10) 
tabu_list (:,:,1) = phen;                    % the first slot of the tabu list is occupied by the  
                                                           %initial population passed from the MOGA 
index(i)=index(i)+1;                        %Incrementing the index of the next empty slot 
 

Figure 5.11: Tabu list initialization 
 
After initializing the Tabu list, the Tabu search algorithm sets the neighbourhood for the entire individuals 
of the population, randomly perturbs the variables of each individual, moving by thus to a neighbour 
population, and then assesses the performance of the newly created population. Note that the previously 
described processes are the same processes used in the Hill Climbing technique and the Simulated 
Annealing local search. 
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The final step of the Tabu search algorithm consists of the acceptance step, noting that the core of the Tabu 
search technique is that there is no point in accepting bad solutions unless to escape a subspace recently 
explored (cycling problems) or get out of local optima. The acceptance step is decomposed into five cases 
illustrated below: (Note: The code for the acceptance step process can be found in Appendix 2.) 

¾ Case 1  
¾ Conditions  

1. The new individual has performed better than its predecessor  
2. The new individual is different from all the individuals stored in the Tabu list of that 

individual, which basically means that the new individual is a good solution, which has 
not been recently explored. 

3. The Tabu list for that individual is not full. 
¾ Result: Accept the new individual; insert it in the Tabu list at the index of the next empty slot and 

increment the index by one. 
 
¾ Case 2 
¾ Conditions 

1. The new individual has performed better than its predecessor  
2. The new individual is different from all the individuals stored in the Tabu list of that 

individual, which basically means that the new individual is a good solution, which has 
not been recently explored. 

3. The Tabu list of that individual is full 
¾ Results: 

1. Accept the new individual 
2. Delete the first slot of the Tabu list, in other words, delete the oldest visited solution 
3. Decrement the index of the next empty slot 
4. Insert the new individual in the tabu list at the index of the next empty slot and increment 

the index by one. 
 

¾ Case 3 
¾ Conditions: 

1. The new individual has performed worse than its predecessor or is a duplicate of one of 
its Tabu list elements 

¾ Results: 
1. Pick randomly another individual in the allowed neighbourhood. 
2. Calculate its new performance 
3. Increment a Timer variable by one; (Timer initially is equal to zero) 
4. Check case1 and case 2 again 
 

¾ Case 4 
¾ Conditions: 

1. The new individual has performed worse than its predecessor  
2. The Timer variable is equal to ten; it means no improved individual has been found for 

ten iterations. 
3. Tabu list for that individual is not full 

¾ Result: 
1. Accept the bad individual; the core of this step is escape potential cycling situations or 

local entrapment by accepting a bad solution after a number of fruitless iteration to find a 
better individual in order to explore new subspaces. 

2. Insert the bad individual at the next empty slot in the Tabu list and increment the index. 
 

¾ Case 5 
¾ Conditions: 

1. The new individual has performed worse than its predecessor  
2. The Timer variable is equal to ten; it means no improved individual has been found for 

ten iterations. 
3. Tabu list for that individual is full 
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¾ Result: 
1. Accept the bad individual; the core of this step is escape potential cycling situations or 

local entrapment by accepting a bad solution after a number of fruitless iteration to find a 
better individual in order to explore new subspaces. 

2. Delete the first slot of the Tabu list, in other words, delete the oldest visited solution 
3. Decrement the index of the next empty slot 
4. Insert the new individual in the Tabu list at the index of the next empty slot and 

increment the index by one. 

5.4 Local Search Testing 
The local search techniques hybridized with the genetic algorithm of the actual system are relatively 
straightforward numerical techniques, which do not have any interaction with the user, in the way they do 
not require any input arguments. They are just internal processes, hybridized with a genetic algorithm 
optimization technique; they get their arguments from the global search process of the MOGA. In other 
words, traditional testing techniques such as the category partition method which deals with a system as a 
black box, or even random exhaustive testing would not be suitable testing approaches for the actual system. 
In order to investigate the correctness of the local search techniques, it was more suitable to pin out the 
resulting data from the several phases constituting the local search algorithms. For example, testing the 
“local neighbourhood setting” process was verified by taking snapshots of the process’s functionality: 
Figure 5.12 represents the numerical output values of the local neighbourhood settings and the resulting 
new individuals for individual 1, 2 and 3 from the hill-climbing algorithm: 
 
Hill Climbing 
ubounds =             ubounds is the global upper limit vector for the 12 variables constituting an individual 
Columns 1 through 12  denoting the 12 variables 
50.0000  1.0000   50.0000  1.0000  50.0000  1.0000 50.0000   1.0000    0.0050    0.1000    0.0050   50.0000 
 
lbounds =             lbounds is the global lower limit vector for the 12 variables constituting an individual 
Columns 1 through 12 denoting the 12 variables 
-50.0000   0.0010 -50.0000   0.0010 -50.000  0.0010  -50.0000   0.0010  -0.0050  -0.1000 -0.0050  -50.0000 
 
delta =                   local search width = 10 % of global search width for each variable. 
Columns 1 through 12 
10.0000   0.0999  10.0000  0.0999   10.000   0.0999  10.0000   0.0999   0.0010    0.0200    0.0010   10.0000 
 
phen =                   Phenotype values of the 3 first individual of the population 
-31.2589  0.0025  34.3900  0.3737 -4.7555  0.0421 -28.2269  0.1131    0.0005   -0.0350    0.0031    4.3435 
-31.2482  0.0040 -26.1242  0.0022   23.1670  0.0301 -13.5080  0.0048 -0.0045    0.0365    0.0029  -30.1877 
27.6287   0.0065  -21.9814  0.2233  -16.1601  0.9194  31.6846  0.0410  0.0046  -0.0750    0.0050  -19.8253 
 
temp_ubounds =       Local upper limit for each of the 3 individuals’ variables 
-26.2589  0.1009 39.3900  0.4236  0.2445  0.1009  -23.2269    0.1631    0.0010   -0.0250    0.0036    9.3435 
-26.2482  0.1009 -21.1242  0.1009  28.1670   0.1009  -8.5080  0.1009   -0.0040   0.0465    0.0034  -25.1877 
32.6287  0.1009  -16.9814  0.2733  -11.1601  0.9694  36.6846  0.1009   0.0050  -0.0650    0.0050  -14.8253 
 
temp_lbounds =       Local lower limit for each of the 3 individuals’ variables 
-36.2589  0.0010  29.3900  0.3237 -9.7555  0.0010  -33.2269  0.0632    0.0000   -0.0450    0.0026   -0.6565 
-36.2482  0.0010  -31.1242  0.0010  18.1670  0.0010  -18.5080  0.0010  -0.0050  0.0265    0.0024  -35.1877 
22.6287   0.0010  -26.9814   0.1734  -21.1601  0.8695  26.6846  0.001    0.0040  -0.0850  0.0040  -24.8253 
 
temp_ind =               Three new individuals created in the allowed local range 
-29.0900  0.0066  35.8059  0.3475  -7.0627  0.0011  -31.2085  0.1560    0.0004   -0.0284    0.0030    5.4730 
-31.2337  0.0417  -22.8564  0.0987  24.2902  0.0992  -10.7099  0.0539  -0.0041  0.0451    0.0025  -31.1113 
30.0300  0.0064  -19.2173   0.2395  -12.3289  0.9464  31.2367   0.0665   0.0050  -0.0685  0.0041  -16.0519 

Figure 5.12: Neighbourhood setting and population’s modification processes 
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The previous pinned out data is printed out during an execution of the hybridized MOGA technique with 
the Hill Climbing local search, and it demonstrates the accuracy and the correctness of the “neighbourhood 
setting” process and the random movement of the population to an adjacent population in the predefined 
local range. For the random perturbation step of the actual population, an assumption about the correctness 
and the reliability of the internal random generator function “Rand” in Matlab was made, although future 
testing may be carried to investigate the accuracy of randomness of that generator. (More details, 
discussions and results analysis in Chapter 6). 
 
In addition, in order to test the correctness of the local search functionalities, the Hill Climbing local search 
was tested on a simple created scenario. The scenario consisted of a simple parabolic function 

xxxF 4
2
1)( 2 +×−= (Figure 5.13), which represents a single maximum point reached for X=4. 

 
 

 
The objective of this scenario was to prove the reliance of the Hill Climbing local search, by investigating 
its behaviour. It was decided to set the domain of definition for the function F to [-100 100] for the purpose 
of this test. The Hill Climbing local search started with a solution point with abscissa X = -100 and ordinate 
Y=F (-100). The local search process consisted of a 10000 number of iterations. At each iteration, a step 
was made by randomly modifying the abscissa of the current point or solution in the range [current abscissa 
–1 current abscissa +1]. The function F (x) was then evaluated at the new abscissa, which is only accepted 
if its ordinate value (i.e. F (x) value, which basically denotes the fitness function) is higher than the ordinate 
of the previous abscissa. The values of the accepted Xs were pinned out on the screen throughout the entire 
local search process and stored in an array, as well as their corresponding function’s evaluations. The arrays 
storing the x values and their matching y values were primarily initialized to zeros. After the maximum (x = 
4) was reached, the Hill Climbing local search did not accept any x values, while storing the number –101 
in the array storing the x values to denote that all the x values picked during the process, after the solution 
x=4 was reached, were void. 

 
 

Figure 5.13: xxxF 4
2
1)( 2 +×−=  

Figure 5.14: Hill Climbing Acceptance step
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Although Figure 5.14 demonstrated the correctness of the hill climbing local search and its reliability to get 
to the maximum of the function F, the impracticality of this local search was demonstrated by changing the 

problem’s scenario ( xxxF 4
2
1)( 2 +×−= ), by using a system of equations instead, whose graph on the 

domain [0 12] represents two different maximums, (a local maximum and a global maximum). 
 

84
2
1)( 2 −+×−= xxxF   If x< = 4 

(5.2) 
                                            )sin()( xxF =   If x>4 
 
Although this system of equations is defined for all the real numbers, a reduced domain of definition [0 12] 
was used for the purpose of the testing. 
Figure 5.15 is the resulting plot from the execution of the hill climbing local search to get to the maximum 
of the previous system of equations, and it shows that after getting to the value x=4, the algorithm was 
stuck, and no further steps were accepted. 
 

 
 
On the other hand, the same problem’s scenario was applied using the Simulated Annealing process, which 
accepts downhill’s steps based on a probabilistic model, and the Tabu search process, which keeps record 
of previously visited steps in an internal fixed length memory (Tabu list). Fortunately Simulated annealing 
and Tabu search techniques have both demonstrated their ability to escape the local maximum at x=4, and 
were able to reach the global maximum after a certain sufficient number of iterations. But the remarkable 
thing was that Simulated Annealing process has taken much more time to get to the global max compared 
to the performance of the Tabu search process, and that’s due to the cycling situations that the SA process 
was facing all the way through the search space. In other words, SA kept on oscillating around some values, 
by making forward steps followed by backwards steps, especially at low temperatures, where the chance of 
accepting downhill’s steps is relatively high, the fact which essentially delayed the convergence of the SA 
algorithm towards the global max. This processing delay was totally inexistent during the Tabu search 
process, mainly because the Tabu search algorithm was forbidding backwards steps towards data points 
already visited and stored in the tabu list. Downhill’s steps were only accepted in the case where no 
improved solution was found for a specific amount of time; the idea behind this acceptance step is to 
explore new search spaces and escape local optima. The following printed messages (Figure 5.16) were 
pinned out during the execution of SA processing solutions points around the local maxima. X=4: 
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 ans = 
 x accepted=3.8,and its y values is=-0.02 
 ans = 
 x accepted=3.9,and its y values is=-0.005 
 ans = 
 Bad solution accepted X=4.1 
 ans = 
 Bad solution accepted X=4.2              Figure 5.16: SA acceptance steps 
 
Figure 5.17 illustrates the acceptance steps of the simulated annealing. The same scenario was applied with 
the Tabu search process, and similar acceptance steps (Figure 5.17) behaviour was reported although the 
process took much less time to converge when Tabu Search process was used. (Note: Testing code may be 
found in appendix 2.). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Salem Adra                           Results and Discussions 
 

 

40

40

 

CHAPTER 6- RESULTS AND DISCUSSIONS 

6 Results and Discussions 

6.1 Introduction 
 
The objective of this project was to investigate the usability of memetic algorithms in the application 
domain, and compare their performances with the multiobjective genetic algorithm’s performance. On the 
other hand, due to the stochastic nature of evolutionary algorithms (i.e. genetic algorithms and memetic 
algorithms) and the pareto-optimality characteristic of the solutions’ fitness into the application’s domain, 
there was no guarantee that the memetic algorithm would outperform the genetic algorithm. In order to 
make an informed comparison between the performances of the MOGA and the memetic algorithm, it was 
not convenient to make the comparison based on the numerical results produced by a single execution of 
each of the two algorithms; instead a certain number of iterations of the two algorithms were essential in 
order to analyse the results. Accordingly, it was decided to run each of the four processes, (1ÆMOGA, 
2ÆMOGA/Hill Climbing, 3ÆMOGA/Simulated annealing, 4ÆMOGA/Tabu Search), 20 times, make a 
record of their results, i.e. the individuals’ fitness’s and the best numerical values achieved for each of the 
objectives, and finally produce a statistical analysis of their results. Regrettably, executing the four previous 
algorithms for a certain number of iterations (20), using the essential problem’s application, was unbearable 
due to the enormous amount of execution time needed for each of the processes to converge, which is 
principally linked to the complex objective function (based in Simulink) used in the initial system. As a 
result, it was decided to test the performances of the four algorithms using a simpler problem’s domain; the 
latter reduced problem used a phenotype representation of the individuals composed of two variables, 
optimizing the values of four objectives while using a predefined mathematical set of equations as an 
objective function. Sections 6.2, 6.3, 6.4 and 6.5 illustrate the major findings and results of each of the four 
processes. 

6.2 MOGA Results and Discussion 
 
The multiobjective genetic algorithm was executed 20 consecutive times. Each execution was terminated 
after 100 generations of the MOGA algorithm, which was processing a population constituted of 40 
individuals, each composed of 2 variables, while optimizing the values of 4 objectives. After each of the 20 
executions of the MOGA algorithm, the best values of the four objectives, achieved throughout the 100 
generations of each execution and produced by the objective function for each of the 40 individuals, were 
stored in a matrix named “bestobjv”. From one execution of the MOGA to its successor, a matrix named 
“bestobjv_con” concatenated the best objectives values achieved for each execution (i.e. the “bestobjv” 
matrices of each execution), while keeping record of the number of the best objectives reached for each 
execution. The fitness scores of the population’s individuals were also stored in corresponding matrices. 
Note that a relative fitness function (“rank_prf.m”) was employed in the system, ranking the objective 
function’s results of each individual according to their performance and suitability in the application’s 
domain, compared to the performances of the other individuals of the same generation, while assuming a 
minimization problem (i.e. rank 0 is best). Another fitness function named “ranking_mo.m” was then 
applied to the output of the relative fitness function “rank_prf.m” to assign global fitness scores for each 
individual of the population. 
 
Figure 6.1 illustrates the average values of the best objectives achieved after each of the 20 executions of 
the MOGA algorithm, terminated after the processing of 100 generations at every execution. 
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Figure 6.1: The best average values of the 4 objectives (MOGA) 

 
It was remarkable that the average values of the best-achieved objectives throughout the 20 executions of 
the MOGA were relatively consistent and stable, occasionally presenting minor fluctuations such as around 
the 4th and 9th execution. The total average values (i.e. the average value of the best average values at each 
execution of the MOGA) for each objective are presented in Table 6.1. 
 

Total Average Values 
Objective 1 Objective 2 Objective 3 Objective 4 

-0.1108 -0.5398 -0.2564 -0.6319 
Table 6.1: Total Average Values (MOGA) 

 

 
 

Figure 6.2 Minimum and Maximum values at the 100th generation (MOGA) 
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Figure 6.2 illustrates the minimum and the maximum values attained at the 100th generation for each of the 
four objectives at each of the 20 executions of the MOGA. It is remarkable that the minimum and 
maximum values variations of objective 4 were more or less stable throughout the 20 executions compared 
to the other objectives’ behaviour, only varying in a range width of 0.1. (Maximum values variation range 
[-0.4 -0.3], Minimum values variation range [-1 -0.9]). On the other hand, the three other objectives 
represented relatively unpredictable variations of minimum and maximum values attained, occasionally 
showing conspicuous changes from one execution to another. Note that the graphs illustrated in Figure 6.2 
correspond to the maximum and the minimum values of the objectives achieved at the 100th generation of 
each execution which is not necessarily the generation where the best objectives’ values where achieved. 
Figure 6.3 illustrates the minimum and the maximum values of the best objectives achieved throughout the 
100 generations of each of the 20 executions: 

 
Figure 6.3: Minimum and Maximum values of the best objectives (MOGA) 

 
It was very obvious that the minimum and the maximum values of the best objectives were much more 
stable compared to the minimum and maximum values of the same objectives at the 100th generation of 
each execution. The minimum values of objectives 1, 3 and 4 were relatively fluctuating around the value -
1; where as the minimum values of objective 2 were isolated around the value –0.92. On the other hand, the 
maximum values of objective 2 and 4 were more or less mutual, while objective 1 presented the highest 
maximum values and objective 2 possessed a more fluctuating curve, fitting the maximum values attained 
for that objective all along the 20 executions.  

6.3 Hill Climbing Results and Discussion 
The MOGA hybridized with the Hill Climbing local search was tested using similar criteria to the MOGA 
process. The MOGA/Hill Climbing algorithm was executed 20 times, while storing the best results of the 
objectives functions (best objectives values) and the individuals’ fitness’s. Each execution has processed 
100 generation of the MOGA, while performing 100 iterative steps of local improvement for each 
generation. These local search improvements were based on a Hill Climbing algorithm, which explores 
subspaces of solutions, while only accepting improved individuals. 
 
Figure 6.4 illustrates the average values of the best objectives attained for each of the 4 objectives at each 
of the 20 executions: 
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Figure 6.4: The average values of the 4 objectives (MOGA/Hill Climbing) 

 
The average values of the best objectives achieved throughout the MOGA/Hill Climbing technique were 
pretty much consistent with results of the MOGA, with no major changes to be mentioned, although the 
variations of the values of objective 1 have presented sharper fluctuations while objective 3 presented more 
stabilized variation behaviour, compared to the MOGA output. 
The total average values (i.e. the average value of the best average values at each execution of the 
MOGA/Hill Climbing algorithm) for each objective are presented in Table 6.2. 
 

Total Average Values 
Objective 1 Objective 2 Objective 3 Objective 4 

-0.1285 -0.5158 -0.2428 -0.6556 
 

Table 6.2: Total Average Values (MOGA/Hill Climbing) 
 

 
 

Figure 6.5: Minimum and Maximum values of the 4 objectives (MOGA/Hill Climbing) 
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Figure 6.5 illustrates the minimum and the maximum values attained for each of the four objectives at the 
100th generation of each of the 20 executions of the MOGA/Hill Climbing process. The minimum and 
maximum values variations of objective 4 were approximately of the same stability as in the 100th 
generations of the MOGA process throughout the 20 executions, again varying in a range width of 0.1. 
(Maximum values variation range [-0.4 -0.3], Minimum values variation range [-1 -0.9]). The three other 
objectives, represented a relatively unpredictable variations of minimum and maximum values attained, 
occasionally showing conspicuous changes from one execution to another similarly to the MOGA process. 
Figure 6.6 illustrates the minimum and the maximum values of the best objectives achieved throughout the 
100 generations of each of the 20 executions: 

 
Figure 6.6: Minimum and Maximum values of the best objectives (MOGA/Hill Climbing) 

 
Figure 6.6 pointed up some differences between the behaviour of the best objectives resulting from the 
MOGA and the MOGA/Hill Climbing techniques. In the MOGA/Hill Climbing algorithm, objective 2 
presented altering minimum values for the best objectives values, diverging at more than one occasion from 
the minimum values of the objectives 1 and 4 towards the value –0.99, which was not the case in the 
MOGA. On the other hand, in the MOGA/Hill Climbing algorithm, Objective 2 presented some instability 
concerning its minimum values and Objective 1 presented some fluctuations in its maximum values’ 
behaviour, which were absent in the MOGA. 

6.4 Simulated Annealing Results and Discussion 
 
The MOGA hybridized with the Simulated Annealing local search was tested using similar criteria to the 
MOGA process. The MOGA/Simulated Annealing algorithm was executed 20 times, storing the results of 
the objectives functions (best objectives values) and the individuals’ fitness’s. Each execution has 
processed 100 generation of the MOGA, while performing 100 iterative steps of local improvement for 
each of the 50 temperatures constituting the cooling schedule of the Simulated Annealing algorithm, at each 
generation. These local search improvements are based on the Simulated Annealing algorithm, which 
explores subspaces of solutions, accepting improved individuals, and occasionally accepting bad ones 
based on a probabilistic model. Figure 6.7 illustrates the average values attained for the best objectives at 
each of the 20 executions: 
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Figure 6.7: The average values of the 4 objectives (MOGA/SA) 

 
 

The total average values (i.e. the average value of the average values at each execution of the 
MOGA/Simulated Annealing algorithm) for each objective are presented in Table 6.3. 
 

Total Average Values 
Objective 1 Objective 2 Objective 3 Objective 4 

-0.0999 -0.5466 -0.2647 -0.6363 
Table 6.3: Total Average Values (MOGA/SA) 

 
 

Figure 6.8 illustrates the minimum and the maximum values attained for each of the 4 objectives at the 
100th generation throughout the 20 executions of the MOGA/Simulated annealing process. The results were 
relatively more similar to the MOGA results than the MOGA/Hill Climbing results. 

 

 
 

Figure 6.8 Minimum and Maximum of the 4 objectives (MOGA/SA) 
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Figure 6.9 illustrates new differences between the behaviour of the best objectives resulting from the 
MOGA, the MOGA/Hill Climbing and the MOGA/Simulated Annealing techniques, especially concerning 
the minimum values variations of the 4 objectives. In the MOGA/Simulated Climbing algorithm, objective 
2 presented alternating minimum values for the best objectives values between the minimum values of 
objective 1 and 4, more frequently diverging from the minimum values of the objective 1 towards the value 
–0.995, while the minimum value of objective 4 was totally different from the outcome of the previous 
techniques (MOGA, MOGA/Hill Climbing), in the way that its value was more or less stable, but this time 
around the value –0.995, differently from the minimum values of objective 4. The behaviour of the 
maximum values of the 4 objectives was considerably similar to their behaviour in the MOGA and the 
MOGA/Hill Climbing algorithms. 
 

 
Figure 6.9: Minimum and Maximum values of the best objectives (MOGA/SA) 

 

6.5 Tabu Search Results and Discussion 
 
The MOGA hybridized with the Tabu search local search was tested using similar criteria to the MOGA 
process. The MOGA/Tabu search algorithm was executed 20 times, storing the best results of the 
objectives functions (best objectives values) and the individuals’ fitness’s. Each execution has processed 
100 generation of the MOGA, while performing 100 iterative steps of local improvement for each 
generation. These local search improvements were based on a Tabu search algorithm, which explores 
subspaces of solutions, while accepting ameliorated individuals or bad ones in order to escape cycling 
situations and entrapments at local optima.  
 
Figure 6.10 illustrates the average values attained for each of the 4 objectives at each of the 20 executions: 
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Figure 6.10: The average values of the 4 objectives (MOGA/Tabu search) 

 
 

The total average values (i.e. the average value of the average values at each execution of the MOGA/Tabu 
Search algorithm) for each objective are presented in Table 6.4. 
 

Total Average Values 
Objective 1 Objective 2 Objective 3 Objective 4 

-0.1129 -0.5007 -0.2325 -0.6792 
Table 6.4: Total Average Values (MOGA/Tabu search) 

 

 
Figure 6.11 Minimum and Maximum of the 4 objectives (MOGA/Tabu search) 

 
From figure 6.11 it was remarkable that the chaotic behaviour of the results were pretty much consistent 
with the other techniques’ results. 
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Figure 6.12: Minimum and Maximum values of the best objectives (MOGA/Tabu search) 

 
The maximum values’ behaviour of the four objectives resulting from the MOGA/Tabu Search process was 
relatively similar to the results of the previous described techniques, although from figure 6.12, it was 
perceptible that the minimum values of objective 2 was slightly detached from the values of objectives 1 
and 4, without any intersections points with the minimum values’ variation curves of these objectives (1 
and 4). This stability and resemblance of maximum values’ behaviour throughout the 4 processes, (MOGA, 
MOGA/Hill Climbing, MOGA/Simulated Annealing, MOGA/Tabu Search), is logically a preferable 
situation, and it denotes a competitive performances of these processes, with no process trespassing a 
certain global maximum value of the objectives, while behaving differently at the minimum values regions, 
by exploring different local spaces and competing to decrease the values of the objectives to mark an 
improved performance.  

6.6 Results’ Statistical Analysis 
Table 6.5: Total averages Analysis for the best objectives obtained after 20 executions of each process 
 Objective1 Objective 2 Objective 3 Objective 4 
MOGA -0.1108 -0.5398 -0.2564 -0.6319 
MOGA/ Hill Climbing -0.1285 -0.5158 -0.2428 -0.6556 
MOGA/Simulated Annealing -0.0999 -0.5466 -0.2647 -0.6363 
MOGA/Tabu Search -0.1129 -0.5007 -0.2325 -0.6792 
Best Average (Lowest) Hill Climbing Simulated 

Annealing 
Simulated 
Annealing 

Tabu Search 

From the results analysis (Table 6.5), it was very obvious that the memetic algorithm has beaten and 
outperformed the MOGA optimizing the values of the four objectives, by producing lower averages values 
for each objective, after 20 executions of each of the four processes. In particular, the MOGA hybridized 
with the Simulated Annealing improvement mechanism was able to get improved average values for the 
best values attained for 2 out of 4 objectives (objectives 2 and 3). 
 
Table 6.6: Minimum achieved among the best objectives: 
 Objective1 Objective 2 Objective 3 Objective 4 
MOGA -0.9991 -0.9193 -0.9976 -0.9996 
MOGA/ Hill Climbing -0.9990 -0.9677 -0.9980 -0.9997 
MOGA/Simulated Annealing -0.9963 -0.9764 -0.9998 -1.0000 
MOGA/Tabu Search -0.9997 -0.9644 -0.9920 -0.9987 
Best result (lowest) TS SA SA SA 
Worst result (highest) SA MOGA TS TS 
HC = Hill Climbing- SA=Simulated annealing-TS=Tabu Search 
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Again, from Table 6.6, it was reflected that the memetic algorithm has outperformed the MOGA by getting 
better results minimizing the 4 objectives. More specifically, it was remarkable, that the MOGA/Simulated 
Annealing process has uniquely reached minimal values for each of the objectives 2, 3 and 4 that were not 
reached by the other techniques. On the other hand, it was also very notable that the MOGA has scored the 
worst performance for the optimization of objective 2, by achieving a minimum value of–0.9193 for 
objective 2, which was relatively by far outperformed by the three memetic algorithm approaches. 
 
Table 6.7: Maximum achieved among the best objectives:  
 Objective1 Objective 2 Objective 3 Objective 4 
MOGA 0.9938 -0.3217 0.7244 -0.3109 
MOGA/ Hill Climbing 0.9963 -0.3306 0.7704 -0.3163 
MOGA/Simulated Annealing 0.9997 -0.3317 0.7017 -0.2997 
MOGA/Tabu Search 0.9818 -0.3281 0.6873 -0.3106 
Best result (lowest) TS SA TS HC 
Worst result (highest) SA MOGA HC SA 
HC = Hill Climbing- SA=Simulated annealing-TS=Tabu Search 
 
From table 6.7, it was deduced that the memetic algorithm has once again outperformed the MOGA for the 
optimisation of the 4 objectives, in the way that the memetic algorithm has reached lower maximum values 
for the best objectives achieved throughout 20 executions compared to the maximum values attained by the 
MOGA for the same 4 objectives. To put in nutshell, after 20 executions of the 4 processes, each allowed to 
run for 100 generations, the best objectives values achieved have represented lower minimum values (i.e. 
better objectives were explored) and lower maximum values (i.e. less bad objectives were dealt with) in the 
case of the memetic algorithm, which globally denotes a better quality results compared to the data 
produced by the MOGA. 
 

 
Figure 6.13: Minimum and Maximum fitness variation throughout 20 executions of MOGA 

 
Figure 6.13 highlights the minimum and the maximum values’ behaviours of the fitness values assigned to 
the 4 objectives all along the 20 executions of the MOGA. Noting that the graphs shown in figure 6.13 
represent the minimum and the maximum values of the fitness scores assigned to the population’s 
individuals (solutions) by the function “ranking_mo.m” which assigns global fitness values to the 
individuals based on a maximisation fashion, i.e. the best individual will be allocated the highest fitness 
value. It was remarkable that the maximum fitness values were relatively unstable compared to the 
minimum values’ behaviour, with the maximum being achieved at the 6th execution of the MOGA. This 
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relative minimum stability reflects a desirable optimisation characteristic, which denotes that the effort and 
the exploration process is rather exploring spaces representing good fitness in order to improve their 
performances rather than experimenting with low-fitness individuals. 
 

Table 6.8: MOGA Fitness 
Execution 
Number 

Best Fitness Worst Fitness 

1 1.4713 0.2321 
2 1.7863 0.0950 
3 1.9177 0.1902 
4 1.7012 0.2124 
5 2.2019 0.2165 
6 3.0952 0.0903 
7 1.6084 0.1964 
8 1.9225 0.1763 
9 1.7415 0.3094 
10 1.6317 0.2281 
11 1.9591 0.2014 
12 1.9904 0.1056 
13 2.6115 0.1653 
14 1.9799 0.2596 
15 1.8821 0.2788 
16 1.7249 0.3305 
17 2.8481 0.1770 
18 1.9863 0.2333 
19 2.6846 0.1955 
20 1.5048 0.3305 

 
Best Fitness Achieved=3.0952 at the 6th execution, Worst Fitness Achieved=0.0903 at the 6th execution. 
 

 
Figure 6.14: Minimum and Maximum fitness variation throughout 20 executions of MOGA/Hill 

Climbing 
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The same characteristics concluded from the graph of the minimum and the maximum values’ behaviour of 
the fitness values attained during the MOGA process (Figure 6.13) can be linked to the behaviour 
variations of the minimum and the maximum values of the fitness scores achieved by the MOGA/Hill 
Climbing algorithm (Figure 6.14), although in the latter algorithm, the maximum value of the fitness was 
achieved at the 12th execution.  

Table 6.9: MOGA/Hill Climbing Fitness 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Best Fitness Achieved=3.5394 at the 12th execution, Worst Fitness Achieved=0.0914 at the 20th execution. 
 

 
Figure 6.15: Minimum and Maximum fitness variation throughout 20 executions of 

MOGA/Simulated Annealing 
The maximum fitness value was attained at the 6th execution of the MOGA/Simulated Annealing process, 
similarly to the MOGA process, although this is just a total coincidence based on the stochastic nature of 
the evolutionary algorithm (Genetic and Memetic algorithms). 

Execution 
Number 

Best Fitness Worst Fitness 

1 1.6617 0.2233 
2 1.6868 0.1615 
3 1.7700 0.1984 
4 1.5365 0.1686 
5 2.7376 0.1386 
6 1.4491 0.1405 
7 1.5388 0.1515 
8 1.8535 0.2642 
9 1.7951 0.0995 
10 2.0851 0.1690 
11 1.7461 0.3305 
12 3.5394 0.1875 
13 1.7954 0.2692 
14 1.6094 0.3222 
15 1.8224 0.2338 
16 2.3531 0.1697 
17 1.9339 0.2616 
18 1.9392 0.1289 
19 2.2138 0.1787 
20 2.1002 0.0914 
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Table 6.10: MOGA/Simulated Annealing Fitness 

Execution 
Number 

Best Fitness Worst Fitness 

1 1.9478 0.2390 
2 2.2876 0.2546 
3 1.7312 0.1051 
4 1.9455 0.2007 
5 1.9514 0.2264 
6 3.4900 0.1040 
7 1.7093 0.1617 
8 2.4603 0.2633 
9 2.0143 0.1451 
10 1.8951 0.1035 
11 1.7461 0.1051 
12 1.9455 0.2546 
13 1.7954 0.1040 
14 1.6094 0.3222 
15 1.8224 0.2338 
16 2.3531 0.1697 
17 1.9514 0.2616 
18 1.9392 0.1451 
19 2.2138 0.1787 
20 1.9478 0.1451 

 
Best Fitness Achieved=3.4900 at the 6th execution, Worst Fitness Achieved=0.1035 at the 10th execution. 
 

 
Figure 6.16: Minimum and Maximum fitness variation throughout 20 executions of MOGA/Tabu 

 
From Figure 6.16, it is notable the way the maximum fitness was continuously increasing from the 12th 
execution of the MOGA/Tabu Search until the 16th execution where the fitness has achieved its global 
maximum value. The minimum values’ behaviour being always consistent to the other techniques’ results, 
bounded between 0 and 0.7. 
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Table 6.11: MOGA/Tabu Search Fitness 
Execution 
Number 

Best Fitness Worst Fitness 

1 1.8539 0.2020 
2 2.2467 0.1731 
3 1.9690 0.1534 
4 2.3577 0.3217 
5 1.7297 0.2209 
6 1.7109 0.2516 
7 1.6772 0.1031 
8 1.6545 0.1686 
9 1.6391 0.1354 
10 1.7680 0.0825 
11 1.7266 0.3083 
12 1.5750 0.2012 
13 1.8399 0.1233 
14 2.0778 0.3305 
15 2.4243 0.3305 
16 3.2304 0.1175 
17 2.0051 0.1755 
18 2.3274 0.2191 
19 1.6545 0.1115 
20 1.7805 0.1054 

 
Best Fitness Achieved=3.2304 at the 16th execution, Worst Fitness Achieved=0.0825 at the 10th execution. 
 

Table 6.12: Fitness Statistics 
 MOGA MOGA/TS MOGA/SA MOGA/HC 

Worst Fitness Achieved 0.0903 0.0825 0.1035 0.0914 
Technique with the worst Fitness 

achieved (Lowest) 
 √   

Technique with the highest worst 
fitness achieved (highest)  

  √  

Best Fitness 3.0952 3.2304 3.4900 3.5394 
Technique with the best Fitness 

achieved (highest) 
   √ 

Technique with the lowest best 
fitness achieved (lowest) 

√    

 
From Table 6.12 it was demonstrated based on the statistical results obtained after 20 executions of the 
MOGA and the three different versions of the memetic algorithm implemented (MOGA/Hill Climbing, 
MOGA/Simulated Annealing, MOGA/Tabu Search) that the MOGA techniques had allocated a maximum 
fitness value of 3.0952 to its best solutions produced, which is the minimum fitness value compared to the 
best fitness scores allocated to the best solutions resulted from the hybridized systems (memetic algorithm). 
In addition, the MOGA/Hill Climbing algorithm has achieved the highest best global fitness value; its value 
was 3.5395, “0.4442” higher than the best fitness achieved by the MOGA, which is relatively a big 
difference, and a good fitness improvement. On the other hand, the MOGA/Simulated Annealing algorithm 
was the best approach in terms of getting the highest worst fitness among the 4 processes, which denotes a 
“lift up” or an improvement of the global optimisation quality.  
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6.7 Future Work 
The hybridization of the Multi Objective Genetic Algorithm employed in the “Optimisation techniques for 
Gas Turbine Engine Control Systems” project with a local search improvement step can be deemed a 
success in respect of the fact that three different kinds of local search techniques were successfully 
implemented and integrated with the genetic algorithm .On the other hand, due to the time constraints and 
the experimental nature of the project, further experimental processes would surely benefit the system. The 
memetic algorithm implemented through out the project consisted of the integration of the local search 
techniques between the recombination process, Crossover, and the mutation operator. Due to the huge 
amount of objective functions evaluations required by the local search techniques, the investigation of the 
local search process’s performance at distinct points of the genetic algorithm were unfeasible. A susceptible 
future experimentation may consist of the hybridisation of the local search process at different points of the 
genetic algorithm, such as before the recombination step or after the mutation operator. A result 
comparison can then be established to evaluate the performance of the memetic algorithm at the distinct 
phases of the MOGA, which may highlight certain performance improvements. On the other hand, instead 
of locally improving each individual of the population, it might be praiseworthy investigating the direction 
of the local search improvement step towards relatively fit individuals, who have higher chances for 
survival by recombining and propagating to the next generations.  
Another area of investigation which surely would improve the performance of the memetic algorithm is the 
employment of Meta-modelling techniques, such as neural networks approaches, to improve the 
performance of the objective functions used for the evaluation of the solutions’ performance into the 
problem’s domain. Currently, the memetic algorithm is consuming unbearable amounts of time in order to 
converge towards acceptable good solutions, which is totally normal, due to its requirement of huge 
amounts of objective function’s evaluation while exploring the local spaces, in order to decide whether to 
accept a new solution or not. Meta-modelling techniques are efficient, in the way they speed up the 
evaluation process of the individual’s fitness, by improving the objectives functions’ performances.  
 
A the end, it is also recommendable to verify the randomness of the random generator function “Rand”, 
integrated in Matlab, which was used in the local search processes of the implemented system in order to 
randomly move from a solution to another in the local search space. Throughout the project, a total reliance 
was assumed about the correctness of that random generator, even the MOGA toolbox previously 
implemented at the Automatic Control & Systems Engineering at the University of Sheffield, uses the same 
random generator for actions such as the creation of random binary population of individuals for the 
MOGA to start with, assuming the efficiency of the random generator. Nevertheless, randomness’ 
characteristics such as determinism, cycle length, uniformity and correlation (Knuth, 1981) might be 
verified and tested on the Rand function of Matlab. Noting that there exist three types of random numbers; 
the truly random numbers, such as found by counts of Geiger measuring radioactive decay, the pseudo-
random numbers, which although they posses the appearance of randomness, they display repeatable 
patterns or periods of re-occurrence, and finally the quasi random numbers, which are numbers chosen to 
fill solutions spaces with maximum distances between points. The best way for testing the randomness of 
the random generator employed in the system, is to investigate the use of several distinct random generators 
and make sure that the results are adequate and independent of the generator, another testing technique may 
consists of the application of some hash or disturbance functions on the output of the random generator in 
order to check out any repetitive or similar patterns. 
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CHAPTER 7- CONCLUSION 

7 Conclusion 
 
The implemented system can be deemed a success in respect of the fact that the main core of the project has 
been met. The most widely used local search techniques, Hill Climbing, Simulated Annealing and Tabu 
search, have been successfully implemented, tested and integrated with the multi objective genetic 
algorithm optimization technique that was employed in the actual system sponsored by the Control & 
Systems University Technology Centre supported by Rolls-Royce at the Automatic Control & Systems 
Engineering Department at the University of Sheffield. 
 
The experimentation results produced by the memetic algorithm have exposed an improved optimization 
performance compared to the traditional results of the MOGA. Enhanced objectives values were achieved 
reflecting better fitness values in their application’s domain. More technically, it was remarkable that the 
multiobjective genetic algorithm hybridized with the Simulated Annealing local search improvement, was 
distinctively producing the lowest objective values for 3 out of 4 of the objectives being optimized, 
outperforming by a relatively good lead the optimisation results of the same objectives produced by the 
MOGA. A statistical comparison based on data results produced by 20 executions of the MOGA and the 
memetic algorithms (i.e. MOGA/Hill Climbing, MOGA/Simulated Annealing, MOGA/Tabu Search) has 
exhibited the fact that the best average values of the best global objectives values achieved by the multiple 
algorithms belong to the different versions of the memetic algorithm (MOGA/Hill Climbing, 
MOGA/Simulated Annealing, MOGA/Tabu Search), depending on the objective, in other words, the best 
average value of the best global values of objective 1 were linked with the “MOGA/Hill 
Climbing“ memetic algorithm version, while the best averages for objectives 2 and 3 go to the 
MOGA/Simulated Annealing version, and finally the best average value for objective 4 goes back to the 
MOGA/Tabu Search technique. The MOGA could not compete with the other techniques or represent a 
best average value for any of the 4 objectives throughout 20 executions of these algorithms. On the other 
side, it was also notable, that the MOGA was producing the worst values for objective 2 in specific, by 
resulting a range of data solutions representing both higher minimum and maximum bounds compared to 
the range of the values produced for the same objective by the other techniques of the memetic algorithm, 
noting that the optimization process consisted of a minimization problem.  
 
To put in a nutshell, the memetic algorithm implemented has highlighted better results and outperformed 
the traditional MOGA technique, which is basically the basic core of this experimental project. 
Unfortunately, mainly due to the time constraints imposed on the development cycle of this project, further 
experimentations may be made in the future, which might uncover better results, especially if the local 
search improvement steps were allocated more running time for processing new local spaces. 
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9 Appendix 1: Major Milestones 
 

Report preparation 
 
The report preparation phase involved designing the memetic algorithm, 
implementing the local search techniques, integrating them with the 
multiobjective genetic algorithm optimisation technique and iteratively 
testing the developed system. Time has been carefully allocated for 
writing, checking and updating the final dissertation report. 

 
 
 
Date Milestone 
1st June Project Start Date 
20th June Research and Design Phase Completed 
8th July MOGA/Simulated Annealing Implemented and Tested 
16th July MOGA/Hill Climbing Implemented and Tested 
25th July MOGA/Tabu Search Implemented and Tested 
5th August Results Analysis and Comparison Accomplished 
20th August Report First Draft Completed 
27th August Project Hand-in Date 
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10 Appendix 2: Code Fragments 
 
 
FORMAT CONVENTIONS:       This is Code            % This is a comment  
 
Simulated Annealing Testing Code                      Hill Climbing Testing Code 
 
% Author: Salem Adra  %Author: Salem Adra 
% Testing Version      %Testing Version 
% Simulated Annealing local search    %Hill Climbing Local Search 
 
disp(‘Simulated Annealing’)     disp(‘Hill Climbing’)  
 
Num_Steps=10000;      Num_Steps=10000; 
T_schedule=[1:-.02:0];  
no_schedule=length(T_schedule); 
x=zeros(1,120);       x=zeros(1,120); 
var=0;        var=0; 
 
for i=1:120       for i=1:120 
    x(i)=var;           x(i)=var; 
    var=var+0.1;           var=var+0.1; 
end        end 
 
y=zeros(1,120);       y=zeros(1,120); 
for i=1:120       for i=1:120 
    if i>41           if i>41 
        y(i)=sin(x(i));                  y(i)=sin(x(i));     
    else             else 
        y(i)=(-1/2)*(x(i)*x(i))+4*x(i)-8;           y(i)=(-1/2)*(x(i)*x(i))+4*x(i)-8; 
    end            end 
end        end 
 
clf        clf 
plot(x,y,'g', ...       plot(x,y,'g', ... 
    x(1),y(1),'m*', ...          x(1),y(1),'m*', ... 
    x(120),y(120),'m*', ...          x(120),y(120),'m*', ... 
    x(80),y(80),'r*', 'LineWidth',2);         x(80),y(80),'r*', 'LineWidth',2); 
title('Figure 5.17 Simulated annealing     title('Figure 5.16 HillClimbing' 
         acceptance steps’,’FontSize’,16);  'acceptance steps', “FontSize’,16); 
xlabel('X','FontSize',12);      xlabel('X','FontSize',12); 
ylabel('Y','FontSize',12);         ylabel('Y','FontSize',12);     
grid on;        grid on; 
hold on        hold on 
 
xsolutions=zeros(nm,1);      xsolutions=zeros(nm,1); 
ysolutions=zeros(nm,1);      ysolutions=zeros(nm,1); 
xold=0;        xold=0; 
yold=(-1/2)*(xold*xold)+4*xold-8;     yold=(-1/2)*(xold*xold)+4*xold-8; 
xsolutions(1)=xold;      xsolutions(1)=xold; 
ysolutions(1)=yold;      ysolutions(1)=yold; 
 
h = plot(xold,yold,'r.','LineWidth',1);               h = plot(xold,yold,'r.','LineWidth',1); 
set(h,'EraseMode','None');                   set(h,'EraseMode','None'); 
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Simulated Annealing Testing Code                  Hill Climbing Testing Code 

Cont        Cont 
 
pause(1)       pause(1) 
count=2;      count=2; 
for tj=1:no_schedule       for nm=1:Num_Steps,  
 Temp=T_schedule(tj);        xnew = xold-0.1 + 0.2*rand(1,1); 
 for nm=1:Num_Steps,          if xnew>4 
  xnew = xold-0.1 + 0.2*rand(1,1);                       ynew=sin(xnew); 
  if xnew>4         else 
    ynew=sin(xnew)            ynew=(-1/2)*(xnew*xnew)+4*xnew-8; 
  else                         end 
    ynew=(-1/2)*(xnew*xnew)+4*xnew-8; 
  end 
  r=rand(1); 
  if(ynew>yold)    %it means the new         if(ynew>yold)    %it means the new 
                        % individual performed better                    % individual performed better 
     xold=xnew;                                xold=xnew; 
     yold=ynew;                                yold=ynew; 
     set(h,'Color','b')                 set(h,'Color','b') 
     set(h,'XData',xold,'YData',yold);               set(h,'XData',xold,'YData',yold); 
     pause(1)                            pause(1) 
     xsolutions(nm)=xold;                               xsolutions(nm)=xold; 
     ysolutions(nm)=yold;                               ysolutions(nm)=yold; 
     sprintf('x accepted=%g,and its y values is=%g',…             sprintf('x accepted=%g,and its  
     ,[xold yold])                               y values is=%g',[xold yold]) 
  else if (exp((ynew-yold)/Temp)>r)                       end 
     xold=xnew;                        if xold == 4 % i.e .local max acheived 
     yold=ynew;                           xsolutions(nm)=-12;%→invalid entry 
     set(h,'Color','b')            sprintf('Local Max achieved,No more  
     set(h,'XData',xold,'YData',yold);     acceptance steps, current X=%g\n',[xnew]) 
     pause(1)                       end 
    xsolutions(nm)=xold;                 end 
    ysolutions(nm)=yold; 
    sprintf('Bad solution accepted X=%g\n',[xold]) 
  end 
 end  
 

Application Domain: MOGA Hybridized with a local search process 
 

while gen<maxgen,  
   drawnow;  
   gen=gen+1;  
   phen=bs2rv(chrom,fieldd); % This function decode the phenotypic representation  

       % of the individuals into real numbers. 
   for indno=1:nind; 
     objv(indno,:)=xobjvfn(phen(indno,:)); % Assessment of the objective function 
   end;  
   [ix,bestix] = find_nd(objv,bestobjv);  
   bestobjv = [bestobjv(logical(bestix),:) ; objv(logical(ix),:)];% Stores best objectives 
                                                                                                       % values 
   bestphen = [bestphen(logical(bestix),:) ; phen(logical(ix),:)]; % Stores best  
                                                                                                          % individuals 
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);  
 

Application Domain: MOGA Hybridized with a local search process 
Cont 

 
 

   rankv=rank_prf(objv,goalv,priorityv); % Assigns relative fitness values to the 
                                                                       % individuals 
   [f_hat,h,normmx]=epanechnikov(phen);  
   fitness=ranking_mo(rankv,2*nind/(nind-nimmigr),f_hat); % Assigns global fitness 
                                                                                                       % values to the  
                                                                                                        % individuals 
   ix=sus(fitness,nind-nimmigr); %Stochastic Universal Sampling selection process 
   selch=chrom(ix,:);  
   selphen=phen(ix,:);  
   permix=pairup(selphen*normmx,h);  
   selch=selch(permix,:);  
   selch=recombin('xovsp',selch,0.7);  %Recombination process or Crossover 
   phen=tabulocalsearch(nind,nobjv,nvar,rankv,phen,goalv,priorityv); 
% Local Search process (Tabu search, Simulated annealing, Hill Climbing) 
   chrom=[mut(selch,.7/nvar/preci); %Mutation Operator 
   crtbp(nimmigr,nvar*preci);];  
end; 
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11 Appendix 3: Acronyms 
 
 
 
 
EA    Evolutionary Algorithm 
GA    Genetic Algorithm 
GUI    Graphical User Interface 
HC    Hill Climbing 
LS    Local Search 
MA    Memetic Algorithm 
MOGA   Multi Objective Genetic Algorithm 
NIND    Number of Individuals 
NVAR   Number of Variables 
PHEN   Phenotype 
RR    Rolls-Royce 
SA    Simulated Annealing 
SSPR    Stochastic Sampling with Partial Replacement 
SSR    Stochastic Sampling with Replacement 
SUS    Stochastic Universal Sampling 
TS    Tabu Search 
 


