

THE UNIVERSITY OF SHEFFIELD
DEPARTEMENT OF COMPUTER SCIENCE

“Optimisation Techniques for Gas Turbine

Engine Control Systems”

Dissertation Main Report

By:

Salem Adra

This report is submitted in partial fulfilment of the
Requirement for the degree of

 MSc (Eng) in Advanced Software Engineering

Project Supervisors: Dr Kirill Bogdanov

 Dr Ian Griffin

Submission Date: 27TH August 2003

 ii

Plagiarism Declaration:

All sentences or passages quoted in this dissertation from other people's
work have been specifically acknowledged by clear cross-referencing
to author, work and page(s). Any illustrations which are not the work of
the author of this dissertation have been used with the explicit
permission of the originator and are specifically acknowledged. I
understand that failure to do this, amounts to plagiarism and will be
considered grounds for failure in this dissertation and the degree
examination as a whole.

 Name: Salem Adra

 Signature: Date: 27th August 2003

 iii

Abstract

“Optimisation Techniques for Gas Turbine Engine Control Systems” is an
external project in collaboration with the Control & Systems University
Technology Centre supported by Rolls-Royce at the Automatic Control &
Systems Engineering Department at the University of Sheffield. A Multi
Objective Genetic Algorithm (MOGA) optimizer was implemented to
optimise different jet engines’ parameters influenced by several variables
such as altitude measure, fuel flow, thrust and the amount of power
requested by the pilot. The project’s core is to improve the MOGA technique
currently used by implementing a Memetic Algorithm (MA), a more
elaborate Evolutionary Algorithm that consists basically of hybridizing a
Genetic Algorithm (GA) with a local search technique. The resulting
strategy will be implemented in an optimization tool that is currently being
piloted by Rolls-Royce (RR) for controller parameter tuning.

In this project, three of the most popular types of local search techniques
used in MAs are successfully implemented, tested and contrasted. A detailed
analysis of their performance is described, highlighting their major
differences, advantages and disadvantages. These local search techniques are:
Hill Climbing technique, Simulated Annealing technique and Tabu Search
technique.

This report provides wide background information about Genetic
Algorithms and a critical evaluation of Memetic Algorithms. Finally,
suggestions are made for future testing and improvements.

 iv

Acknowledgments

Many thanks go to my supervisors Dr Kirill Bogdanov and Dr Ian Griffin for
their guidance, support and patience throughout the project, as I would like
to thank my tutor Dr Tony Simons for all his assistance and appreciated
advice.

Finally I would like to dedicate this dissertation to my parents, whom
without their encouragements, supports and financial sacrifice none of this
work could have been possible.

 v

Contents
1 INTRODUCTION ...1

1.1 Introduction ...1
1.2 Project Aim..2
1.3 Structure of This Report...2

2 LITERATURE REVIEW..3
2.1 Introduction: What are Genetic Algorithms? ..3
2.2 Motivation for the Use of GAs ...3
2.3 How Genetic Algorithms work?...3
2.4 What makes GAs so special? ...5
2.5 Pseudo-code of a simple Genetic Algorithm...5
2.6 Population Representation..6
2.7 The Objective and Fitness Functions ..6
2.8 The Selection Operator ..7

2.8.1 Introduction..7
2.8.2 Roulette Wheel Selection ...7
2.8.3 Stochastic Universal Sampling ...8

2.9 The Crossover Operator ...9
2.9.1 Introduction..9
2.9.2 Multi-point Crossover ..9
2.9.3 Uniform Crossover...9

2.10 The Mutation Operator...10
2.11 The Reinsertion Operator ...10
2.12 Termination of the GA...11
2.13 GA’s Applications ...11
2.14 GA Discussion...12
2.15 Introduction: What are Memetic Algorithms? ..12
2.16 Why do we need Local Search?..13
2.17 Memetic Algorithm Pseudocode ..13
2.18 Memetic Algorithm Applications ...13
2.19 Memetic Algorithm Advantages and Disadvantages.......................................14
2.20 Comparison between Memetic Algorithm and Genetic Algorithms14

3 REQUIREMENT AND ANALYSIS...15
3.1 Current System ..15
3.2 System Requirement ..16
3.3 Requirement Analysis ..17

4 DESIGN ...18
4.1 Introduction ...18
4.2 Hill Climbing Local Search..20
4.3 Simulated Annealing Local Search...21

4.3.1 Annealing Process..21
4.3.2 Simulated Annealing ..22

 vi

4.3.3 How does Simulated Annealing Works?...22
4.3.4 Simulated Annealing Pseudocode...24

4.4 “Tabu Search” Local Search ..24
4.4.1 Tabu search: Introduction...24
4.4.2 Pros and Cons of Tabu Search..26
4.4.3 Tabu search Pseudocode...26

5 IMPLEMENTATION AND TESTING ..27
5.1 “Hill Climbing” Local Search Implementation ...27
5.2 “Simulated Annealing” Local Search Implementation....................................32
5.3 “Tabu Search” Local Search Implementation ...33
5.4 Local Search Testing..36

6 RESULTS AND DISCUSSIONS...40
6.1 Introduction ...40
6.2 MOGA Results and Discussion..40
6.3 Hill Climbing Results and Discussion ..42
6.4 Simulated Annealing Results and Discussion ...44
6.5 Tabu Search Results and Discussion ..46
6.6 Results’ Statistical Analysis ...48
6.7 Future Work...54

7 CONCLUSION..55

8 REFERENCES ..56
9 APPENDIX 1: MAJOR MILESTONES...59

10 APPENDIX 2: CODE FRAGMENTS...60
11 APPENDIX 3: ACRONYMS...63

 vii

List of Figures

Figure 1.1: Engines Testing Situation .. 1
Figure 2.1: Binary Representation ... 4
Figure 2.2: Binary Chromosomes... 4
Figure 2.3: Single Point Crossover ... 4
Figure 2.4: GA Pseudocode .. 5
Figure 2.5: Roulette Wheel Selection ... 8
Figure 2.6: SUS with 8 pointers.. 8
Figure 2.7: Multi-point Crossover.. 9
Figure 2.8: Uniform Crossover... 9
Figure 2.9: Mutation... 10
Figure 2.10: Memetic algorithm pseudocode ... 13
Figure 3.1: MOGA.. 15
Figure 3.2: Outline of a General Local Search Algorithm... 17
Figure 4.1: Global search/Local search cycle... 18
Figure 4.2: Genetic Algorithm Combined with local search.. 19
Figure 4.3: Individual’s Phenotype. ... 19
Figure 4.4: Global search Range for parameter P1 ... 19
Figure 4.5: Actual P1 value of the individual under processing .. 20
Figure 4.6: Hill Climbing Pseudocode in a maximization problem ... 20
Figure 4.7: Search space with a single maximum point. .. 20
Figure 4.8: Complex Search space. .. 21
Figure 4.9: Local search process trapped at local minimum ... 21
Figure 4.10: Simulated annealing process escaping local minima ... 23
Figure 4.11: The Sigmoid Function.. 24
Figure 4.12: Simulated Annealing algorithm. .. 24
Figure 4.13: SA trapped in a cycling situation, which might run indefinitely..................................... 25
Figure 4.14: Tabu Search Functionality... 26
Figure 4.15: Tabu Search Pseudocode ... 26
Figure 5.1: Local Neighbourhood Setting case 1.. 28
Figure 5.2: Local Neighbourhood Setting case 2.. 29
Figure 5.3: Local neighbourhood setting’s code .. 30
Figure 5.4: Step taking process... 31
Figure 5.5: performance evaluation ... 31
Figure 5.6: Acceptance process. ... 32
Figure 5.7: Initial temperature and temperature schedule settings... 32
Figure 5.8: Acceptance step of the simulated annealing algorithm ... 33
Figure 5.9: Tabu list Empty.. 34
Figure 5.10: Tabu list with a Filled slot.. 34
Figure 5.11: Tabu list initialization .. 34
Figure 5.12: Neighbourhood setting and population’s modification processes 36
Figure 6.1: The best average values of the 4 objectives (MOGA).. 41
Figure 6.2 Minimum and Maximum values at the 100th generation (MOGA) 41
Figure 6.3: Minimum and Maximum values of the best objectives (MOGA)...................................... 42
Figure 6.4: The average values of the 4 objectives (MOGA/Hill Climbing) .. 43
Figure 6.5: Minimum and Maximum values of the 4 objectives (MOGA/Hill Climbing)................... 43
Figure 6.6: Minimum and Maximum values of the best objectives (MOGA/Hill Climbing) 44
Figure 6.7: The average values of the 4 objectives (MOGA/SA) ... 45
Figure 6.8 Minimum and Maximum of the 4 objectives (MOGA/SA)... 45
Figure 6.9: Minimum and Maximum values of the best objectives (MOGA/SA)................................ 46
Figure 6.10: The average values of the 4 objectives (MOGA/Tabu search) .. 47
Figure 6.11 Minimum and Maximum of the 4 objectives (MOGA/Tabu search) 47
Figure 6.12: Minimum and Maximum values of the best objectives (MOGA/Tabu search)............... 48

 viii

Figure 6.13: Minimum and Maximum fitness variation throughout 20 executions of MOGA........... 49
Figure 6.14: Minimum and Maximum fitness variation throughout 20 executions of MOGA/Hill

Climbing .. 50
Figure 6.15: Minimum and Maximum fitness variation throughout 20 executions of

MOGA/Simulated Annealing .. 51
Figure 6.16: Minimum and Maximum fitness variation throughout 20 executions of MOGA/Tabu . 52

List of Tables

Table 2.1: GAs versus Traditional Methods .. 5
Table 2.2: Selection probability.. 7
Table 2.3: Memetic Algorithm Applications .. 14
Table 5.1: Individual’s Phenotype.. 27
Table 5.2: A population of 50 Individuals .. 27
Table 5.3: GlobalMax:.. 28
Table 5.4: GlobalMin: .. 28
Table 5.5: Actual Population.. 28
Table 5.6: Setting the local search neighbourhood .. 28
Table 5.7: Local Range Width.. 28
Table 5.8: Actual Population.. 29
Table 5.9: LocalMin.. 29
Table 5.10: LocalMax... 29
Table 6.1: Total Average Values (MOGA)... 41
Table 6.2: Total Average Values (MOGA/Hill Climbing) ... 43
Table 6.3: Total Average Values (MOGA/SA)... 45
Table 6.4: Total Average Values (MOGA/Tabu search).. 47
Table 6.5: Total averages Analysis for the best objectives obtained after 20 executions of each process

... 48
Table 6.6: Minimum achieved among the best objectives:... 48
Table 6.7: Maximum achieved among the best objectives:.. 49
Table 6.8: MOGA Fitness... 50
Table 6.9: MOGA/Hill Climbing Fitness.. 51
Table 6.10: MOGA/Simulated Annealing Fitness.. 52
Table 6.11: MOGA/Tabu Search Fitness ... 53
Table 6.12: Fitness Statistics... 53

Salem Adra Introduction

1

1

CHAPTER 1-INTRODUCTION

1 Introduction

1.1 Introduction
For testing the efficiency and accuracy of response of jet engines, Control engineers at Rolls-Royce (RR)
spend a lot of time measuring and collecting data fed back by control systems and sensors. This is done in
order to calculate and reduce errors, consequently optimising engines and control system parameters for
better performance. Fig. 1.1 illustrates a typical situation that is often encountered when testing engines:

 B
 Feed Back

 C

 A

Figure 1.1: Engines Testing Situation

In Fig 1.1, the pilot lever requests a certain amount of power from the engine by moving to a certain angle.
Ideally, we want the engine’s thrust to exactly match the amount requested by the lever. A sensor is placed
within the engine to measure the amount of thrust produced by the engine in response to the pilot’s
demand. The measurements recorded by the sensor are fed back to the control system, which calculates the
error between the requested amount of power and the actual value produced. The control system will then
act to reduce the error in achieved thrust by adjusting the fuel flow rate to the engine. The parameters of the
control system determine how effective this error reduction process is. The role of the Control Engineer is
to identify a set of controller parameters that will provide optimal control performance in terms of error
reduction. In practice, the process of identifying an optimal set of controller parameters for an engine is a
time consuming and expensive process. An alternative approach to solving this problem is the use of an
optimization routine. An optimization routine would employ a simulation environment to automatically
tune the controller parameters in a quicker and more cost-effective manner whilst also providing a control
system that improves the performance of the engine.

At the Control & Systems University Technology Centre (UTC) in the Department of Automatic Control &
Systems Engineering (AC&SE), an optimisation tool, based in Matlab and Simulink is being developed,
which enables the user to tune controller parameters in a simulation environment. The Control Engineer
defines a set of objective functions, against which the control system’s parameters are tuned. The controller
parameters are then optimised in an attempt to meet the goals that have been defined for each objective.
The optimisation routine employed in the tool is a Multi Objective Genetic Algorithm (MOGA). Genetic
Algorithms (GAs) are a generational, evolutionary technique that imitates the biological evolution of living
species. The optimisation tool is implemented to optimise three specific parameters (Gain (K), Lead Time

Pilot
Lever

Sensor

Salem Adra Introduction

2

2

(Tnum) and Lag Time (Tden)). The user specifies target or goal values for each of the different
performance objectives. These include time domain objectives such as overshoot, overshoot time and other
objectives. The performance of each candidate set of controller parameters will be evaluated in Simulink
for every new optimisation values of the three parameters reflecting their performance in the real domain.

The search range for the parameters and the software path for the MOGA will be specified as well by the
user using the Graphical User Interface (GUI). A specific search range for each parameter is defined around
an initial value or guess, usually proved to be a good solution from previous engines. The genetic algorithm
then searches for the optimum control system performance by adjusting each controller parameter within a
neighbourhood defined as being a fixed percentage either side of the initial guess.

1.2 Project Aim

The aim of the project is to try to improve on the Genetic Algorithms used in the actual system by
implementing a Memetic Algorithm (MA). This is a further extension to multiobjective algorithms and
relatively a more recent technique whose application in certain domains is still under further investigations
and research. Memetic algorithms are a more elaborated version of multiobjective algorithms, and their
implementation is a challenge that may “hopefully” provide better optimisation results.

1.3 Structure of This Report

First this report opens with a detailed literature review that ensures an overview of Genetic Algorithms,
defining these algorithms and illustrating a comparison with other traditional techniques. In this literature
review, the general background for the project will be discussed, the major elements of the Genetic
Algorithm will be explored and a definition of the four essential functions of Genetic Algorithms, which
are successively the selection function, the crossover function, the mutation function and the reinsertion
function, will be described. The termination of Genetic Algorithms and their different applications will also
be allocated proper sections for their discussion. The last sections of the literature review will be dedicated
to the illustration of a comprehensive presentation of Memetic Algorithms, pinpointing their additional
functionality and differences from typical Genetic Algorithms using a simple Pseudocode example.

After the Literature Review, the main core of this project will be presented in details in the Requirements
and Analysis Chapter, where the actual optimization system, used at the Automatic Control & Systems
Engineering Department at the University of Sheffield, will be clearly elucidated. The system’s
requirement will be then detailed, coupled with a requirements’ analysis pinpointing the major issues that
should be considered while designing the system and implementing the requirements.

The system’s design will be then demonstrated in Chapter 4, using some functional diagrams and
examples’ illustrations that will clarify the intended system’s design, to be implemented throughout the
project. The 3 local search techniques to be hybridized with the multiobjective genetic algorithm will be
clearly explained and contrasted.

In Chapter 5, the implementation process of the memetic algorithm will be discussed, illustrating some
code’s portions for better understanding. Mainly, three major issues will be discussed in this Chapter; the
neighbourhood setting process, the local search functionality, and the acceptance steps of the local search
algorithms. At the end of this Chapter, the testing process of the implemented local search techniques is
ensured, illustrating some output results from the optimisation process, and using a simple created scenario
to validate the correct functionality of the memetic algorithm.

Chapter 6 will be dedicated for the results and the major findings’ listings. A statistical analysis will be
made, highlighting the performances’ differences of the genetic algorithm and the memetic algorithm.
Future work is also described at the end of this Chapter.

At the end of this report, a summarizing conclusion will be stated, recapitulating the major results and
findings of the project.

Salem Adra Literature Review

3

3

CHAPTER 2- LITERATURE REVIEW

2 Literature Review

2.1 Introduction: What are Genetic Algorithms?
According to the Darwinism view, the human physical and mental status that we are privileged with is the
chronological result of successive biological evolutions. Prehistorically, the principle of “survival of the
fittest” was applied to primates’ populations, where the best individuals were able to survive several
biological crises and climatic breakdowns, adapting to new environments. This has resulted the humans’
actual position at the end of this evolutionary chain.

The Genetic Algorithm is a stochastic global search method that imitates this process of natural biological
evolution, operating on “populations” of potential solutions by applying the law of the jungle where the
survival is for the fittest, hopefully producing better approximations to a given application’s solution. Until
a stopping criterion is reached (e.g. certain number of generations or a mean deviation in the population), a
new set of approximations is created at each generation.

2.2 Motivation for the Use of GAs
The motivation for using GAs is partly dependent upon the nature of the application. In other words, if the
optimization problems under investigation are reasonably well behaved, then the obvious and best choice
will be the use of the conventional deterministic techniques, such as deterministic gradient-based-and
simplex-based search methods. Unfortunately, these conventional deterministic optimization techniques
face major difficulties in several scenarios, such as when the objective function is discontinuous or
characterized by many local optima and points at which gradients are undefined, or when the estimation
problem involves many parameters that interact in highly non-linear ways. In these situations, heuristic
methods like GAs are a powerful alternative for exploring search spaces and finding good solutions that
cannot be detected by conventional numerical techniques.

2.3 How Genetic Algorithms work?
Starting from a population of potential solutions ensured by the user, the GA works on improving these
solutions by filtering out relatively bad ones and discovering better approximations by searching the
neighbourhood around some solutions and applying operators borrowed from natural genetics. The
populations’ individuals are encoded as strings composed over some alphabet and are assimilated to
“chromosomes”, the basic unit of genetics. The chromosomes’ values or “genotypes” are mapped in a
“one-to-one” fashion onto the decision variable domain or “phenotype”. Binary representations (i.e. {0, 1}),
integer representations and real valued representations are different kinds of chromosomes’ representations
in GAs, although the first one is the most commonly used representation.

Salem Adra Literature Review

4

4

Example of Binary representation:

1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0

 X1 X2
Figure 2.1: Binary Representation

Chromosome X1 is encoded with 10 bits whereas X2 is constituted of 15 bits. The number of bits
determines the resolution of the search within the search space. Although the search process of GAs
operates uniquely on this encoding of the chromosomes, it is only with their decoding into the respective
phenotypic values that the meaning within the decision space can be determined. The fitness and
performance of the chromosomes in their application domain can then be determined by assessing the
objective function values. A function “phen” is allocated the functionality of mapping the encoding of a
chromosome into its phenotypic value, and then an objective function, formulated by the user and specific
to the domain of the application, is processed using the phenotypic values represented by the chromosomes
that were outputted from the “phen” function. Note that this function won’t be necessary in cases where
real value representations are used. Each objective function’s role is to assess the fitness of an individual
within the application’s environment and will consequently attach to it a value or score reflecting its
performance with respect to that objective. The objective function value for each objective is then
converted into a fitness value. The fitness values will be the basis of the individual’s selection for mating to
form the next generations of potential solutions. Generally the fitness function’s role is to transform the
values produced by the objective function into non-negative values reflecting probabilities. Once the fitness
values are assigned to the individuals, they can be chosen to recombine with a probability according to their
fitness values. After their selection, the chromosomes will be recombined accordingly similar to the
reproduction process in biological evolution, thus exchanging genetic information between each other,
based on the assumption that certain individuals genes’ parts produce on average fitter individuals.

There are several types of recombination operators but the simplest one is that of the single-point crossover
described in Figure 2.3. Consider the following two parent binary chromosomes (Figure 2.2):

P1 = 1 0 1 0 0 1 1 1 1 0
P2 = 1 0 0 1 1 0 1 0 0 1

Figure 2.2: Binary Chromosomes

An integer position along the length of the chromosome is randomly selected between 1 and the
chromosome’s length (L) minus one. (Note that a chromosome is indexed like an array, i.e. 0 is the index of
the first element. This range is logical, because crossing over 2 chromosomes at index 0 will simply give
back the same parents). Consider a crossover using P1 and P2 at index 5. This will result in the following
offspring:

Index 0 1 2 3 4 5 6 7 8 9
P1 = 1 0 1 0 0 1 1 1 1 0
P2 = 1 0 0 1 1 0 1 0 0 1

O1 = 1 0 1 0 0 0 1 0 0 1
O2 = 1 0 0 1 1 1 1 1 1 0

Figure 2.3: Single Point Crossover
Note that when the pairs of chromosomes are chosen to breed, the crossover operator is applied with a
certain probability and hence not necessarily on all the strings of a population. After recombination, another

Salem Adra Literature Review

5

5

operator, the mutation operator, is applied to the offspring. Again, the application of this operator is not
guaranteed but based on a user-defined probability. This is generally a low value just like in the natural
world. The mutation operator will cause a single bit to change its state, i.e. in case of binary
representations, 0Æ1 and 1Æ0. For example, mutating offspring O2 at its last index will generate the
following individual:

O2m = 1 0 0 1 1 1 1 1 1 1
Mutation is generally a backup operator assuring that the probability of searching a specific subspace of the
problem space is never null.

After the selection, recombination and mutation operators, the cycle is repeated for another generation. The
objective function is processed again on the encoding of the offspring, evaluating their performance within
the application environment, and a respective fitness value for each candidate solution is allocated
correspondingly. Generation by generation, the process continues, stochastically propagating genetic
material through subsequent generations until a predefined stopping criterion is reached.

2.4 What makes GAs so special?
In Table 2.1, the major elements that differentiate the Genetic Algorithms optimisation technique from
other traditional methods are illustrated, essentially noting that GAs provides a population of optimised
candidate solutions rather than one unique solution. The choice of a final solution will be left for the user.
The use of GAs is particularly appropriate in situations where a problem possesses a family of equivalent
optimal (Pareto-optimal) solutions, as with multiobjective optimisation and scheduling problems.

GAs versus Traditional Methods
GAs Traditional Methods

Search a population of points in parallel Operate on single points

Do not require derivative or auxiliary information Generally requires derivative information

Use probabilistic transition rules Generally use deterministic transition rules

Work on an encoding of the parameter set (except
in real-valued representations)

Work on the parameter set itself

Table 2.1: GAs versus Traditional Methods

2.5 Pseudo-code of a simple Genetic Algorithm
The pseudo-code illustrated in Figure 2.4 is an outline of a simple Genetic algorithm (Goldberg, 1989):

Figure 2.4: GA Pseudocode

Procedure GA
 Begin
 T=0; %T denoting the Time variable
 Initialise P(t); %Generally Consists of a Random initialisation
 of the initial population, at time T=0
 Evaluate P (t); %Assess the performance of the individuals in
 the current population.
 While not finished do
 Begin
 t = t+1; %Increment The Time variable By 1
 Select P (t) from P (t-1);
 Reproduce pairs in P (t); % denotes the reproduction
 Evaluate P (t) phase, reproducing new
 End Offspring by cross over
End

Salem Adra Literature Review

6

6

2.6 Population Representation
As stated earlier, GAs operate on an encoding of the parameter set, which constitutes a population of
potential solutions. In typical situations, it is shown that a population size of 30 to 100 individuals is most
commonly used, although a variant of GAs, the “micro GA”, operates on smaller populations’ sizes with
more restrictive operators.

Many chromosomes representations are widened and used although the single-level binary representation is
the most spread. In this representation, chromosomes are constituted by the concatenation of binary strings
inspired from the decision table. Despite its popularity, binary representation suffers from several
deficiencies such as the representational bias of this kind of representation, the Hamming distance between
adjacent values is constant, and as validated by Caruana and Schaffer (1988), large Hamming distances
between adjacent values can mislead the search process locating the optimal solutions. Some solutions
though were advocated for overcoming these weaknesses, such as the use of Gray coding or logarithmic
scaling while converting the chromosomes’ encoding into their domain’s values, as suggested by
Schmitendorgf et-al (1992). Alternatively, real valued and integer representations are increasingly
achieving usage interests, as they can result in several advantageous effects. Specifically, more efficient
GAs will be produced, as the adoption of this representation eliminates the need for converting
chromosomes into their phenotypic values, in addition less memory will be needed for the whole process
and the loss of precision that can result from the discretisation of phenotypic real values to binary encoding
will be totally avoided. After selecting the type of representation that best suits the application
environment, the next step is to create an initial population of potential solutions for the GA. Alternative
methods for this process are widely adopted. One way of initialising the population consists of creating a
random generation of the required number of individuals (Nind) using a random number generator that
uniformly distributes numbers in the desired range from the set {0, 1}, each of the same specific length, i.e.
number of bits (Lind). An alternative way is the “extended random initialisation” procedure (Bramlette,
1991) whereby a given number of random initialisation trials is processed for each individual, which will
be initialised to the best performance trial. In situations where the nature of the application is well
understood in advance, or where the GA is used in conjunction with knowledge based systems, the
initialisation can be held in the vicinity of good solutions previously known, like it is the case in this
project.

2.7 The Objective and Fitness Functions
The objective functions reflect the raw performance of each individual in the problem domain. Two
approaches can be adopted, minimisation and maximisation. In the case of minimisation the fittest
individual will be allocated the smallest numerical value resulting from each objective function, and vice
versa in the case of maximisation. This function only reflects the raw performance of each individual. The
fitness function then transforms the objective function’s values into a non-negative measure of relative
fitness, which will be used by the GA for selection and breeding purposes, i.e.:

 F (x) = g (f (x))
Where “f” is the objective function, “g” transforms the value of the objective function into a non-negative
value, and “F” is the resultant fitness value. Many versions are adopted for the Fitness function; the
proportional fitness function (equation 2.1) and the linear transformation (equation 2.2) are the most often
used ones.

∑
=

=

Nind

i
Xif

Xif
iXF

1
)(

)()(

 Proportional fitness function (2.1)
Nind is the population size, Xi is the phenotypic value of individual i

Salem Adra Literature Review

7

7

While this function (the proportional fitness function) ensures that each individual is allocated a probability
for reproduction proportional to its relative fitness, it does not take into consideration negative objective
function values.

 F (x) = a*f (x) + b Linear Transformation (2.2)
“a” is positive scaling factor in case of maximisation and negative vice versa

“b” is an offset ensuring that the resulting fitness value is positive

This method (Equation 2.2) though has uncovered another kind of undesired situation, the case of rapid
convergence towards possible sub-optimal solutions.

A suggested solution (Baker, 1985) consists of adding constraints on the reproduction range by limiting the
number of offspring an individual can produce to a certain maximum, so that no individuals will generate
an excessive number of offspring, and thus preventing “premature convergence”. The fitness function can
be used in several environments and problem domains whilst the objective function is domain-specific and
should be thus created by the user.

2.8 The Selection Operator

2.8.1 Introduction
Having allocated a reproduction expectation value for every individual, the next step will consist of a
probabilistic selection of pairs of individuals for reproduction, based on their relative fitness values.

Roulette wheel selection, Steady-State selection, Stochastic Universal selection and Rank selection are all
different kinds of selection methods commonly used in a wide range of application domains. In order to
assess the quality of the selection process, Baker (1987) introduced three performance measures for
selection algorithms: bias, spread and efficiency. Bias is defined as the absolute difference between the
actual selection probability resulting from the selection process, and the expected selection probability
reflected in its relative fitness value. The optimal zero bias is therefore achieved when the individual’s
actual and expected number of trials are identical. While bias is a good measure of accuracy, spread is
another more flexible measure of consistency, defining a specific acceptable range for the actual number of
trials for each individual that spans both sides of the expected value by a certain offset. Finally, like its
name indicates, the “efficiency” measure is a process aiming to efficient selection processes, ideally
targeting to zero bias while maintaining a minimum spread range.

2.8.2 Roulette Wheel Selection
One of the most commonly used selection schemes is the roulette-wheel selection, also called stochastic
sampling with replacement (SSR). The individuals are allocated contiguous intervals of length’s range [0
sum], where “sum” determines the sum of the individuals’ expected selection probability or raw fitness. A
random number is generated in the range [0 sum] and the individual whose segment spans the random
number is selected. The process is repeated iteratively until the desired number of individuals is obtained.

Table 2.2 shows the selection probability for 4 individuals, Individual 1 being the most fit individual that
occupies the largest interval, whereas individual 3 is the weakest one and correspondingly occupies the
smallest interval (see figure 2.5).

Number of individual 1 2 3 4
Selection probability 0.45 0.30 0.10 0.15

Table 2.2: Selection probability

Salem Adra Literature Review

8

8

Figure 2.5: Roulette Wheel Selection

Consequently most fit individuals will occupy larger intervals and will have higher probabilities for
being selected to breed and propagate to the next generations.
In the Roulette wheel method described above, the segment size and thus the selection probability remain
invariant through the whole process; logically any individual with segment size > 0 could entirely fill the
next population. In order to avoid this situation and decrease the chances of early convergence, another
selection method, Stochastic Sampling with Partial Replacement (SSPR) enhances SSR by reducing
(generally by 1.0) the interval’s size of an individual once selected, which is set to nil if it becomes
negative.

2.8.3 Stochastic Universal Sampling
Stochastic Universal Sampling (SUS), despite the Roulette Wheel selection, is another selection method,
which uses N equally spaced pointers for selecting the individuals (Figure 2.6), where N denotes the
number of selections needed. This method starts with a random shuffle of the population’s placement over
the wheel. Then a single number is generated randomly from the range [0 Sum/N]. This number will
constitute the position of the first pointer on the wheel, and the N-1 pointers left will form a series of
equally spaced pointers, usually based on the following distribution: [ptr, ptr +1,… ptr + N-1], and
consequently, the individuals whose intervals are pointed at by one of the N pointers will be chosen for
reproduction. This method seems to be more efficient and time saving compared to the Roulette wheel
selection, which uses one pointer, selecting thus just one individual at a time. Selection methods are very
numerous and each one possesses its different characteristics, advantages and drawbacks.

 1

Figure 2.6: SUS with 8 pointers

Individual Selection Probability
1 0.45
2 0.30
3 0.10
4 0.15

 1

 2

 4

3

Salem Adra Literature Review

9

9

2.9 The Crossover Operator

2.9.1 Introduction
Crossover is the commonly used technique for implementing the reproduction process, and is the basic
operator for the creation of new individuals in a generation. Its notion is essentially borrowed from the
natural reproduction process in the real world, where an offspring inherits specific parts from both his
parents. Just like the selection process, Crossover has many versions and types, the single-point crossover
described in the introduction being the simplest. An extension of the single point crossover is the Multi-
point Crossover, which will be described in the section 2.9.2

2.9.2 Multi-point Crossover
The major idea behind this kind of crossover is that instead of one single point crossover, “M” unduplicated
crossover positions are selected randomly in the range {1, 2, … L-1} (L denotes the length of the
Chromosome), and sorted in an ascending order, once again noting that a chromosome is indexed starting at
the index zero. The bits spanning consecutive crossover positions will be than exchanged between the
parents producing consequently offspring sharing specific parts of both parents, and who will be assessed
and allocated a fitness value based on their performance later on in the GA. Figure (2.7) illustrates a Multi-
point crossover at two positions:

Figure 2.7: Multi-point Crossover

2.9.3 Uniform Crossover
This kind of Crossover (Syswerda, 1989) is more general than both the single point and the Multi-point
Crossovers where precise locations between crossover points to be switched by the parents are identified.
Uniform Crossover (Figure 2.8) generalises this notion by making any single bit of a chromosome a
potential crossover point. This is due to a randomly created Crossover mask of the same size as the
chromosomes, which will be applied to the parents chosen for recombination by choosing bits from the
parents based on an agreed parity of the Crossover Mask.

 Parent 1

 Parent 2

 Mask

 Offspring

Figure 2.8: Uniform Crossover
For each bit, the parent who contributes its variable to the offspring is chosen randomly with equal
probability. In the previous example (Figure 2.8), taking the bit from parent 1 if the corresponding mask bit
is 1 or the bit from parent 2 if the corresponding mask bit is 0 has produced the offspring.

0 1 1 1 0 0 1 1 0 1 0

1 0 1 0 1 1 0 0 1 0 1

0 1 1 0 0 0 1 1 0 1 0

1 1 1 0 1 1 1 1 1 1 1

Salem Adra Literature Review

10

10

Other Crossover operators are also widely known and used in several varieties of problems. The “Shuffle
“operator (Caruana et al, 1989) operates on a pair of chromosomes chosen for reproduction by selecting a
single random crossover point just like in the single point crossover, although in this kind of crossover,
before the designated bits of the parents are exchanged to form an offspring, they are randomly shuffled,
and the final part of this operator will consist on “unshuffling” the bits of the resultant offspring. The
“Reduced Surrogate” (Booker, 1987) operator is another kind of crossover, which constrains the process to
always generating new offspring by adding restriction to the location of crossover points. Alternatively, real
valued chromosome representations possess a whole series of crossovers operators such as the
“Intermediate Recombination” (Mühlenbein and Schlierkamp-Voosen, 1993), which consists of producing
offspring phenotypes intermediate to the parents’ numerical values and the “Line Recombination”
(Mühlenbein and Schlierkamp-Voosen, 1993) which is an extension of the Intermediate Recombination
adding some constraints on the process. The choice of individuals’ representation and consequently the
version of crossover operator is a challenging issue, which directly depends on the nature of the problem
under investigation.

2.10 The Mutation Operator
After a crossover is performed, mutation takes place. Just like in natural evolution, Mutation is a random
process, which consists of replacing a certain allele of a gene resulting in a new genetic structure. Mutation
is intended to prevent the situation where all solutions in a population fall into a local optimum of the
solved problem, and thus it constitutes a background operator which guarantees that the probability of
searching a specific subspace is not zero. Mutation operation randomly changes the offspring resulting
from crossover. Typically, it is applied with low probabilities in the range 0.001 and 0.01. In the case of
binary encoding, mutation consists of switching few randomly chosen bits from 1 to 0 or from 0 to 1.

 Mutation point

Original Chromosome

Mutated Chromosome

Figure 2.9: Mutation
With Real value and Integer representations two conventional methods are applied, either by perturbing the
chromosomes values or by randomly selecting new values within a specific allowed range. For these kinds
of representations (Integer and Real value), it is argued (Tate and Smith, 1993) that higher mutation rates
can be more desirable and lead to better solutions than the reduced mutation rates. Another variation of the
standard Mutation operator consists of directing the mutations towards low fitness individuals in order to
explore new subspaces without taking the risk of losing information from fit individuals.

2.11 The Reinsertion Operator
After selecting individuals for reproduction based on their fitness values, crossover and mutation processes
have resulted new individuals in the population. Now the fitness value can be determined for the
individuals of the new generation. Sometimes though the recombination process produces fewer individuals
than the number of individuals of the previous population, resulting a fraction difference. Note that the
number of individuals in a population should be conserved through all the generations. This fraction
difference between the initial number of individuals and the new one is called a generation gap (De Jong
and Sarma, 1993), and a process of insertion will be then required in order to maintain the number of
individuals in a population, although other reasons such as the fact of producing higher number of offspring
will necessitate the reinsertion scheme. The most commonly used strategy of Reinsertion is to fill the
generational gap by inserting the best-fit individuals from the previous population. Although this strategy
seems logical enough, it has been proved (Fogarty, 1989) that no significant convergence differences are
noted with other reinsertion schemes such as inserting randomly or even the least fit individuals. However,

0 0 0 1 1 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0

Salem Adra Literature Review

11

11

a more successful strategy is to reinsert the oldest members of a population, i.e. the individuals that were
able to survive and propagate through several generations, consequently demonstrating good performances
and qualities.

Termination of the GA And some useful GA’s
Applications

2.12 Termination of the GA
Due to the stochastic nature of the GA’s search and optimisation techniques, it is usually ambiguous to
determine specific convergence criteria, as at some stages the fitness of a population may be stabilized for a
number of generations, and thus the timing for a convergence is unpredictable. A commonly used practice
consists of terminating the Genetic algorithm after a certain predefined number of generations, which will
enable the user to test the quality of the resultant population of solutions against the problem domain, and
restart the GA for another specific number of generations if the quality of the previous solutions was not
acceptable or of a certain standard. Another termination strategy is to stop the GA when a particular point
in the search space is encountered or a mean deviation in the population is reached.

2.13 GA’s Applications
Genetic algorithms have been proved to be of great efficiency and usability in different problems and
domains such as in Machine Learning for evolving simple programs to solve various problems; they have
been also used in totally different domains, like arts, for evolving pictures and music.

Genetic Algorithms have been successfully implored in the following domains:

• Non-linear dynamical systems - predicting, data analysis
• Designing neural networks, both architecture and weights
• Robot trajectory
• Evolving LISP programs (genetic programming)
• Finding shape of protein molecules
• Functions for creating images

To get an idea about some problems solved by GAs, here is a short list of some applications (source:
Evonet’s website funded by the European Commission, http:// www.evonet.com//):

“Genetic Algorithms in Parametric Design of Aircraft” (Bramlette and Bouchard), is a project devoted to
the optimization of aircraft designs by optimizing lists of special parameters. The project was based on an
approach that uses real number representation’s genetic algorithm, which starts by generating a large
number of individuals constituting the initial population and processing only the good members. The
work’s domain is aeronautical engineering and is relatively similar to the “Optimisation Techniques for Gas
Turbine Engine Control Systems” project.

Other interesting problems of various domains solved by genetic algorithms:

• “Dynamic Anticipatory Routing in Circuit-Switched Telecommunications Networks” (Cox et al),
is a project which deals with an optimization problem of the routing of telephone networks in
order to minimize the costs to West US. The project’s approach was based on a performance
comparison of an order-based genetic algorithm and several other optimization techniques, into the
problem’s domain. The project achieved two major results: Firstly, Genetic Algorithms are highly
successful especially when the problem under investigation is of complex nature. Secondly, the
hybridization of Genetic algorithms with other local search techniques is a potential improvement
of performance, which is basically the essence of investigation of this MSc project.

Salem Adra Literature Review

12

12

• “A Genetic Algorithm Applied to Robot Trajectory Generation” (Davidor), is a project, whose
core is the application of genetic algorithm techniques in the study case of a path planning
problem of a robot arm, moving from one point in the space to another. The project uses variable-
length chromosomes and devises some novel crossover operators.

• “Strategy Acquisition with Genetic Algorithms” (Grefenstette), is an application concerned with
maneuvering a simulated airplane in order to evade a simulated missile. The project applied
variable length chromosomes and has employed a special genetic algorithm, named “SAMUEL”,
capable of learning new techniques.

• “Genetic Synthesis of Neural Network Architecture” (Harp and Samad) is an interesting project
that aimed to encode neural network architectures on binary chromosomes; the approach has
deployed a genetic algorithm with variable length chromosomes.

• “A Genetic Algorithm Approach to Multiple Fault Diagnosis” (Liepens and Potter), is a project
that has implemented a genetic algorithm for finding the most plausible combination of causes for
alarms in a microwave communication system. The approach employed binary representations of
chromosomes and has deduced that higher performances could be achieved with hybrid systems.

• “A Genetic Algorithm for Conformational Analysis of DNA” (Lucasius et al), is a project that has
employed bit strings to encode molecular structures, in an environment aiming to develop a
genetic algorithm for determining the structure of a sample DNA, based on spectrometric data.

• “Interdigitation: A Hybrid Technique for Engineering Design Optimization” (Syswerda), is a
project that aimed to explore the use of genetic algorithms to solve the problem of scheduling
interrelated activities in a laboratory. The approach of this project used an order-based
chromosome to represent schedules.

2.14 GA Discussion
One of most advantageous scheme of GAs is their parallelism, i.e. the strategy that GAs use for travelling
search spaces using an entire population of individuals rather than optimising just a single value. Their
operation on encodings of the variables (genotype) rather then the variable itself (phenotype) is another
creative and distinctive usage of GAs, which reduces the likelihood of getting stuck at a local extreme like
it is the case with some other methods.

Genetic Algorithms are relatively easy to implement. Once the basic GA is implemented, the
implementation of a new chromosome object is quite straightforward and problem-dependent. The same
encoding scheme is generally used in GAs independently from the application’s domain; an objective
function is however required and should be implemented by the user. Conversely, for several reasons,
choosing and implementing the chromosomes’ representation and objective function can be confusing and
difficult. On the other hand, one of GAs’ disadvantages is their complex computational time as they can be
very slow in some applications especially when compared to other traditional methods’ time complexity.
But the possibility of terminating the computation at any time eases the problem and makes the longer run
time acceptable especially with faster computers.

Overview of Memetic Algorithms
2.15 Introduction: What are Memetic Algorithms?
“Memetic Algorithm” is a concept first introduced in 1989 (Pablo Moscato, 1989), the term “Memetic“
having its roots in the word “meme” introduced in Richard Dawkins’ book “The Selfish Gene” (1990) and
which denoted the “unit of imitation” in cultural transmission. The essential idea behind Memetic
Algorithms is the use of local search heuristics within a population-based strategy, such as Genetic
Algorithms. Memetic Algorithms share most of the GAs characteristics although they introduce a new
improvement procedure based on local search in the neighbourhood of newly generated individuals
resulting from the recombination operators. The main difference between Genetic Algorithms and Memetic
Algorithms is the approach and view of the information’s transmission techniques. Whereas genetic
information carried by genes is usually transmitted intact to the offspring (e.g. Genetic Algorithms),
“memes” the base unit of Memetic Algorithms are typically adapted by the individual transmitting them.
Just like in the real world, while individuals can inherits from their parents the eyes and skin’s colour

Salem Adra Literature Review

13

13

genetically transmitted to them intact, they will independently adopt new cultural dependent characteristics
through their life span, such as their intelligence, their ability to drive and swim etc.

2.16 Why do we need Local Search?
Local Search techniques are mostly useful for controlling exponentially growing solution spaces, as it is the
case in most practical problems. Another benefit of local search techniques is their ability to deal with the
ambiguity of some problems’ models and solve it, as well as they have proved to assure ease of use of
problem specific knowledge compared to other classical optimisation techniques.

2.17 Memetic Algorithm Pseudocode

Figure 2.10: Memetic algorithm pseudocode

The Pseudocode described in figure 2.10, is the Pseudocode of a Memetic Algorithm coupled to a Genetic
Algorithm (Digalakis and Margaritis, 2000)

2.18 Memetic Algorithm Applications
Although the common view of Memetic Algorithms categorizes them as a GA hybridised with a local
search procedure, the concept of Memetic Algorithm is more general than that, as they can be used with
any other meta-heuristic technique, and not just Genetic Algorithms, and they have been found to be of
significant efficiency (Moscato, 1999) in certain domains like multiobjective optimisations compared to the
Genetic Algorithms’ performance. Memetic Algorithms were used in a variety of applications domains and
they have showed efficiency in performance leading to good quality results. Table 2.3 is a list of general
applications where Memetic Algorithms were applied and proved to be very efficient:

Memetic Algorithm Applications
Scheduling Problems
Transport Problems
Logistic Problems
Network Optimisation
Process Optimisation
Space Craft Trajectory Optimisation
Bio informatics
Planning Problems
Timetabling Problems
Evolvable Hardware And Hardware Design

Initialise P randomly (P = Population)
For i = 1 to m (m = population size)
 Perform local search in the neighbourhood of i
 (i being the current individual)
 Evaluate fitness of i and its neighbourhood explored
 Make i the best individual found
End For
Repeat
 Select parents from P
 Generate offspring applying recombination
 to the parents selected
 If an individual is selected to undergo mutation,
 then apply local search
 Evaluate fitness of current individual and its neighbours
 Adopt best individual
Until stopping condition is reached

Salem Adra Literature Review

14

14

Robotics
Telecommunications
Mechanical And Structural Engineering

Table 2.3: Memetic Algorithm Applications

Relatively similar work to this MSc project has been conducted (Kosmas Knödler et al) at the Department
of Computer Architecture at Wilhelm-Schickard-Institute of Computer Science (contact:
knoedler@informatik.uni-tuebingen.de, website: www.ra.informatik.uni-tuebingen.de.). The project, whose
industrial partner is the BMW group Munich, consisted on implementing a Memetic Algorithm which aims
to get the Optimal Calibration of modern automotive combustion Engines. In a brief description, the
memetic algorithm used in the “Optimal Calibration of modern automotive combustion Engines” project
consisted of a Genetic Algorithm hybridized with a “Hill Climbing” local search which sets a
neighbourhood for some special parameters and iterates until a stopping criterion is met, while exploring
the neighbourhood space, only accepting good solutions. Note that this Hill Climbing approach will be
explored in this MSc project in addition to other commonly used techniques of local search.

2.19 Memetic Algorithm Advantages and Disadvantages

Memetic Algorithms have proved to be very useful and efficient in single-objective combinatorial
optimisation. The main reason behind this success seems to be the process of local search, which has been
proved (Borges and Hansen, 1998) to bring better solutions in several applications domains, compared to
the performance of traditional Genetic Algorithms. The extension of Memetic Algorithms to multiobjective
optimisation problems is very promising due to the fact that the process of local search exploits the global
convexity, which has been used in single-objective optimisation to explain the high concentration of good
solutions to some combinatorial optimisation problems in only a small fraction of the entire solution space.
On the other hand, their use in nonlinear continuous multiobjective combinatorial optimisation problems is
not very straightforward, especially because in these situations, the “global convexity” property does not
hold anymore (Jaszkiewicz, 1998). Another notable disadvantage of Memetic Algorithms is the
considerable amount of time and memory needed for the improvement of their performance (Jaszkiewicz,
2000).

2.20 Comparison between Memetic Algorithm and Genetic
Algorithms

As an optimization technique, Genetic Algorithms simultaneously examine and manipulate a set of possible
solutions. GAs constitute a robust technique, which can deal successfully with a wide range of problem
areas, including those that are difficult to handle by other methods. They are not guaranteed to find the
global optimum solution to a problem, but they are generally good at finding "acceptably good" solutions to
various problem domains. Generally, where specialized techniques exist for solving particular problems,
they are more likely to out-perform GAs in both speed and accuracy of the final result.

Although Genetic Algorithms are good at exploring the solution space due to their search from a set of
candidate solutions and not just from a single point, they are not well suited for fine-tuning structures that
are close to optimal solutions. Incorporation of local improvement operators into the recombination step of
a Genetic Algorithm is essential to deal with such situations. Memetic Algorithms (MAs) are evolutionary
algorithms that apply a separate local search process to refine individuals. Combining global and local
search is a strategy used by many successful global optimization approaches, and MAs have in fact been
recognized as a powerful algorithmic paradigm for evolutionary computing. In particular, the relative
advantage of MAs over GAs is quite consistent on their complex search spaces.

Salem Adra Requirements and Analysis

15

15

CHAPTER 3- REQUIREMENTS AND
ANALYSIS

3 Requirement and Analysis

3.1 Current System
The Multi Objective Genetic Algorithm’s optimizer used in the Optimisation techniques for Gas Turbine
Engine Control Systems project is a global search technique, which explores a relatively vague vector
spaces of parameters’ values by operating on individuals composed of a certain number, N, of parameters,
while optimizing the values of a certain number, M, of objectives.
At the beginning of the Genetic Algorithm, each of the N parameters constituting the population’s
individuals is bounded by an invariable upper and lower limit value which should not be violated all along
the optimization process, i.e. the Genetic Algorithm will operate on the individuals parameters by exploring
new values within the predefined range. In this project, a binary representation of chromosomes is applied,
and thus the multi objective genetic algorithm starts by creating a binary population composed of a certain
fixed number of individuals. The GA assesses then the fitness of the newly created population by running
the objective function on each of the individuals inhabiting the population. A fitness score is consequently
allocated for each individual, which will be the basis of selection for the recombination process and the
propagation to the next generations. Figure 3.1 summarizes the general functionality of the MOGA
technique used in the system

Figure 3.1: MOGA

Gen=Gen+1

no

yes

Retrieve results

Start

Create initial random population. (Binary representation)

Gen = 0

Select two individuals Based on fitness

Evaluate Fitness of each Individual

Insert new offspring into new population

Mutation

Gen >= Max Gen

END
Perform Crossover

Salem Adra Requirements and Analysis

16

16

1st- First an initial population is randomly generated and encoded into binary strings representing
the genotypic values of its inhabitants.

2nd- A predefined function in the MOGA toolbox converts the binary representations of
the population into real number values denoting the phenotypic values.

3rd- Each individual in the population is assessed through the objective function. (In
Simulink).

4th– Each individual is assigned a fitness value (usually the value of the fitness value is
determined in the range [0 1] denoting a probability) reflecting its performance assessed
through the objective function.

5th- Couples of individuals are selected stochastically for reproduction. Each individual
has a probability of being selected for recombination proportional to its fitness value,
accordingly individuals with higher fitness values will have higher chance of being
selected for breeding and vice versa.

6th- The genotypic representations of the selected individuals are bred via specific
techniques such as crossover. Basically, this part denotes the genetic exchange between
individuals.

7th- The mutation operator operates in a stochastic fashion on the newly generated
offspring resulting from crossover; usually this operator takes place with relatively low
probability just like in the biological environment.

8th- The objective function takes place again assessing the performance of the new
individuals. The mechanism restarts again, following the same logical order, until a
stopping criterion is met.

3.2 System Requirement
The main system requirement is to hybridize the Multi Objective Genetic Algorithm technique with a local
search process, which aims to fine-tune locally the solution space vector of each individual’s parameter for
the exploration of new good solutions, thus improving the optimization results. Actually, research (Baker,
1998) has proved that Genetic Algorithm alone, or Evolutionary Algorithm in general, are not well suited
for fine tuning optimization, partially because they tend to operate on large vector spaces of solutions, and
thus in special situations starting with initial good guesses close to the global optimum, it is more likely that
genetic algorithms will consume a lot of time evaluating and exploring sub-optimal solutions mainly due to
their lack of local search tuning. This mechanism of hybridizing a genetic algorithm with a local search
technique is more commonly known as a memetic algorithm.

Salem Adra Requirements and Analysis

17

17

3.3 Requirement Analysis
When it comes to hybridizing a genetic algorithm with a local search technique, several design issues will
have to be carefully considered (Krasnogor, 2002).
As its name denotes, local search explore “locally” a subspace of values, or in other word the
neighbourhood of a potential solution. The question that arises first is: How do we define the
neighbourhood? Unfortunately this question cannot have a single answer, but it’s essentially related to the
application domain under investigation.

Once the neighbourhood is defined, the other design issues that should be analysed when engineering a
Memetic Algorithm are the following:
¾ Which individuals in the population should be improved by local search?

For the purpose of this project and due to its experimental nature it was decided to apply the local
search algorithm on the entire population, and to experiment other approaches such as directing the
local search towards relatively fit individuals in order to improve their performance and get better
offspring later on if the time permits.

¾ What kind of local search technique should be hybridized to the genetic algorithm?

According to statistics and research (Krasnogor, 2002), it has been showed that the most commonly used
local search techniques in Memetic Algorithm are the Hill Climbing techniques, Simulated annealing
techniques and the Tabu Search techniques, although other extensions and techniques (GRASP, FAN…)
are also used in a wide range of applications For this project it was decided to experiment with the three
most commonly used local search techniques; Hill Climbing, Simulated Annealing and Tabu Search.

¾ How long should the local search run?

It turned out that this question is related to the nature of the local search technique used in the system.
Experimentation and trials were dedicated to solve this conflict and further information will be explained in
the following Chapters when the three kinds of local search will be discussed in details.

Figure 3.2: Outline of a General Local Search Algorithm

Note: The previous diagram is taken from the Internet.
The Author’s email is:umetani@amp.i.kyoto-u.ac.jp,

Salem Adra Design

18

18

 Global Search

 Local Search

CHAPTER 4- DESIGN

4 Design

4.1 Introduction
Many Local search techniques were considered for the hybridization process with the genetic algorithm
used in the actual system, and it was decided to start by adding the local search improvement phase after
the recombination (Crossover) process for each individual of the population. The entire optimization
process will be reshaped consequently to the following logical order at each generation:

1st- The objective function is processed for the entire population.
2nd- A fitness value is assigned to each individual based on its performance.
3rd- Couples of individuals are selected for recombination.
4th- Recombination process takes place, generating new offspring.
5th- The population is shifted to the local search process where each individual can be improved locally.
6th- A new population, potentially improved by the local search technique, is returned back to the global
search phase of the genetic algorithm.
7th- The mutation operator applies to the newly returned population from the local search phase. And the
cycle of Global search intersected with the Local Search- restarts again.

 A

 D Mutation B Crossover

 C

Figure 4.1: Global search/Local search cycle

The local neighbourhood of each parameter constituting an individual is to be set by the local search
algorithm, which receives as one of its argument the global range of definition for each parameter from the
Genetic Algorithm. After defining the local range of search for each individual’s parameter, the local
search algorithm starts to explore the neighbourhood in a random fashion by perturbing the parameters of
each individual by a certain allowed fraction within the local range, creating an entire new population. The
objective function will be processed consequently on the new potential solutions assessing their
performance, and ultimately an acceptance phase depending on the nature of the local search technique
used will decide whether to switch the old population received from the Genetic Algorithm with the newly
generated population in the local search or not.

The functional diagram shown in figure 4.2 summarizes the entire process of a GA coupled with a local
search technique:

Salem Adra Design

19

19

Figure 4.2: Genetic Algorithm Combined with local search

In the case of this MSc project, the neighbourhood of an individual parameter’s value was decided to
constitute 10% of the global search range of that specific parameter. For example, let’s suppose an
individual phenotype is formed of 10 parameters (Figure 4.3),

Figure 4.3: Individual’s Phenotype.

And that the first parameter of an individual is set to have a phenotypic range of [0 20] which is fixed
during the whole optimization process, i.e. the global search applied by the MOGA for the first parameter
of an individual is only defined between 0 and 20:

 0 20
Figure 4.4: Global search Range for parameter P1

Let’s suppose at one point of the MOGA process, the individual set to be passed to the local search
algorithm for improvement has a numerical value of 5 for its first parameter P1. The local search will have

Parameters
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Retrieve results

Start

Create initial random population. (Binary representation)

Gen = 0

Select two individuals Based on fitness

Evaluate Fitness of each Individual

Insert new offspring into new population

Gen >= Max Gen

Perform Crossover

Gen = Gen + 1

Mutation

End

Local Search
Improvement

yes

no

Salem Adra Design

20

20

to search a range of width equal to 10% of the MOGA global search around the value of P1 constituting the
actual individual.
 10%
 4 6

0 20

 P1=5
 Local Search range

Figure 4.5: Actual P1 value of the individual under processing

In the following three sections, the three local search techniques hybridized with the genetic algorithm
optimizer will be discussed in details.

4.2 Hill Climbing Local Search
Hill Climbing is basically considered as the simplest heuristic local search technique.
It is usually applied in problem domains where the ultimate objective is finding a goal state regardless of
the path followed to reach it. This local search technique is not an optimal one as it may choose suboptimal
paths to find a solution and is usually described as a “Greedy” search mechanism. The time complexity for
Hill Climbing algorithm is usually proportional to the cost of the longest path for a solution (Spears, 2001).
Hill Climbing technique is a process based on iterative improvements. Its functionality is pretty much
simple and straightforward. Improving a given state A, the Hill climbing local search systematically
generates a neighbourhood for that state and moves to the first neighbour with lower cost in case of
minimization problems and vice versa in case of maximization. The process terminates when the current
state has no neighbours with better fitness. Figure 4.6 illustrates a simple Hill Climbing Pseudocode
(Knödler et al):

Procedure Hill Climbing
Repeat N times
 Generate neighbouring solution S’ from S
 If Fitness(S’) > Fitness(S)
 Then S = S’
End Repeat;
Return S;

Figure 4.6: Hill Climbing Pseudocode in a maximization problem

Hill Climbing seems logical and beneficial especially in situations where the search space is of simple
nature with no more than a single maximum or minimum; see Figure 4.7:

.

Figure 4.7: Search space with a single maximum point.

Salem Adra Design

21

21

Unfortunately real search spaces can be very complex and represent many local maxima or minima;
example Figure 4.8

Figure 4.8: Complex Search space.

In these situations, Hill Climbing local search faces the problem of getting trapped at local maxima or
minima, totally different from the global ones (Spears, 2001).
Figure 4.9 shows a situation where a hill climbing local search get trapped at a local minimum and not
being able to find a neighbour with lower fitness in a minimization problem.

Figure 4.9: Local search process trapped at local minimum

Another Local Search technique, which deals with this problem, is the Simulated Annealing technique
described in section 4.3.

4.3 Simulated Annealing Local Search

4.3.1 Annealing Process

“Annealing” is a term essentially borrowed from thermodynamics, and it denotes the process where a solid
material is melted under high temperatures and then gradually cooled by slowly reducing the temperature,
or the process in which a liquid freezes and crystallizes. The key point of the annealing process is the slow
decrease of temperature, which allows the liquid molecules to lose their thermal mobility gained at high

Local
minimum

Global
minimum

Salem Adra Design

22

22

temperatures and form a pure ordered crystal, which constitutes the minimum energy for the system. On the
other hand, if the cooling process wasn’t slow enough, the liquid ends up in suboptimal energy levels.

4.3.2 Simulated Annealing
Simulated Annealing also known as Monte Carlo annealing, probabilistic hill-climbing and stochastic
relaxation was first introduced by Metropolis et al in 1953. It is an optimization method originated from the
Annealing process of thermodynamics, where a solid achieves thermal equilibrium after being cooled
gradually under slowly decreasing temperatures. The primary advantage of simulated annealing is its ability
to escape local optima, in complex spaces representing different local optima.

4.3.3 How does Simulated Annealing Works?
Just like the Hill Climbing technique, Simulated Annealing (S.A) starts by perturbing a potential solution or
state by moving to another state in its neighbourhood. The objective function is calculated for the new state
and compared to the objective function of the previous state. In case of minimization, if the new state has a
lower objective function than its predecessor, the new state is accepted replacing consequently the older
one, and basically a step downwards is taken towards the global or local minima. On the other hand if it
turns out that the new state’s performance is worse than its predecessor, oppositely to the hill climbing
technique which directly rejects bad steps, simulated annealing may accept the new worse state based on a
probabilistic model, i.e. a step upwards may be allowed in a minimization problem or a step downwards
may be accepted in maximization situations (Sundermann, 1996).
The simulated annealing process requires an initial temperature variable T to start with and a cooling
schedule. At each temperature T a certain predefined number, N, of improvement iterations is performed on
the individuals of a population. T will gradually be decreasing by a small constant multiplication factor K
that constitutes the cooling schedule. For example, a logical Simulated Annealing situation may start with
an initial temperature T =1, a cooling schedule as follows: TKT where a suitable value for K might be
0.95 and a number of iteration N at each temperature equal to 100.
Let’s consider the two following cases:

The simulated annealing algorithm is processing a state. First the state’s value is perturbed by moving to
another local state in its neighbourhood. The objective function is performed on the new state to assess its
performance.

1st case: The performance of the new state is better than its predecessor
Result:
The new state is accepted independently of the temperature value T; totally similar to the Hill Climbing
process.

2nd case: The performance of the new state is worse than its predecessor
Result:
First a random number N denoting a random probability is drawn from a uniform random distribution on
the interval [0, 1].

Then the following Metropolis criterion is checked deciding whether to accept the new state or not:

If (P=exp (-∆E/T))>N (4.1)

Where T denotes the actual temperature and ∆E denotes the difference between the fitness value or
“Energy” of the new state and the previous state:

∆E = Fitness (New State) – Fitness (Old State) (4.2)

Note that in the case of a minimization problem, a state is better than another state if its fitness value is
lower than the other state’s fitness value and vice versa in maximization situations. In other words a bad

Salem Adra Design

23

23

state will be only accepted if the Metropolis criterion (equation 4.1) is valid, and consequently a step
upwards may be taken to escape local minima; see Figure 4.10.

Figure 4.10: Simulated annealing process escaping local minima

The idea behind this acceptance criterion (Spears, 2001), is that due to the decrease of temperature value all
along the process, at very low temperatures, ultimately the exponential function, Exp (-∆E/T), will be
tending to zero as the equation –∆E/T will be tending to minus infinity, and consequently the validity of the
criterion will be nearly impossible, and thus the simulated annealing process will be acting like a Hill
Climber local search at low temperatures, basically by only accepting good solutions.

Although Simulated Annealing algorithms are relatively simple to implement, careful attention should be
taken when configuring the two important parameters constituting the cooling schedule which represents
the core of the simulated annealing process, these two parameters are the step size for the temperature
perturbation, i.e. the temperature minimization factor K and the initial temperature T. Most researchers
suggest step sizes and T values settings that allow approximately 80% of the poor moves to be accepted,
although these two parameters are totally subjective to the nature of the application domain. Extensive
results about widely used Simulated Annealing schedules and their corresponding performances can be
found at the following website: http:// www.ingber.com. Other elements to consider while implementing a
Simulated Annealing algorithm are that although SAs are proved to be efficient and reliable in several
applications domains, they require much more response time or objective function evaluations then other
techniques which may be tedious and time consuming in some applications’ environments, especially
where the objective functions are of complex nature and time consuming. On the other hand, unlike other
optimization techniques that attempt to make intelligent moves in the solution space, SA, which has been
termed a “biased random walk”, takes the steps in a completely random fashion.

A variation of the simulated annealing process (Spears, 2001) replaces the Metropolis Criterion:

)/(TEeP ∆−= With the logistic function)1(
1

/ TdEe
P −+

=
 (4.3)

SA escaping
local minima

Salem Adra Design

24

24

also known as the sigmoid function (Figure 4.11), as an acceptance criterion for taking uphill or downhill
moves. Simulated Annealing algorithms, which use the sigmoid function, are usually called “Stochastic
Hill Climber”.

Figure 4.11: The Sigmoid Function

4.3.4 Simulated Annealing Pseudocode
The pseudocode in Figure 4.12 illustrates a basic simulated annealing process of a minimization problem:

Procedure simulated annealing

Begin
 Initialize temperature T
 Starts at a current point or solution
 Best_Solution  Current_Solution
 Repeat for a certain number of iterations N
 Select a new point or Solution randomly in the neighbourhood of the Current_Solution
 If Performance (New_Solution) < Performance (Current_Solution)
 Current_Solution  New_Solution

 Else if random [0,1) >
)/))_()_(((TSolutionCurrenteperformancSolutionNeweperformance −−

 Current_Solution New_Solution

Temperature T  schedule (temperature)
 Until Temperature < halting-criteria
End

Figure 4.12: Simulated Annealing algorithm.

4.4 “Tabu Search” Local Search

4.4.1 Tabu search: Introduction

Despite their simplicity, “Hill Climbing” techniques have uncovered the problem of getting stuck at local
optima in search spaces of complex natures representing multiple points of inflection. In order to solve that

Salem Adra Design

25

25

common problem, Simulated Annealing technique has provided the possibility of accepting bad solutions in
order to go uphill to escape a local minimum or downhill in case of local maxima. Unfortunately Simulated
Annealing technique has uncovered yet another problem which could not be solved by the added expressive
functionality of the technique. It has been demonstrated that in certain specific scenarios, Simulated
Annealing can get trapped at local optima regions (Prasetio and Rhone, 2002). Due to the random nature of
the step-taking process of the Simulated Annealing technique, in some situations, the SA algorithm might
end up oscillating in a local optimum region by constantly making steps forwards followed by steps
backwards or upwards and then downwards. The following scenario better illustrates the problem:
In a minimization problem, the ultimate goal of a Simulated Annealing algorithm is to make steps towards
the global minima while accepting upwards steps based on a probabilistic model in order to avoid
entrapment at local minima. But due to the random nature of the movement, at local minima, the algorithm
may accept a bad move and consequently go up the hill escaping the local minima, and then go back again
to the local optima region by a random backward step, ending up in a cycling situation which may not halt
ever.

Figure 4.13: SA trapped in a cycling situation, which might run indefinitely

In order to solve this conflict it was necessary to set a penalizing process, which forbids certain paths to be
taken, and eliminates these cycling situations, which is the basic idea behind “Tabu Search” algorithms.
Tabu search is a meta-heuristic search function, a relatively new technique originated around 1977 (Glover,
1977), and which is still being researched and under investigations. As mentioned previously, the main
additive improvement of Tabu search techniques is their ability to escape indefinite cycling situations. Its
main concept is that there is no point of accepting a bad solution or step unless it is taken to escape cycling
scenarios by avoiding a path already visited. Thus the need for a certain internal memory, which holds the
paths already visited, emerges. Tabu search algorithms keep track of the previously visited paths by
recording recent moves into a Tabu list, which constitutes the main element of a Tabu search algorithm.
Tabu derived from the word “taboo” is generally used to describe something which is prohibited and
inviolable. The Tabu list, usually implemented as an array, stack or queue, can be thought of as traffic law
that forbids some paths, usually previously visited ones, to be taken, which ultimately eliminates the risk of
oscillation or cycling. Figure 4.14 (Prasetio and Rhone, 2002) summarizes the iterative functionality of
Tabu search algorithms:

Current Solution

Define
neighbourhood

Evaluate
neighbourhood

Pick best non
Tabu

neighbour

Salem Adra Design

26

26

 Figure 4.14: Tabu Search Functionality

The major issues that should be considered when designing a Tabu search algorithm are basically related to
the Tabu list, its organization, its length and implementation. That is besides the issues that relate to the
greedy search algorithm itself, and the type of movement that should be applied for “jumping” from a
solution to another. The Tabu list’s length is particularly a very delicate parameter, which should be
carefully configured, as a wrong choice of the list’s length may lead to an inefficient algorithm. Research
(Thesen, 1998) has shown that a Tabu list’s length in the range 7 to 15 is usually a suitable choice for a
wide range of applications.

4.4.2 Pros and Cons of Tabu Search
To put in a nutshell, Tabu search algorithms are usually a very efficient approach for tracking good
solutions most likely undetectable by other mechanisms. The Tabu search is not bounded by linearity, as
local optima situations and cycling problems are preventable. In general, compared to other optimization
techniques, Tabu search algorithms usually yield better quality results. On the other hand, Tabu search
algorithms possess their own constraints. When designing a Tabu search, the designer should keep in mind
that these optimization techniques do not guarantee optimality, rather the decision whether to stop the
search process or not remains to the user to decide. In addition, just like Simulated Annealing techniques,
Tabu search mechanisms requires a huge amount of performance evaluation, and consequently the running
time of these algorithms in applications with complex objective functions may be unbearable.

4.4.3 Tabu search Pseudocode

Figure 4.15 illustrates a basic Tabu search Pseudocode, (Arne Thesen, 1998)
Initialize

Identify initial Solution
Create empty TabuList
Set BestSolution=Solution
Define TerminationConditions
Done=false

Repeat
If Value of Solution > Value of BestSolution Then

BestSolution=Solution
If no TerminationConditions have been met yet Then Begin

Add Solution to TabuList
If TabuList is full Then

Delete oldest entry from TabuList
Find NewSolution by some transformation on Solution
If no NewSolution was found OR

If no improved NewSolution was found for long time Then
Generate NewSolution at Random

If NewSolution not on TabuList Then
Solution = NewSolution

End
Else Done = true

Until Done = true

Figure 4.15: Tabu Search Pseudocode

Salem Adra Implementation and Testing

27

27

CHAPTER 5- IMPLEMENTATION AND
TESTING

5 Implementation and Testing

5.1 “Hill Climbing” Local Search Implementation
The first approach for hybridizing the multiobjective genetic algorithm technique used in the current system
was to couple it with a simple Hill Climber local search which aims to make local improvements on the
population’s individuals at each generation of the global search phase constituting the MOGA. As
mentioned earlier in Chapter 4, it was decided to integrate the local search improvement just after the
recombination process and before the mutation operator takes place. In other words, the out-coming
population from the crossover process is passed to the local search mechanism in order to improve its
performance and return it back to the genetic algorithm phase, where the mutation operator takes over again,
by modifying, based on a probabilistic model, some bits of the newly returned population from the local
search process, ensuring the possibility of searching any region in the search space.
The logicality of the Hill Climber local search is very simple; the algorithm defines the neighbourhood for
each individual constituting the population passed from the MOGA for local improvement. More accurately,
the local search algorithm sets the range or neighbourhood for each of the variables composing an
individual. In the current system, the phenotypic representation of an individual is constituted of ten
variables:

Table 5.1: Individual’s Phenotype.

Note that the local search algorithm as well as the crossover operator, the objective function and the fitness
function operates on the phenotypic representation of the individuals, i.e. the real valued encoding. Instead
of processing just one individual at a time, the local search algorithm process the entire population, by
setting the neighbourhood for each of the ten variables composing each individual in the population. The
total number of individual per population was set to 50 individuals, which is a typical population length in
genetic algorithms. The population is thus to be thought of as a matrix or two dimensional array composed
of fifty rows denoting the total number of individuals, and ten columns denoting the number of variables
which constitutes an individual:

Number of variables per individual = 10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

N
um

be
r

of
 in

di
vi

du
al

s
50

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
Table 5.2: A population of 50 Individuals

Each of the individuals variables are bounded by an upper global limit and a lower global limit defined at
the beginning of the genetic algorithm. These global limits are totally problem-related and should be

Variable
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Salem Adra Implementation and Testing

28

28

conserved all along the process; otherwise the algorithm might end up processing irrelevant data which
might be totally illogical and irrational. It was decided that for the local search process, the search range
should be reduced to 10 percent of the global search range at each variable. For a better understanding let’s
consider the following scenario:

Table 5.3: GlobalMax:
50 70 20 100 50 88 60 30 90 100

Table 5.4: GlobalMin:
-50 0 -40 20 0 0 10 -30 -20 0

GlobalMax and GlobalMin are two arrays containing correspondingly the upper and lower limits of each
of the 10 variables constituting an individual.
And let’s suppose that the following reduced (for simplicity) population was generated by the crossover
operator and passed to the Hill Climber local search to improve it:

Table 5.5: Actual Population

Individual 1
Individual 2

Since the local range is locally set to be equal to 10 percent of the global range, the Hill Climber local
search will first set the upper local and lower local limits for each of the two individuals’ variables by
generating two matrices with the same dimensions as the population, one registering the local lower limits
for the variables and the other storing the local upper limits:

In the case of the previous reduced population of two individuals, the Hill Climber algorithm will produce
the following local neighbourhoods.

Table 5.6: Setting the local search neighbourhood

GlobalMax

Individual 1

GlobalMin

The width of the local range for each variable is equal to the absolute difference of the GlobalMax and the
GlobalMin of that variable multiplied by 0.1:

Local Range width= (Abs (GlobalMax-GlobalMin)*0.1)

Local Range Width

Table 5.7: Local Range Width

Local upper and lower limits for Variable 1 of Individual 1:

 -5 +5
 -50 50

 V1=10

Figure 5.1: Local Neighbourhood Setting case 1

So basically the upper local limit for variable 1 (V1) will be equal to 10 + 5 = 15 and its local lower limit is
equal to 10 - 5 = 5. So the local range width is to be thought of as sliding range all along the global range

10 2 18 50 30 30 40 -10 19 60
30 50 -15 40 20 20 20 10 0 35

50 70 20 100 50 88 60 30 90 100

10 2 18 50 30 30 40 -10 19 60

-50 0 -40 20 0 0 10 -30 -20 0

10 7 6 12 5 8,8 7 6 11 10

Salem Adra Implementation and Testing

29

29

width, and which aims to be centred at the actual variable’s value in order to determine its local upper and
lower range limits. In extreme cases where the actual variable’s value is at a smaller distance than the half
of the local range width to an upper or smaller global range value, the local upper or lower limit will be,
depending on the situation, set to the global limit while the other limit will be set to the difference of the
local width range and the distance between the current variable’s value and its nearest global limit, the
second variable (V2) in the previous example summarizes the point:

 -2 +5
 0 70

 V2 = 2

Figure 5.2: Local Neighbourhood Setting case 2

Since the distance between V2 and its global lower limit is less than its local width range divided by 2
(local width range = 7), the local lower limit for V2 is set to be equal to its global lower limit, while its
local upper limit is equal to its local width range minus its distance to the global lower limitÆ V2’s local
limit = 7 – 2 =5
Consequently the Hill Climber local search will set up the local bounds for each variable of the actual
solution by storing it in the corresponding matrices:

Table 5.8: Actual Population

Individual 1
Individual 2

Table 5.9: LocalMin

Individual 1
Individual 2

Table 5.10: LocalMax

Individual 1
Individual 2

In order to function properly and set the local search range for each individual, the implemented Hill
Climber local search required the allocation of nine parameters, among which are the two arrays “ubounds”
and “lbounds” storing the global upper and lower limits of the variables which are defined at the beginning
of the genetic algorithm.

10 2 18 50 30 30 40 -10 19 60
30 50 -15 40 20 20 20 10 0 35

5 0 15 44 25 25,6 36,5 -13 13,5 55
25 46,5 -18 34 15 16,4 16,5 7 -5,5 30

15 7 21 56 35 34,4 43,5 -7 24,5 65
35 53,5 -12 46 25 24,4 23,5 13 5,5 40

Salem Adra Implementation and Testing

30

30

Figure 5.3 illustrates the code portion that creates the local neighbourhood for each individual:

for i=1:nind
 for j=1:nvar
 if (phen(i,j) + delta(j)/2 <= ubounds(j)) & (phen(i,j) - delta(j)/2 >= lbounds(j))
 local_ubounds(i,j) = phen(i,j) + delta(j)/2;
 local_lbounds(i,j) = phen(i,j) - delta(j)/2;
 else if (phen(i,j) + delta(j)/2 > ubounds(j))
 temp_prime = ubounds(j) - phen(i,j);
 temp_prime_prime = delta(j) - temp_prime;
 local_ubounds(i,j) = ubounds(j);
 local_lbounds(i,j) = phen(i,j) - temp_prime_prime;
 else if (phen(i,j) - delta(j)/2 < lbounds(j))
 temp_prime = phen(i,j) - lbounds(j);
 temp_prime_prime = delta(j) - temp_prime;
 local_lbounds(i,j) = lbounds(j);
 local_ubounds(i,j) = phen(i,j) + temp_prime_prime;
 end
 end
 end Nind = number of individuals of the population
 end Nvar = number of variables that constitutes an individual
 end Phen = A matrix of dimension (Nind, Nvar) containing the actual population.
 Delta = An array of length Nvar containing the local range width for each variable.
 lbounds = An array of length Nvar containing the global lower bound of the variables.
 Ubounds =An array of length Nvar containing the global upper bound of the variables.
 Local_lbounds = A matrix of dimension (Nind, Nvar) containing the local lower
 bounds of the variables constituting the individuals of the entire population.
 Local_ubounds = A matrix of dimension (Nind, Nvar) containing the local upper
 bounds of the variables constituting the individuals of the entire population.

Figure 5.3: Local neighbourhood setting’s code

After having set the neighbourhood for each of the population’s inhabitants, the next task of the Hill
Climber local search is to create a new population by randomly perturbing the variables of each individual
in its local range previously determined, for the ultimate goal of improving the performance of the actual
population.

In Matlab the following command shown in equation (5.1)

X = a + (b – a) * rand (n) (5.1)

generates a matrix named X of dimensions n by n whose elements are generated by a uniform distribution
of random numbers on a specified interval, in this case [a, b]. In general the function rand generates arrays
and matrices whose elements are uniformly distributed in the interval (0, 1). Multiplying the output of rand
(n) by (b-a) consequently generates random numbers in the range (0, width of the interval (a, b)). Finally
adding the lowest bound of the desired interval (in this case a), slides the random numbers generated
between zero and the width of (a, b) to the desired interval, i.e. (a, b).
For the Hill-Climbing algorithm, the goal was to randomly modify each individual’s variable in a
predefined local range, i.e. (LocalMin, LocalMax).
Figure 5.4 illustrates the process of perturbation of the individuals’ variables in order to move to another
state or solution in the hill-climbing algorithm:

Salem Adra Implementation and Testing

31

31

for i=1:nind
 for j=1:nvar
 temp_ind(i,j) = phen(i,j);
 while(temp_ind(i,j) == phen(i,j))
 a = temp_lbounds(i,j);
 b = temp_ubounds(i,j);
 temp_ind(i,j)=a + (b -a) * rand(1);
 end
 end
end Nind: number of individuals in the population
 Nvar: number of variables constituting an individual
 Phen: matrix of dimensions (Nind, Nvar) containing the entire
 Actual population
 temp_ind: matrix of dimensions (Nind, Nvar) containing the
 Modified population

Figure 5.4: Step taking process.

A new potential population is thus created. At this point of the Hill Climbing algorithm, the objective
function should be applied to the new population in order to assess its performance in the application
domain, to decide whether to accept the new population or not. Note that the objective function is a
problem-related process, which should be designed by the user, not the Hill Climbing designer.

In the current system, the objective function, already implemented at the Automatic Control and Systems
Engineering Department at The University of Sheffield, assigns a fitness score to each individual, by
simulating its performance onto engines’ diagrams (implemented in Simulink).

Figure 5.5 illustrates the objective function and the fitness function being applied to the new population
created by the Hill Climbing algorithm:

for indno=1:nind;
 objv_temp(indno,:) = xobjvfn(local_ind(indno,:));
 end;

 E_new=rank_prf(objv_temp,goalv,priorityv);

Figure 5.5: performance evaluation

Xobjvfn is the objective function, which simulates the engines response to the new population. The
objective function assesses one individual at a time (the new individuals being stored in local_ind matrix),
and evaluates its performance by controlling and testing a number of objectives. Note that this function
assigns a raw fitness value to each individual, and returns a matrix obj_temp of dimension (Nind, Nobj)
where Nind denotes the number of individuals in the population, and Nobj denotes the number of
objectives functions being evaluated. The function rank_prf takes as one of its arguments the objective
matrix produced by the objective function, and transforms the raw objective values of each individual into
fitness scores. Basically the problem is a minimization situation, i.e. the individual with the least fitness
value is the fittest one. The smallest fitness value that can be produced by rank_prf is zero. Thus an
individual is better than another one if its fitness value, assigned by the rank_prf function, is lower, or in
another words if the difference of fitness functions is negative. At the end the fitness of the new population
is compared to the fitness of the old one, and only the new individuals with better fitness values then their
predecessors are accepted (see Figure 5.6), which is the typical acceptance process of a Hill Climbing
algorithm.

Salem Adra Implementation and Testing

32

32

for i=1:nind
 if(delta_E(i)<0) %it means the new individual performed better...the best rank is zero
 phen(i,:) = temp_ind(i,:); % the new individual replaces the old one
 E_old(i) = E_new(i); % the new individual’s fitness replace the old one’s.
 end
end

Figure 5.6: Acceptance process.

5.2 “Simulated Annealing” Local Search Implementation
The second approach for hybridizing the genetic algorithm of the current system with a local search process
consisted on implementing a Simulated Annealing (SA) algorithm which is basically a more advanced and
sophisticated process compared to the Hill Climber techniques, especially because of its added feature
which allows the escapology from local optima. At the heart of the Simulated Annealing mechanism is an
analogy with essential principles of thermodynamics, which describes the process by which solid materials
are melted and then allowed to cool down through a slowly decreasing temperature’s environment. The
Simulated Annealing techniques and the Hill Climbing techniques represent a lot of similarities especially
due the randomness of the “step taking” process from one solution to another. Similarly to the Hill
Climbing local search, the Simulated Annealing improvement algorithm was interleaved between the
crossover operator and the mutation operator in the genetic algorithm process. First the SA local search
algorithm starts by defining the local range of search for each of the variables constituting the populations’
individuals. The same neighbourhood setting process employed in the Hill Climber local search was
applied in the Simulated Annealing approach.
Differently to the Hill Climbing approach, which starts by perturbing the population after having defined
the local neighbourhood, the Simulated Annealing algorithm, requires the initialization of a temperature
variable, Temp, and a cooling schedule which decides the decreasing rate of the temperature all along the
process. Note that the initial temperature initialization and the allocation of a cooling schedule are the
major two requirements of a Simulated Annealing algorithm, they are totally problem related and thus one
should make careful consideration choosing these features. Due to the experimental nature of the project, it
was decided to initialize the initial temperature to 1 (Figure 5.7), which is a recommended value, based on
previous research and experimentation in the field. The temperature decrease step was set to 0.02, which is
a relatively small and suitable decrease step, for an annealing schedule. The minimal temperature was set to
zero, although it would be more suitable in other programming environments (other then Matlab) to make it
0, 02 in order to avoid special warnings or error messages especially with operations including divisions,
(i.e. division by zero) when the temperature reaches its minimum value.

%set initial temperature
 Initial_Temperature=1;

 % set up temperature schedule
T_schedule=[1:-.02:0];

Figure 5.7: Initial temperature and temperature schedule settings

Another essential element of Simulated Annealing techniques is the initialization of a number of search
iterations N that should be accomplished at each temperature. In the workspace of this project it was
decided to experiment with a number of iterations equal to 100 for each temperature. After the initialization
of the initial temperature Temp, the temperature schedule and the number of search improvement’s trials
per each temperature are set; the process starts by randomly modifying the actual population by moving to
adjacent values in the local search range, applying the same approach used in the Hill Climber algorithm
(Figure 5.4). The next step of the process consists of the objective function’s assessment for the new

Salem Adra Implementation and Testing

33

33

randomly created population; note that the Simulated Annealing is a very long and time consuming process
due to the requirement of huge amounts of objective function’s evaluations. In the case of the previous
initializations, (Initial_Temp =1, Temp_schedule: TempÆTemp – 0, 02 until 0, and number of iteration N
per temperature =100), the objective function was evaluated 5000 times for one single generation of the
global search phase of the MOGA.
The final phase of the SA local search consists of the acceptance step, which oppositely to the Hill
Climbing’s acceptance step, which only accept good solutions, might accept bad individuals based on the
Metropolis criterion, which enables the local search process to escape situations where it get trapped at
local optima. (Equation 4.1)

Figure 5.8 illustrates the acceptance step of the implemented simulated annealing local search:

 R =rand(1);%returns a random number between 0 and 1
 For i=1:nind %
 if(delta_E(i)<0) % it means the new individual has performed
 Same as % better then its predecessor. The best rank is 0
 Hill Climbing phen(i,:) = temp_ind(i,:);
 Acceptance step E_old(i) = E_new(i);

 elseif(exp(-delta_E(i)/Temp)>R) % accepts a worst individual if the
 % Condition is valid
 phen(i,:) = temp_ind(i,:);
 E_old(i) = E_new(i);
 end
 end

Figure 5.8: Acceptance step of the simulated annealing algorithm

5.3 “Tabu Search” Local Search Implementation
The Tabu local search algorithm was the third approach for hybridizing the multi objective genetic
algorithm used in the actual system, with a local search improvement phase. From a logical point of view,
the tabu search mechanism seemed to be the best choice of local search process, mainly because of its
expressive power to escape undesirable situations, such as the entrapment at local optima, a situation which
the Hill Climber techniques occasionally suffer from, and the cycling situations at local optima regions
which may jeopardize the termination of local search processes such as the Simulated Annealing algorithms.
On the other hand, due to the random chaotic distribution of the solution’s values in the search space, the
option of fitting a defined function to the solutions’ values in the local range space is not the suitable choice.
Consequently no assumptions could have been made about the data points distribution in the local spaces,
and thus the chances that Simulated Annealing technique and the Tabu search approach could be
inappropriate for this application’s domain are probable, especially if the solution space does not actually
present any local optima regions; in these situations the expressive features of the Tabu search and the
Simulated Annealing approaches would not be too invested, but unfortunately, their performances will be
costly in time due to their huge requirement of objective function’s assessment.
The implemented Tabu search algorithm, similarly to the previous local search approaches (Hill Climbing
and Simulated Annealing), was introduced after the crossover operator of the genetic algorithm. A potential
population of individuals is passed by the MOGA to the Tabu search algorithm, for improvement. The
Tabu search algorithm starts then by initializing a Tabu list, the major element of Tabu search algorithms,
and which is to be thought of as an internal memory which keeps records of the previously visited solution
points in the local neighbourhood, in order to impose the notion of discovering new data points and avoid
cycling situations. On the other hand, memory cannot possess unlimited capacity, or in this case, storage
capacity, so it was decided to limit the length of the Tabu list to ten solutions’ values pre-visited at a time,
as research (Thesen, 1998) has showed that large Tabu list lengths may be too restrictive for the search
process and may lead to insufficient exploration mechanisms. The Tabu list (Figure 5.9) was represented by
a three dimensional array, of dimensions (Nind, Nvar, 10), where Nind denotes the number of individuals
in the population, Nvar denotes the number of variables constituting an individual and 10 which denotes the
length of the tabu list:

Salem Adra Implementation and Testing

34

34

Figure 5.9: Tabu list Empty

The initial population passed from the genetic algorithm and which is contained in a matrix of dimension
(Nind, Nvar) fills the first level of the tabu list (Figure 5.10), denoting by that the first visited set of
solutions’ values which should not be visited again for at least 10 exploration’s steps.

Figure 5.10: Tabu list with a Filled slot

Figure 5.11 illustrates the implemented piece of code designated with the initialization of the tabu list:

tabu_lis t= zeros (Nind,Nvar,10); %First the tabu list is initialized and filled with zeros

index = ones(nind,1); % Index is an array which holds the index of the next
 %empty slot in the tabu list for all the individuals,
 %(i.e. maximum 10)
tabu_list (:,:,1) = phen; % the first slot of the tabu list is occupied by the
 %initial population passed from the MOGA
index(i)=index(i)+1; %Incrementing the index of the next empty slot

Figure 5.11: Tabu list initialization

After initializing the Tabu list, the Tabu search algorithm sets the neighbourhood for the entire individuals
of the population, randomly perturbs the variables of each individual, moving by thus to a neighbour
population, and then assesses the performance of the newly created population. Note that the previously
described processes are the same processes used in the Hill Climbing technique and the Simulated
Annealing local search.

Nvar

Initial
Population

N
in

d 10

Nvar

N
in

d 10

Salem Adra Implementation and Testing

35

35

The final step of the Tabu search algorithm consists of the acceptance step, noting that the core of the Tabu
search technique is that there is no point in accepting bad solutions unless to escape a subspace recently
explored (cycling problems) or get out of local optima. The acceptance step is decomposed into five cases
illustrated below: (Note: The code for the acceptance step process can be found in Appendix 2.)

¾ Case 1
¾ Conditions

1. The new individual has performed better than its predecessor
2. The new individual is different from all the individuals stored in the Tabu list of that

individual, which basically means that the new individual is a good solution, which has
not been recently explored.

3. The Tabu list for that individual is not full.
¾ Result: Accept the new individual; insert it in the Tabu list at the index of the next empty slot and

increment the index by one.

¾ Case 2
¾ Conditions

1. The new individual has performed better than its predecessor
2. The new individual is different from all the individuals stored in the Tabu list of that

individual, which basically means that the new individual is a good solution, which has
not been recently explored.

3. The Tabu list of that individual is full
¾ Results:

1. Accept the new individual
2. Delete the first slot of the Tabu list, in other words, delete the oldest visited solution
3. Decrement the index of the next empty slot
4. Insert the new individual in the tabu list at the index of the next empty slot and increment

the index by one.

¾ Case 3
¾ Conditions:

1. The new individual has performed worse than its predecessor or is a duplicate of one of
its Tabu list elements

¾ Results:
1. Pick randomly another individual in the allowed neighbourhood.
2. Calculate its new performance
3. Increment a Timer variable by one; (Timer initially is equal to zero)
4. Check case1 and case 2 again

¾ Case 4
¾ Conditions:

1. The new individual has performed worse than its predecessor
2. The Timer variable is equal to ten; it means no improved individual has been found for

ten iterations.
3. Tabu list for that individual is not full

¾ Result:
1. Accept the bad individual; the core of this step is escape potential cycling situations or

local entrapment by accepting a bad solution after a number of fruitless iteration to find a
better individual in order to explore new subspaces.

2. Insert the bad individual at the next empty slot in the Tabu list and increment the index.

¾ Case 5
¾ Conditions:

1. The new individual has performed worse than its predecessor
2. The Timer variable is equal to ten; it means no improved individual has been found for

ten iterations.
3. Tabu list for that individual is full

Salem Adra Implementation and Testing

36

36

¾ Result:
1. Accept the bad individual; the core of this step is escape potential cycling situations or

local entrapment by accepting a bad solution after a number of fruitless iteration to find a
better individual in order to explore new subspaces.

2. Delete the first slot of the Tabu list, in other words, delete the oldest visited solution
3. Decrement the index of the next empty slot
4. Insert the new individual in the Tabu list at the index of the next empty slot and

increment the index by one.

5.4 Local Search Testing
The local search techniques hybridized with the genetic algorithm of the actual system are relatively
straightforward numerical techniques, which do not have any interaction with the user, in the way they do
not require any input arguments. They are just internal processes, hybridized with a genetic algorithm
optimization technique; they get their arguments from the global search process of the MOGA. In other
words, traditional testing techniques such as the category partition method which deals with a system as a
black box, or even random exhaustive testing would not be suitable testing approaches for the actual system.
In order to investigate the correctness of the local search techniques, it was more suitable to pin out the
resulting data from the several phases constituting the local search algorithms. For example, testing the
“local neighbourhood setting” process was verified by taking snapshots of the process’s functionality:
Figure 5.12 represents the numerical output values of the local neighbourhood settings and the resulting
new individuals for individual 1, 2 and 3 from the hill-climbing algorithm:

Hill Climbing
ubounds = ubounds is the global upper limit vector for the 12 variables constituting an individual
Columns 1 through 12 denoting the 12 variables
50.0000 1.0000 50.0000 1.0000 50.0000 1.0000 50.0000 1.0000 0.0050 0.1000 0.0050 50.0000

lbounds = lbounds is the global lower limit vector for the 12 variables constituting an individual
Columns 1 through 12 denoting the 12 variables
-50.0000 0.0010 -50.0000 0.0010 -50.000 0.0010 -50.0000 0.0010 -0.0050 -0.1000 -0.0050 -50.0000

delta = local search width = 10 % of global search width for each variable.
Columns 1 through 12
10.0000 0.0999 10.0000 0.0999 10.000 0.0999 10.0000 0.0999 0.0010 0.0200 0.0010 10.0000

phen = Phenotype values of the 3 first individual of the population
-31.2589 0.0025 34.3900 0.3737 -4.7555 0.0421 -28.2269 0.1131 0.0005 -0.0350 0.0031 4.3435
-31.2482 0.0040 -26.1242 0.0022 23.1670 0.0301 -13.5080 0.0048 -0.0045 0.0365 0.0029 -30.1877
27.6287 0.0065 -21.9814 0.2233 -16.1601 0.9194 31.6846 0.0410 0.0046 -0.0750 0.0050 -19.8253

temp_ubounds = Local upper limit for each of the 3 individuals’ variables
-26.2589 0.1009 39.3900 0.4236 0.2445 0.1009 -23.2269 0.1631 0.0010 -0.0250 0.0036 9.3435
-26.2482 0.1009 -21.1242 0.1009 28.1670 0.1009 -8.5080 0.1009 -0.0040 0.0465 0.0034 -25.1877
32.6287 0.1009 -16.9814 0.2733 -11.1601 0.9694 36.6846 0.1009 0.0050 -0.0650 0.0050 -14.8253

temp_lbounds = Local lower limit for each of the 3 individuals’ variables
-36.2589 0.0010 29.3900 0.3237 -9.7555 0.0010 -33.2269 0.0632 0.0000 -0.0450 0.0026 -0.6565
-36.2482 0.0010 -31.1242 0.0010 18.1670 0.0010 -18.5080 0.0010 -0.0050 0.0265 0.0024 -35.1877
22.6287 0.0010 -26.9814 0.1734 -21.1601 0.8695 26.6846 0.001 0.0040 -0.0850 0.0040 -24.8253

temp_ind = Three new individuals created in the allowed local range
-29.0900 0.0066 35.8059 0.3475 -7.0627 0.0011 -31.2085 0.1560 0.0004 -0.0284 0.0030 5.4730
-31.2337 0.0417 -22.8564 0.0987 24.2902 0.0992 -10.7099 0.0539 -0.0041 0.0451 0.0025 -31.1113
30.0300 0.0064 -19.2173 0.2395 -12.3289 0.9464 31.2367 0.0665 0.0050 -0.0685 0.0041 -16.0519

Figure 5.12: Neighbourhood setting and population’s modification processes

Salem Adra Implementation and Testing

37

37

The previous pinned out data is printed out during an execution of the hybridized MOGA technique with
the Hill Climbing local search, and it demonstrates the accuracy and the correctness of the “neighbourhood
setting” process and the random movement of the population to an adjacent population in the predefined
local range. For the random perturbation step of the actual population, an assumption about the correctness
and the reliability of the internal random generator function “Rand” in Matlab was made, although future
testing may be carried to investigate the accuracy of randomness of that generator. (More details,
discussions and results analysis in Chapter 6).

In addition, in order to test the correctness of the local search functionalities, the Hill Climbing local search
was tested on a simple created scenario. The scenario consisted of a simple parabolic function

xxxF 4
2
1)(2 +×−= (Figure 5.13), which represents a single maximum point reached for X=4.

The objective of this scenario was to prove the reliance of the Hill Climbing local search, by investigating
its behaviour. It was decided to set the domain of definition for the function F to [-100 100] for the purpose
of this test. The Hill Climbing local search started with a solution point with abscissa X = -100 and ordinate
Y=F (-100). The local search process consisted of a 10000 number of iterations. At each iteration, a step
was made by randomly modifying the abscissa of the current point or solution in the range [current abscissa
–1 current abscissa +1]. The function F (x) was then evaluated at the new abscissa, which is only accepted
if its ordinate value (i.e. F (x) value, which basically denotes the fitness function) is higher than the ordinate
of the previous abscissa. The values of the accepted Xs were pinned out on the screen throughout the entire
local search process and stored in an array, as well as their corresponding function’s evaluations. The arrays
storing the x values and their matching y values were primarily initialized to zeros. After the maximum (x =
4) was reached, the Hill Climbing local search did not accept any x values, while storing the number –101
in the array storing the x values to denote that all the x values picked during the process, after the solution
x=4 was reached, were void.

Figure 5.13: xxxF 4
2
1)(2 +×−=

Figure 5.14: Hill Climbing Acceptance step

Salem Adra Implementation and Testing

38

38

Although Figure 5.14 demonstrated the correctness of the hill climbing local search and its reliability to get
to the maximum of the function F, the impracticality of this local search was demonstrated by changing the

problem’s scenario (xxxF 4
2
1)(2 +×−=), by using a system of equations instead, whose graph on the

domain [0 12] represents two different maximums, (a local maximum and a global maximum).

84
2
1)(2 −+×−= xxxF If x< = 4

(5.2)
)sin()(xxF = If x>4

Although this system of equations is defined for all the real numbers, a reduced domain of definition [0 12]
was used for the purpose of the testing.
Figure 5.15 is the resulting plot from the execution of the hill climbing local search to get to the maximum
of the previous system of equations, and it shows that after getting to the value x=4, the algorithm was
stuck, and no further steps were accepted.

On the other hand, the same problem’s scenario was applied using the Simulated Annealing process, which
accepts downhill’s steps based on a probabilistic model, and the Tabu search process, which keeps record
of previously visited steps in an internal fixed length memory (Tabu list). Fortunately Simulated annealing
and Tabu search techniques have both demonstrated their ability to escape the local maximum at x=4, and
were able to reach the global maximum after a certain sufficient number of iterations. But the remarkable
thing was that Simulated Annealing process has taken much more time to get to the global max compared
to the performance of the Tabu search process, and that’s due to the cycling situations that the SA process
was facing all the way through the search space. In other words, SA kept on oscillating around some values,
by making forward steps followed by backwards steps, especially at low temperatures, where the chance of
accepting downhill’s steps is relatively high, the fact which essentially delayed the convergence of the SA
algorithm towards the global max. This processing delay was totally inexistent during the Tabu search
process, mainly because the Tabu search algorithm was forbidding backwards steps towards data points
already visited and stored in the tabu list. Downhill’s steps were only accepted in the case where no
improved solution was found for a specific amount of time; the idea behind this acceptance step is to
explore new search spaces and escape local optima. The following printed messages (Figure 5.16) were
pinned out during the execution of SA processing solutions points around the local maxima. X=4:

Salem Adra Implementation and Testing

39

39

 ans =
 x accepted=3.8,and its y values is=-0.02
 ans =
 x accepted=3.9,and its y values is=-0.005
 ans =
 Bad solution accepted X=4.1
 ans =
 Bad solution accepted X=4.2 Figure 5.16: SA acceptance steps

Figure 5.17 illustrates the acceptance steps of the simulated annealing. The same scenario was applied with
the Tabu search process, and similar acceptance steps (Figure 5.17) behaviour was reported although the
process took much less time to converge when Tabu Search process was used. (Note: Testing code may be
found in appendix 2.).

Salem Adra Results and Discussions

40

40

CHAPTER 6- RESULTS AND DISCUSSIONS

6 Results and Discussions

6.1 Introduction

The objective of this project was to investigate the usability of memetic algorithms in the application
domain, and compare their performances with the multiobjective genetic algorithm’s performance. On the
other hand, due to the stochastic nature of evolutionary algorithms (i.e. genetic algorithms and memetic
algorithms) and the pareto-optimality characteristic of the solutions’ fitness into the application’s domain,
there was no guarantee that the memetic algorithm would outperform the genetic algorithm. In order to
make an informed comparison between the performances of the MOGA and the memetic algorithm, it was
not convenient to make the comparison based on the numerical results produced by a single execution of
each of the two algorithms; instead a certain number of iterations of the two algorithms were essential in
order to analyse the results. Accordingly, it was decided to run each of the four processes, (1ÆMOGA,
2ÆMOGA/Hill Climbing, 3ÆMOGA/Simulated annealing, 4ÆMOGA/Tabu Search), 20 times, make a
record of their results, i.e. the individuals’ fitness’s and the best numerical values achieved for each of the
objectives, and finally produce a statistical analysis of their results. Regrettably, executing the four previous
algorithms for a certain number of iterations (20), using the essential problem’s application, was unbearable
due to the enormous amount of execution time needed for each of the processes to converge, which is
principally linked to the complex objective function (based in Simulink) used in the initial system. As a
result, it was decided to test the performances of the four algorithms using a simpler problem’s domain; the
latter reduced problem used a phenotype representation of the individuals composed of two variables,
optimizing the values of four objectives while using a predefined mathematical set of equations as an
objective function. Sections 6.2, 6.3, 6.4 and 6.5 illustrate the major findings and results of each of the four
processes.

6.2 MOGA Results and Discussion

The multiobjective genetic algorithm was executed 20 consecutive times. Each execution was terminated
after 100 generations of the MOGA algorithm, which was processing a population constituted of 40
individuals, each composed of 2 variables, while optimizing the values of 4 objectives. After each of the 20
executions of the MOGA algorithm, the best values of the four objectives, achieved throughout the 100
generations of each execution and produced by the objective function for each of the 40 individuals, were
stored in a matrix named “bestobjv”. From one execution of the MOGA to its successor, a matrix named
“bestobjv_con” concatenated the best objectives values achieved for each execution (i.e. the “bestobjv”
matrices of each execution), while keeping record of the number of the best objectives reached for each
execution. The fitness scores of the population’s individuals were also stored in corresponding matrices.
Note that a relative fitness function (“rank_prf.m”) was employed in the system, ranking the objective
function’s results of each individual according to their performance and suitability in the application’s
domain, compared to the performances of the other individuals of the same generation, while assuming a
minimization problem (i.e. rank 0 is best). Another fitness function named “ranking_mo.m” was then
applied to the output of the relative fitness function “rank_prf.m” to assign global fitness scores for each
individual of the population.

Figure 6.1 illustrates the average values of the best objectives achieved after each of the 20 executions of
the MOGA algorithm, terminated after the processing of 100 generations at every execution.

Salem Adra Results and Discussions

41

41

Figure 6.1: The best average values of the 4 objectives (MOGA)

It was remarkable that the average values of the best-achieved objectives throughout the 20 executions of
the MOGA were relatively consistent and stable, occasionally presenting minor fluctuations such as around
the 4th and 9th execution. The total average values (i.e. the average value of the best average values at each
execution of the MOGA) for each objective are presented in Table 6.1.

Total Average Values
Objective 1 Objective 2 Objective 3 Objective 4

-0.1108 -0.5398 -0.2564 -0.6319
Table 6.1: Total Average Values (MOGA)

Figure 6.2 Minimum and Maximum values at the 100th generation (MOGA)

Salem Adra Results and Discussions

42

42

Figure 6.2 illustrates the minimum and the maximum values attained at the 100th generation for each of the
four objectives at each of the 20 executions of the MOGA. It is remarkable that the minimum and
maximum values variations of objective 4 were more or less stable throughout the 20 executions compared
to the other objectives’ behaviour, only varying in a range width of 0.1. (Maximum values variation range
[-0.4 -0.3], Minimum values variation range [-1 -0.9]). On the other hand, the three other objectives
represented relatively unpredictable variations of minimum and maximum values attained, occasionally
showing conspicuous changes from one execution to another. Note that the graphs illustrated in Figure 6.2
correspond to the maximum and the minimum values of the objectives achieved at the 100th generation of
each execution which is not necessarily the generation where the best objectives’ values where achieved.
Figure 6.3 illustrates the minimum and the maximum values of the best objectives achieved throughout the
100 generations of each of the 20 executions:

Figure 6.3: Minimum and Maximum values of the best objectives (MOGA)

It was very obvious that the minimum and the maximum values of the best objectives were much more
stable compared to the minimum and maximum values of the same objectives at the 100th generation of
each execution. The minimum values of objectives 1, 3 and 4 were relatively fluctuating around the value -
1; where as the minimum values of objective 2 were isolated around the value –0.92. On the other hand, the
maximum values of objective 2 and 4 were more or less mutual, while objective 1 presented the highest
maximum values and objective 2 possessed a more fluctuating curve, fitting the maximum values attained
for that objective all along the 20 executions.

6.3 Hill Climbing Results and Discussion
The MOGA hybridized with the Hill Climbing local search was tested using similar criteria to the MOGA
process. The MOGA/Hill Climbing algorithm was executed 20 times, while storing the best results of the
objectives functions (best objectives values) and the individuals’ fitness’s. Each execution has processed
100 generation of the MOGA, while performing 100 iterative steps of local improvement for each
generation. These local search improvements were based on a Hill Climbing algorithm, which explores
subspaces of solutions, while only accepting improved individuals.

Figure 6.4 illustrates the average values of the best objectives attained for each of the 4 objectives at each
of the 20 executions:

Salem Adra Results and Discussions

43

43

Figure 6.4: The average values of the 4 objectives (MOGA/Hill Climbing)

The average values of the best objectives achieved throughout the MOGA/Hill Climbing technique were
pretty much consistent with results of the MOGA, with no major changes to be mentioned, although the
variations of the values of objective 1 have presented sharper fluctuations while objective 3 presented more
stabilized variation behaviour, compared to the MOGA output.
The total average values (i.e. the average value of the best average values at each execution of the
MOGA/Hill Climbing algorithm) for each objective are presented in Table 6.2.

Total Average Values
Objective 1 Objective 2 Objective 3 Objective 4

-0.1285 -0.5158 -0.2428 -0.6556

Table 6.2: Total Average Values (MOGA/Hill Climbing)

Figure 6.5: Minimum and Maximum values of the 4 objectives (MOGA/Hill Climbing)

Salem Adra Results and Discussions

44

44

Figure 6.5 illustrates the minimum and the maximum values attained for each of the four objectives at the
100th generation of each of the 20 executions of the MOGA/Hill Climbing process. The minimum and
maximum values variations of objective 4 were approximately of the same stability as in the 100th
generations of the MOGA process throughout the 20 executions, again varying in a range width of 0.1.
(Maximum values variation range [-0.4 -0.3], Minimum values variation range [-1 -0.9]). The three other
objectives, represented a relatively unpredictable variations of minimum and maximum values attained,
occasionally showing conspicuous changes from one execution to another similarly to the MOGA process.
Figure 6.6 illustrates the minimum and the maximum values of the best objectives achieved throughout the
100 generations of each of the 20 executions:

Figure 6.6: Minimum and Maximum values of the best objectives (MOGA/Hill Climbing)

Figure 6.6 pointed up some differences between the behaviour of the best objectives resulting from the
MOGA and the MOGA/Hill Climbing techniques. In the MOGA/Hill Climbing algorithm, objective 2
presented altering minimum values for the best objectives values, diverging at more than one occasion from
the minimum values of the objectives 1 and 4 towards the value –0.99, which was not the case in the
MOGA. On the other hand, in the MOGA/Hill Climbing algorithm, Objective 2 presented some instability
concerning its minimum values and Objective 1 presented some fluctuations in its maximum values’
behaviour, which were absent in the MOGA.

6.4 Simulated Annealing Results and Discussion

The MOGA hybridized with the Simulated Annealing local search was tested using similar criteria to the
MOGA process. The MOGA/Simulated Annealing algorithm was executed 20 times, storing the results of
the objectives functions (best objectives values) and the individuals’ fitness’s. Each execution has
processed 100 generation of the MOGA, while performing 100 iterative steps of local improvement for
each of the 50 temperatures constituting the cooling schedule of the Simulated Annealing algorithm, at each
generation. These local search improvements are based on the Simulated Annealing algorithm, which
explores subspaces of solutions, accepting improved individuals, and occasionally accepting bad ones
based on a probabilistic model. Figure 6.7 illustrates the average values attained for the best objectives at
each of the 20 executions:

Salem Adra Results and Discussions

45

45

Figure 6.7: The average values of the 4 objectives (MOGA/SA)

The total average values (i.e. the average value of the average values at each execution of the
MOGA/Simulated Annealing algorithm) for each objective are presented in Table 6.3.

Total Average Values
Objective 1 Objective 2 Objective 3 Objective 4

-0.0999 -0.5466 -0.2647 -0.6363
Table 6.3: Total Average Values (MOGA/SA)

Figure 6.8 illustrates the minimum and the maximum values attained for each of the 4 objectives at the
100th generation throughout the 20 executions of the MOGA/Simulated annealing process. The results were
relatively more similar to the MOGA results than the MOGA/Hill Climbing results.

Figure 6.8 Minimum and Maximum of the 4 objectives (MOGA/SA)

Salem Adra Results and Discussions

46

46

Figure 6.9 illustrates new differences between the behaviour of the best objectives resulting from the
MOGA, the MOGA/Hill Climbing and the MOGA/Simulated Annealing techniques, especially concerning
the minimum values variations of the 4 objectives. In the MOGA/Simulated Climbing algorithm, objective
2 presented alternating minimum values for the best objectives values between the minimum values of
objective 1 and 4, more frequently diverging from the minimum values of the objective 1 towards the value
–0.995, while the minimum value of objective 4 was totally different from the outcome of the previous
techniques (MOGA, MOGA/Hill Climbing), in the way that its value was more or less stable, but this time
around the value –0.995, differently from the minimum values of objective 4. The behaviour of the
maximum values of the 4 objectives was considerably similar to their behaviour in the MOGA and the
MOGA/Hill Climbing algorithms.

Figure 6.9: Minimum and Maximum values of the best objectives (MOGA/SA)

6.5 Tabu Search Results and Discussion

The MOGA hybridized with the Tabu search local search was tested using similar criteria to the MOGA
process. The MOGA/Tabu search algorithm was executed 20 times, storing the best results of the
objectives functions (best objectives values) and the individuals’ fitness’s. Each execution has processed
100 generation of the MOGA, while performing 100 iterative steps of local improvement for each
generation. These local search improvements were based on a Tabu search algorithm, which explores
subspaces of solutions, while accepting ameliorated individuals or bad ones in order to escape cycling
situations and entrapments at local optima.

Figure 6.10 illustrates the average values attained for each of the 4 objectives at each of the 20 executions:

Salem Adra Results and Discussions

47

47

Figure 6.10: The average values of the 4 objectives (MOGA/Tabu search)

The total average values (i.e. the average value of the average values at each execution of the MOGA/Tabu
Search algorithm) for each objective are presented in Table 6.4.

Total Average Values
Objective 1 Objective 2 Objective 3 Objective 4

-0.1129 -0.5007 -0.2325 -0.6792
Table 6.4: Total Average Values (MOGA/Tabu search)

Figure 6.11 Minimum and Maximum of the 4 objectives (MOGA/Tabu search)

From figure 6.11 it was remarkable that the chaotic behaviour of the results were pretty much consistent
with the other techniques’ results.

Salem Adra Results and Discussions

48

48

Figure 6.12: Minimum and Maximum values of the best objectives (MOGA/Tabu search)

The maximum values’ behaviour of the four objectives resulting from the MOGA/Tabu Search process was
relatively similar to the results of the previous described techniques, although from figure 6.12, it was
perceptible that the minimum values of objective 2 was slightly detached from the values of objectives 1
and 4, without any intersections points with the minimum values’ variation curves of these objectives (1
and 4). This stability and resemblance of maximum values’ behaviour throughout the 4 processes, (MOGA,
MOGA/Hill Climbing, MOGA/Simulated Annealing, MOGA/Tabu Search), is logically a preferable
situation, and it denotes a competitive performances of these processes, with no process trespassing a
certain global maximum value of the objectives, while behaving differently at the minimum values regions,
by exploring different local spaces and competing to decrease the values of the objectives to mark an
improved performance.

6.6 Results’ Statistical Analysis
Table 6.5: Total averages Analysis for the best objectives obtained after 20 executions of each process
 Objective1 Objective 2 Objective 3 Objective 4
MOGA -0.1108 -0.5398 -0.2564 -0.6319
MOGA/ Hill Climbing -0.1285 -0.5158 -0.2428 -0.6556
MOGA/Simulated Annealing -0.0999 -0.5466 -0.2647 -0.6363
MOGA/Tabu Search -0.1129 -0.5007 -0.2325 -0.6792
Best Average (Lowest) Hill Climbing Simulated

Annealing
Simulated
Annealing

Tabu Search

From the results analysis (Table 6.5), it was very obvious that the memetic algorithm has beaten and
outperformed the MOGA optimizing the values of the four objectives, by producing lower averages values
for each objective, after 20 executions of each of the four processes. In particular, the MOGA hybridized
with the Simulated Annealing improvement mechanism was able to get improved average values for the
best values attained for 2 out of 4 objectives (objectives 2 and 3).

Table 6.6: Minimum achieved among the best objectives:
 Objective1 Objective 2 Objective 3 Objective 4
MOGA -0.9991 -0.9193 -0.9976 -0.9996
MOGA/ Hill Climbing -0.9990 -0.9677 -0.9980 -0.9997
MOGA/Simulated Annealing -0.9963 -0.9764 -0.9998 -1.0000
MOGA/Tabu Search -0.9997 -0.9644 -0.9920 -0.9987
Best result (lowest) TS SA SA SA
Worst result (highest) SA MOGA TS TS
HC = Hill Climbing- SA=Simulated annealing-TS=Tabu Search

Salem Adra Results and Discussions

49

49

Again, from Table 6.6, it was reflected that the memetic algorithm has outperformed the MOGA by getting
better results minimizing the 4 objectives. More specifically, it was remarkable, that the MOGA/Simulated
Annealing process has uniquely reached minimal values for each of the objectives 2, 3 and 4 that were not
reached by the other techniques. On the other hand, it was also very notable that the MOGA has scored the
worst performance for the optimization of objective 2, by achieving a minimum value of–0.9193 for
objective 2, which was relatively by far outperformed by the three memetic algorithm approaches.

Table 6.7: Maximum achieved among the best objectives:
 Objective1 Objective 2 Objective 3 Objective 4
MOGA 0.9938 -0.3217 0.7244 -0.3109
MOGA/ Hill Climbing 0.9963 -0.3306 0.7704 -0.3163
MOGA/Simulated Annealing 0.9997 -0.3317 0.7017 -0.2997
MOGA/Tabu Search 0.9818 -0.3281 0.6873 -0.3106
Best result (lowest) TS SA TS HC
Worst result (highest) SA MOGA HC SA
HC = Hill Climbing- SA=Simulated annealing-TS=Tabu Search

From table 6.7, it was deduced that the memetic algorithm has once again outperformed the MOGA for the
optimisation of the 4 objectives, in the way that the memetic algorithm has reached lower maximum values
for the best objectives achieved throughout 20 executions compared to the maximum values attained by the
MOGA for the same 4 objectives. To put in nutshell, after 20 executions of the 4 processes, each allowed to
run for 100 generations, the best objectives values achieved have represented lower minimum values (i.e.
better objectives were explored) and lower maximum values (i.e. less bad objectives were dealt with) in the
case of the memetic algorithm, which globally denotes a better quality results compared to the data
produced by the MOGA.

Figure 6.13: Minimum and Maximum fitness variation throughout 20 executions of MOGA

Figure 6.13 highlights the minimum and the maximum values’ behaviours of the fitness values assigned to
the 4 objectives all along the 20 executions of the MOGA. Noting that the graphs shown in figure 6.13
represent the minimum and the maximum values of the fitness scores assigned to the population’s
individuals (solutions) by the function “ranking_mo.m” which assigns global fitness values to the
individuals based on a maximisation fashion, i.e. the best individual will be allocated the highest fitness
value. It was remarkable that the maximum fitness values were relatively unstable compared to the
minimum values’ behaviour, with the maximum being achieved at the 6th execution of the MOGA. This

Salem Adra Results and Discussions

50

50

relative minimum stability reflects a desirable optimisation characteristic, which denotes that the effort and
the exploration process is rather exploring spaces representing good fitness in order to improve their
performances rather than experimenting with low-fitness individuals.

Table 6.8: MOGA Fitness
Execution
Number

Best Fitness Worst Fitness

1 1.4713 0.2321
2 1.7863 0.0950
3 1.9177 0.1902
4 1.7012 0.2124
5 2.2019 0.2165
6 3.0952 0.0903
7 1.6084 0.1964
8 1.9225 0.1763
9 1.7415 0.3094
10 1.6317 0.2281
11 1.9591 0.2014
12 1.9904 0.1056
13 2.6115 0.1653
14 1.9799 0.2596
15 1.8821 0.2788
16 1.7249 0.3305
17 2.8481 0.1770
18 1.9863 0.2333
19 2.6846 0.1955
20 1.5048 0.3305

Best Fitness Achieved=3.0952 at the 6th execution, Worst Fitness Achieved=0.0903 at the 6th execution.

Figure 6.14: Minimum and Maximum fitness variation throughout 20 executions of MOGA/Hill

Climbing

Salem Adra Results and Discussions

51

51

The same characteristics concluded from the graph of the minimum and the maximum values’ behaviour of
the fitness values attained during the MOGA process (Figure 6.13) can be linked to the behaviour
variations of the minimum and the maximum values of the fitness scores achieved by the MOGA/Hill
Climbing algorithm (Figure 6.14), although in the latter algorithm, the maximum value of the fitness was
achieved at the 12th execution.

Table 6.9: MOGA/Hill Climbing Fitness

Best Fitness Achieved=3.5394 at the 12th execution, Worst Fitness Achieved=0.0914 at the 20th execution.

Figure 6.15: Minimum and Maximum fitness variation throughout 20 executions of

MOGA/Simulated Annealing
The maximum fitness value was attained at the 6th execution of the MOGA/Simulated Annealing process,
similarly to the MOGA process, although this is just a total coincidence based on the stochastic nature of
the evolutionary algorithm (Genetic and Memetic algorithms).

Execution
Number

Best Fitness Worst Fitness

1 1.6617 0.2233
2 1.6868 0.1615
3 1.7700 0.1984
4 1.5365 0.1686
5 2.7376 0.1386
6 1.4491 0.1405
7 1.5388 0.1515
8 1.8535 0.2642
9 1.7951 0.0995
10 2.0851 0.1690
11 1.7461 0.3305
12 3.5394 0.1875
13 1.7954 0.2692
14 1.6094 0.3222
15 1.8224 0.2338
16 2.3531 0.1697
17 1.9339 0.2616
18 1.9392 0.1289
19 2.2138 0.1787
20 2.1002 0.0914

Salem Adra Results and Discussions

52

52

Table 6.10: MOGA/Simulated Annealing Fitness

Execution
Number

Best Fitness Worst Fitness

1 1.9478 0.2390
2 2.2876 0.2546
3 1.7312 0.1051
4 1.9455 0.2007
5 1.9514 0.2264
6 3.4900 0.1040
7 1.7093 0.1617
8 2.4603 0.2633
9 2.0143 0.1451
10 1.8951 0.1035
11 1.7461 0.1051
12 1.9455 0.2546
13 1.7954 0.1040
14 1.6094 0.3222
15 1.8224 0.2338
16 2.3531 0.1697
17 1.9514 0.2616
18 1.9392 0.1451
19 2.2138 0.1787
20 1.9478 0.1451

Best Fitness Achieved=3.4900 at the 6th execution, Worst Fitness Achieved=0.1035 at the 10th execution.

Figure 6.16: Minimum and Maximum fitness variation throughout 20 executions of MOGA/Tabu

From Figure 6.16, it is notable the way the maximum fitness was continuously increasing from the 12th
execution of the MOGA/Tabu Search until the 16th execution where the fitness has achieved its global
maximum value. The minimum values’ behaviour being always consistent to the other techniques’ results,
bounded between 0 and 0.7.

Salem Adra Results and Discussions

53

53

Table 6.11: MOGA/Tabu Search Fitness
Execution
Number

Best Fitness Worst Fitness

1 1.8539 0.2020
2 2.2467 0.1731
3 1.9690 0.1534
4 2.3577 0.3217
5 1.7297 0.2209
6 1.7109 0.2516
7 1.6772 0.1031
8 1.6545 0.1686
9 1.6391 0.1354
10 1.7680 0.0825
11 1.7266 0.3083
12 1.5750 0.2012
13 1.8399 0.1233
14 2.0778 0.3305
15 2.4243 0.3305
16 3.2304 0.1175
17 2.0051 0.1755
18 2.3274 0.2191
19 1.6545 0.1115
20 1.7805 0.1054

Best Fitness Achieved=3.2304 at the 16th execution, Worst Fitness Achieved=0.0825 at the 10th execution.

Table 6.12: Fitness Statistics
 MOGA MOGA/TS MOGA/SA MOGA/HC

Worst Fitness Achieved 0.0903 0.0825 0.1035 0.0914
Technique with the worst Fitness

achieved (Lowest)
 √

Technique with the highest worst
fitness achieved (highest)

 √

Best Fitness 3.0952 3.2304 3.4900 3.5394
Technique with the best Fitness

achieved (highest)
 √

Technique with the lowest best
fitness achieved (lowest)

√

From Table 6.12 it was demonstrated based on the statistical results obtained after 20 executions of the
MOGA and the three different versions of the memetic algorithm implemented (MOGA/Hill Climbing,
MOGA/Simulated Annealing, MOGA/Tabu Search) that the MOGA techniques had allocated a maximum
fitness value of 3.0952 to its best solutions produced, which is the minimum fitness value compared to the
best fitness scores allocated to the best solutions resulted from the hybridized systems (memetic algorithm).
In addition, the MOGA/Hill Climbing algorithm has achieved the highest best global fitness value; its value
was 3.5395, “0.4442” higher than the best fitness achieved by the MOGA, which is relatively a big
difference, and a good fitness improvement. On the other hand, the MOGA/Simulated Annealing algorithm
was the best approach in terms of getting the highest worst fitness among the 4 processes, which denotes a
“lift up” or an improvement of the global optimisation quality.

Salem Adra Results and Discussions

54

54

6.7 Future Work
The hybridization of the Multi Objective Genetic Algorithm employed in the “Optimisation techniques for
Gas Turbine Engine Control Systems” project with a local search improvement step can be deemed a
success in respect of the fact that three different kinds of local search techniques were successfully
implemented and integrated with the genetic algorithm .On the other hand, due to the time constraints and
the experimental nature of the project, further experimental processes would surely benefit the system. The
memetic algorithm implemented through out the project consisted of the integration of the local search
techniques between the recombination process, Crossover, and the mutation operator. Due to the huge
amount of objective functions evaluations required by the local search techniques, the investigation of the
local search process’s performance at distinct points of the genetic algorithm were unfeasible. A susceptible
future experimentation may consist of the hybridisation of the local search process at different points of the
genetic algorithm, such as before the recombination step or after the mutation operator. A result
comparison can then be established to evaluate the performance of the memetic algorithm at the distinct
phases of the MOGA, which may highlight certain performance improvements. On the other hand, instead
of locally improving each individual of the population, it might be praiseworthy investigating the direction
of the local search improvement step towards relatively fit individuals, who have higher chances for
survival by recombining and propagating to the next generations.
Another area of investigation which surely would improve the performance of the memetic algorithm is the
employment of Meta-modelling techniques, such as neural networks approaches, to improve the
performance of the objective functions used for the evaluation of the solutions’ performance into the
problem’s domain. Currently, the memetic algorithm is consuming unbearable amounts of time in order to
converge towards acceptable good solutions, which is totally normal, due to its requirement of huge
amounts of objective function’s evaluation while exploring the local spaces, in order to decide whether to
accept a new solution or not. Meta-modelling techniques are efficient, in the way they speed up the
evaluation process of the individual’s fitness, by improving the objectives functions’ performances.

A the end, it is also recommendable to verify the randomness of the random generator function “Rand”,
integrated in Matlab, which was used in the local search processes of the implemented system in order to
randomly move from a solution to another in the local search space. Throughout the project, a total reliance
was assumed about the correctness of that random generator, even the MOGA toolbox previously
implemented at the Automatic Control & Systems Engineering at the University of Sheffield, uses the same
random generator for actions such as the creation of random binary population of individuals for the
MOGA to start with, assuming the efficiency of the random generator. Nevertheless, randomness’
characteristics such as determinism, cycle length, uniformity and correlation (Knuth, 1981) might be
verified and tested on the Rand function of Matlab. Noting that there exist three types of random numbers;
the truly random numbers, such as found by counts of Geiger measuring radioactive decay, the pseudo-
random numbers, which although they posses the appearance of randomness, they display repeatable
patterns or periods of re-occurrence, and finally the quasi random numbers, which are numbers chosen to
fill solutions spaces with maximum distances between points. The best way for testing the randomness of
the random generator employed in the system, is to investigate the use of several distinct random generators
and make sure that the results are adequate and independent of the generator, another testing technique may
consists of the application of some hash or disturbance functions on the output of the random generator in
order to check out any repetitive or similar patterns.

Salem Adra Conclusion

55

55

CHAPTER 7- CONCLUSION

7 Conclusion

The implemented system can be deemed a success in respect of the fact that the main core of the project has
been met. The most widely used local search techniques, Hill Climbing, Simulated Annealing and Tabu
search, have been successfully implemented, tested and integrated with the multi objective genetic
algorithm optimization technique that was employed in the actual system sponsored by the Control &
Systems University Technology Centre supported by Rolls-Royce at the Automatic Control & Systems
Engineering Department at the University of Sheffield.

The experimentation results produced by the memetic algorithm have exposed an improved optimization
performance compared to the traditional results of the MOGA. Enhanced objectives values were achieved
reflecting better fitness values in their application’s domain. More technically, it was remarkable that the
multiobjective genetic algorithm hybridized with the Simulated Annealing local search improvement, was
distinctively producing the lowest objective values for 3 out of 4 of the objectives being optimized,
outperforming by a relatively good lead the optimisation results of the same objectives produced by the
MOGA. A statistical comparison based on data results produced by 20 executions of the MOGA and the
memetic algorithms (i.e. MOGA/Hill Climbing, MOGA/Simulated Annealing, MOGA/Tabu Search) has
exhibited the fact that the best average values of the best global objectives values achieved by the multiple
algorithms belong to the different versions of the memetic algorithm (MOGA/Hill Climbing,
MOGA/Simulated Annealing, MOGA/Tabu Search), depending on the objective, in other words, the best
average value of the best global values of objective 1 were linked with the “MOGA/Hill
Climbing“ memetic algorithm version, while the best averages for objectives 2 and 3 go to the
MOGA/Simulated Annealing version, and finally the best average value for objective 4 goes back to the
MOGA/Tabu Search technique. The MOGA could not compete with the other techniques or represent a
best average value for any of the 4 objectives throughout 20 executions of these algorithms. On the other
side, it was also notable, that the MOGA was producing the worst values for objective 2 in specific, by
resulting a range of data solutions representing both higher minimum and maximum bounds compared to
the range of the values produced for the same objective by the other techniques of the memetic algorithm,
noting that the optimization process consisted of a minimization problem.

To put in a nutshell, the memetic algorithm implemented has highlighted better results and outperformed
the traditional MOGA technique, which is basically the basic core of this experimental project.
Unfortunately, mainly due to the time constraints imposed on the development cycle of this project, further
experimentations may be made in the future, which might uncover better results, especially if the local
search improvement steps were allocated more running time for processing new local spaces.

Salem Adra References

56

56

8 References

T. Bäck, F. Hoffmeister and H.-P. Schwefel, “A Survey of Evolution Strategies”, Proc. ICGA 4, pp. 2-10,
1991.

J. E. Baker, “Adaptive Selection Methods for Genetic Algorithms”, Proc. ICGA 1, pp. 101-111, 1985.

J. E. Baker, “Reducing bias and inefficiency in the selection algorithm”, Proc. ICGA 2, pp. 14-21, 1987.

Richard Baker, “Genetic Algorithms in Search and Optimization”, 1998.

L. Booker, “Improving search in genetic algorithms”, In Genetic Algorithms and Simulated Annealing, L.
Davis (Ed), pp. 61-73, Morgan Kauffmann Publishers, 1987.

M.F. Bramlette, “Initialization, Mutation and Selection Methods in Genetic Algorithms for Function
Optimization”, Proc ICGA 4, pp. 100-107, 1991.

Mark F. Bramlette and Eugene E. Bouchard, “Genetic Algorithms in Parametric Design of Aircraft”.

R.A. Caruana and J.D. Schaffer, “Representation and Hidden Bias: Gray vs. Binary Coding”, Proc. 6th Int.
Conf. Machine Learning, pp153-161, 1988

R. A. Caruana, L. A. Eshelman, J.D. Shaffer, “Representation and hidden bias П: Eliminating defining
length bias in genetic search via shuffle crossover”, In Eleventh International Joint Conference on
Artificial Intelligence, N. S. Sridharan (Ed.), Vol.1, pp. 750-755, Morgan Kauffman Publishers, 1989.

Andrew Chipperfield, Peter Fleming, Hartmut Pohlheim, Carlos Fonesca, “Genetic Algorithm Toolbox”,
Department of Automatic Control Engineering and Systems Engineering, University of Sheffield

Carlos A. Coello, David A. Van Veldhuizen and Gary B. Lamont, "Evolutionary Algorithms for Sloving
Multiobjective Problems", pp. 372-376, Kluwer Academic Publishers, 2002.

Louis Anthony Cox, Jr., Lawrence Davis, and Yuping Qiu, Dynamic, “Anticipatory Routing in Circuit-
Switched Telecommunications Networks”.

Yuval Davidor, “A Genetic Algorithm Applied to Robot Trajectory Generation”.

Digalakis and Margaritis, 2000 Memetic Algorithm Pseudocode

T.C. Fogarty, “An Incremental Genetic Algorithm for Real-Time Learning”, Proc. 6th Int. Workshop on
Machine Learning, pp. 416-419, 1989.

D. E. Goldberg and J. Richardson, “Genetic Algorithms with Sharing for Multimodal function
Optimization”, Proc. IGCA 2, pp. 41-49, 1987.

D.E. Goldberg, Genetic Algorithms in search, Optimization and Machine Learning, Addison Wesley
Publishing Company, January 1989.

J.J Grefenstette, “Incorporating Problem Specific Knowledge into Genetic Algorithms”, In Genetic
Algorithms and Simulated Annealing, pp. 42-60, L. Davis (Ed.), Morgan Kauffmann, 1987.

John J. Grefenstette, “Strategy Acquisition with Genetic Algorithms”.

Steven A. Harp and Tariq Samad, “Genetic Synthesis of Neural Network Architecture”.

Salem Adra References

57

57

C. Z. Janikov and Z. Michalewicz, “An Experimental Comparison of Binary and Floating Point
Representations in Genetic Algorithms”, Proc. IGCA 4, pp. 31-36, 1991

K. A. De Jong, Analysis of the Behaviour of a class of Genetic Adaptive Systems, PhD Thesis, Dept. of
Computer and Communication Sciences, University of Michigan, Ann Arbor, 1975.

K.A. De Jong and J. Sarma, “Generation Gaps Revisited”, In Foundations of Genetic Algorithms 2, L. D.
Whitley (Ed.), Morgan Kaufmann Publishers, 1993.

Kosmas Knödler, Jan Poland, Andreas Zell, Alexander Mitterer and the BMW Group Munich, “Using
Memetic Algorithms for Optimal Calibration of modern automotive combustion Engines”

D. Knuth, Art of Computer Programming, Vol2. Seminumerical Algorithms, Second edition. Addison-
Wesley, Reading, Massachusetts, 1981.

Natalio Krasnogor, Tutorial on memetic algorithms, 2002.

Gunar E. Liepens and W. D. Potter, “A Genetic Algorithm Approach to Multiple Fault Diagnosis”.

C.B. Lucasius and G. Kateman, “Towards Solving Subset Selection Problems with Aid of Genetic
Algorithm”, In Parallel Problem Solving from Nature 2, R Männer and B. Manderick, (Eds.) pp. 239-247,
Amsterdam: North Holland, 1992

H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the Breeder Genetic Algorithm”,
Evolutionary Computation, Vol. 1, No. 1, pp. 25-49, 1993.

Yanto Prasetio and Eddie Rhone, “Tabu Search: Overview and Example”, 2002.

W.E. Schmintendorgf, O. Shaw, R. Benson and S. Forrest, “Using Genetic Algorithm for Controller
Design: Simultaneous Stabilization and Eigenvalue Placement Region”, Technical Report No. CS92-9,
Dept. Computer Science, College of Engineering, University of New Mexico, 1992.

W. M. Spears and K. A. De Jong, “On the Virtues of Parameterized Uniform Crossover”, Proc. ICGA 4,
pp.230-236, 1991.

W. M Spears and K. A. De Jong, “An Analysis of Multi-Point Crossover”, In Foundations of Genetic
Algorithms, J. E. Rawlins (Ed.), pp. 301-315, 1991.

Diana Spears, “More Search Algorithms”, 2001.

Erik Sundermann, “Simulated Annealing”, email: Erik.Sundermann@advalvas.be

G. Syswerda, “Uniform crossover in genetic algorithms”, Proc. ICGA 3, pp. 2-9, 1989.

D.M. Tate and A.E Smith, “Expected Allele Convergence and the Role of Mutation in Genetic
Algorithms”, Proc. ICGA 5, pp.31-37, 1993

Arne Thesen, “Design and Evaluation of Tabu Search Algorithms for Multiprocessor Scheduling”, Kluwer
Academic Publishers, Madison USA, 1998.

A. H. Wright, “Genetic Algorithms for Real Parameter Optimization”, In Foundations of Genetic
Algorithms, J.E. Rawlins (Ed.), Morgan Kaufmann, pp. 205-218, 1991.

Salem Adra References

58

58

Web Sites

http://www.cs.sandia.gov/opt/survey/sa.html
http://www.cs.sandia.gov/opt/survey/ts.html
http://www.csep1.phy.ornl.gov/csep/mo/node28a.html
http:// www.ingber.com.
http://www.irirdia.ulb.ac.be/~meta.html
http://www.isic.ecs.soton.ac.uk/isystems/evolutionary/notes/evol/simulated_annealing.html
http://www.mit.edu/people/refreshh/1.713paper/node10.html
http://www.petaxp.rug.ac.be/~erik/research/research_part2.html
http://www.ra.informatik.uni-tuebingen.de
http://www.sce.carleton.ca/netmanage/tony/ts.html
http://www.winforms.phil.tu_bs.de/winforms/research/tabu/.html

Memetic Algorithms Home Page:

http://www.densis.fee.unicomp.br/~moscato/memetic_home.html

Salem Adra Appendix 1 Diary of Major Milestones

59

59

9 Appendix 1: Major Milestones

Report preparation

The report preparation phase involved designing the memetic algorithm,
implementing the local search techniques, integrating them with the
multiobjective genetic algorithm optimisation technique and iteratively
testing the developed system. Time has been carefully allocated for
writing, checking and updating the final dissertation report.

Date Milestone
1st June Project Start Date
20th June Research and Design Phase Completed
8th July MOGA/Simulated Annealing Implemented and Tested
16th July MOGA/Hill Climbing Implemented and Tested
25th July MOGA/Tabu Search Implemented and Tested
5th August Results Analysis and Comparison Accomplished
20th August Report First Draft Completed
27th August Project Hand-in Date

Salem Adra Appendix 2 Code Fragments

60

60

10 Appendix 2: Code Fragments

FORMAT CONVENTIONS: This is Code % This is a comment

Simulated Annealing Testing Code Hill Climbing Testing Code

% Author: Salem Adra %Author: Salem Adra
% Testing Version %Testing Version
% Simulated Annealing local search %Hill Climbing Local Search

disp(‘Simulated Annealing’) disp(‘Hill Climbing’)

Num_Steps=10000; Num_Steps=10000;
T_schedule=[1:-.02:0];
no_schedule=length(T_schedule);
x=zeros(1,120); x=zeros(1,120);
var=0; var=0;

for i=1:120 for i=1:120
 x(i)=var; x(i)=var;
 var=var+0.1; var=var+0.1;
end end

y=zeros(1,120); y=zeros(1,120);
for i=1:120 for i=1:120
 if i>41 if i>41
 y(i)=sin(x(i)); y(i)=sin(x(i));
 else else
 y(i)=(-1/2)*(x(i)*x(i))+4*x(i)-8; y(i)=(-1/2)*(x(i)*x(i))+4*x(i)-8;
 end end
end end

clf clf
plot(x,y,'g', ... plot(x,y,'g', ...
 x(1),y(1),'m*', ... x(1),y(1),'m*', ...
 x(120),y(120),'m*', ... x(120),y(120),'m*', ...
 x(80),y(80),'r*', 'LineWidth',2); x(80),y(80),'r*', 'LineWidth',2);
title('Figure 5.17 Simulated annealing title('Figure 5.16 HillClimbing'
 acceptance steps’,’FontSize’,16); 'acceptance steps', “FontSize’,16);
xlabel('X','FontSize',12); xlabel('X','FontSize',12);
ylabel('Y','FontSize',12); ylabel('Y','FontSize',12);
grid on; grid on;
hold on hold on

xsolutions=zeros(nm,1); xsolutions=zeros(nm,1);
ysolutions=zeros(nm,1); ysolutions=zeros(nm,1);
xold=0; xold=0;
yold=(-1/2)*(xold*xold)+4*xold-8; yold=(-1/2)*(xold*xold)+4*xold-8;
xsolutions(1)=xold; xsolutions(1)=xold;
ysolutions(1)=yold; ysolutions(1)=yold;

h = plot(xold,yold,'r.','LineWidth',1); h = plot(xold,yold,'r.','LineWidth',1);
set(h,'EraseMode','None'); set(h,'EraseMode','None');

Salem Adra Appendix 2 Code Fragments

61

61

Simulated Annealing Testing Code Hill Climbing Testing Code

Cont Cont

pause(1) pause(1)
count=2; count=2;
for tj=1:no_schedule for nm=1:Num_Steps,
 Temp=T_schedule(tj); xnew = xold-0.1 + 0.2*rand(1,1);
 for nm=1:Num_Steps, if xnew>4
 xnew = xold-0.1 + 0.2*rand(1,1); ynew=sin(xnew);
 if xnew>4 else
 ynew=sin(xnew) ynew=(-1/2)*(xnew*xnew)+4*xnew-8;
 else end
 ynew=(-1/2)*(xnew*xnew)+4*xnew-8;
 end
 r=rand(1);
 if(ynew>yold) %it means the new if(ynew>yold) %it means the new
 % individual performed better % individual performed better
 xold=xnew; xold=xnew;
 yold=ynew; yold=ynew;
 set(h,'Color','b') set(h,'Color','b')
 set(h,'XData',xold,'YData',yold); set(h,'XData',xold,'YData',yold);
 pause(1) pause(1)
 xsolutions(nm)=xold; xsolutions(nm)=xold;
 ysolutions(nm)=yold; ysolutions(nm)=yold;
 sprintf('x accepted=%g,and its y values is=%g',… sprintf('x accepted=%g,and its
 ,[xold yold]) y values is=%g',[xold yold])
 else if (exp((ynew-yold)/Temp)>r) end
 xold=xnew; if xold == 4 % i.e .local max acheived
 yold=ynew; xsolutions(nm)=-12;%→invalid entry
 set(h,'Color','b') sprintf('Local Max achieved,No more
 set(h,'XData',xold,'YData',yold); acceptance steps, current X=%g\n',[xnew])
 pause(1) end
 xsolutions(nm)=xold; end
 ysolutions(nm)=yold;
 sprintf('Bad solution accepted X=%g\n',[xold])
 end
 end

Application Domain: MOGA Hybridized with a local search process

while gen<maxgen,
 drawnow;
 gen=gen+1;
 phen=bs2rv(chrom,fieldd); % This function decode the phenotypic representation

 % of the individuals into real numbers.
 for indno=1:nind;
 objv(indno,:)=xobjvfn(phen(indno,:)); % Assessment of the objective function
 end;
 [ix,bestix] = find_nd(objv,bestobjv);
 bestobjv = [bestobjv(logical(bestix),:) ; objv(logical(ix),:)];% Stores best objectives
 % values
 bestphen = [bestphen(logical(bestix),:) ; phen(logical(ix),:)]; % Stores best
 % individuals

Salem Adra Appendix 2 Code Fragments

62

62

);

Application Domain: MOGA Hybridized with a local search process
Cont

 rankv=rank_prf(objv,goalv,priorityv); % Assigns relative fitness values to the
 % individuals
 [f_hat,h,normmx]=epanechnikov(phen);
 fitness=ranking_mo(rankv,2*nind/(nind-nimmigr),f_hat); % Assigns global fitness
 % values to the
 % individuals
 ix=sus(fitness,nind-nimmigr); %Stochastic Universal Sampling selection process
 selch=chrom(ix,:);
 selphen=phen(ix,:);
 permix=pairup(selphen*normmx,h);
 selch=selch(permix,:);
 selch=recombin('xovsp',selch,0.7); %Recombination process or Crossover
 phen=tabulocalsearch(nind,nobjv,nvar,rankv,phen,goalv,priorityv);
% Local Search process (Tabu search, Simulated annealing, Hill Climbing)
 chrom=[mut(selch,.7/nvar/preci); %Mutation Operator
 crtbp(nimmigr,nvar*preci);];
end;

Salem Adra Appendix 3 Acronyms

63

63

11 Appendix 3: Acronyms

EA Evolutionary Algorithm
GA Genetic Algorithm
GUI Graphical User Interface
HC Hill Climbing
LS Local Search
MA Memetic Algorithm
MOGA Multi Objective Genetic Algorithm
NIND Number of Individuals
NVAR Number of Variables
PHEN Phenotype
RR Rolls-Royce
SA Simulated Annealing
SSPR Stochastic Sampling with Partial Replacement
SSR Stochastic Sampling with Replacement
SUS Stochastic Universal Sampling
TS Tabu Search

