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Harmonic Competition: A Self-Organizing
Multiple Criteria Optimization

Yasuo Matsuyama, Senior Member, IEEE

Abstract—Harmonic competition is a learning strategy based
upon winner-take-all or winner-take-quota with respect to a com-
posite of heterogeneous subcosts. This learning is unsupervised
and organizes itself. The subcosts may conflict with each other.
Thus, the total learning system realizes a self-organizing multiple
criteria optimization. The subcosts are combined additively and
multiplicatively using adjusting parameters. For such a total cost,
a general successive learning algorithm is derived first. Then,
specific problems in the Euclidian space are addressed. Vector
quantization with various constraints and traveling salesperson
problems are selected as test problems. The former is a typical
class of problems where the number of neurens is less than that
of the data. The latter is an opposite case. Duality exists in these
two classes. In both cases, the combination parameters of the
subcosts show wide dynamic ranges in the course of learning. It
is possible, however, to decide the parameter control from the
structure of the total cost. This method finds a preferred solution
from the Pareto optimal set of the multiple object optimization.
Controlled mutations motivated by genetic algorithms are proved
to be effective in finding near-optimal solutions. All results show
significance of the additional constraints and the effectiveness of
the dynamic parameter control.

I. INTRODUCTION

OMPETITION is an agent selection mechanism based

upon a fitness measure. Given an input, each agent
computes the fitness of its state to the input. Upon completion
of this stage, every agent broadcasts its own figure of fitness
to the others. Then, each agent compares its own fitness with
the ones received. An agent which has a better fitness than
any of the received values can claim to be the winner.

If the agent state is equivalent to an input weight vector, or
if the above structure is well-expressed by a directed graph, the
total system is called a competitive artificial neural network.
Each agent is called an artificial neuron with competition.
“Artificial” is mostly omitted if there is no possibility of
mistaking them for wet-ware neurons.

Learning by competition is usually winner-take-all. That is,
only the winner obtains the right to produce an output and to
learn. Learning means a modification of the state vector so
that the fitness to the current input is increased. If there are
neurons which cooperate with the winner, these comrades can
also learn. This is called winner-take-quota. Hereafter, “state
vector,” “weight vector,” and “neuron” are interchangeably
used.
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The measure of fitness is often called the cost or error. In
this case, the winner selection is based upon a minimization.
If the cost is an error in the input approximation by weight
vectors, the learning is equivalent to a phase of clustering
or data compression. If we try to treat more sophisticated or
real-world problems, it is necessary to use a composite of
heterogeneous subcosts. The most important subcost, the main
cost, is for the data approximation. The rest of the subcosts are
for various constraints. The competition phase computes the
values of fitness for all subcosts. The harmonic competition is a
winner selection mechanism taking all heterogeneous subcosts
into account.

Incorporation of the aforementioned fitting subcosts in the
total error measure has enabled the expansion of the problem
class to be solvable by learning. There are several studies
treating such additional subcosts [3], [9], [15]-[19], [231, [25].
In these cases, different subcosts are additively combined with
the main cost. Since the main cost and subcosts are. quite
different in nature, combination. parameters are essential to
adjust the subcosts’ dynamic ranges. For instance, the simplest
form of such a total cost includes one adjustment parameter,
A, such that d = f + Ag. Here, f is an average cost for the
approximation. g is a constraint. Except for a few studies,

the parameter A per se is fixed throughout the learning. This

is meaningful, however, only if a carefully selected value of
this parameter is given a priori. Since fixing the parameter
is part of the design phase, not specifying this number forces
ill-conditioned learning. Therefore, designers of the learning
system can not set this parameter until many repeated trials
are performed: It is necessary to find a reasonable method for
dynamically adjusting such a parameter. _

Among the above references, [16]-{18] and [23] report
the importance of the dynamic control of the subcost. The
strategies presented therein, however, were limited to specific
problems. It is desirable to find a more universal method.
This is one of the main issues in this paper after a formal
derivation of general harmonic competition. It is-also worth
emphasizing that a strategy of controlled mutation of the
weight vectors is theoretically derived from the harmonic
competition. Thus, the organization of this paper is as follows:
First, general derivation of harmonic competition and learning
is given. Then, two different classes of problems are studied
as benchmarks. These classes show a beautiful duality. The
first is the case where the number of neurons, M, is smaller
than that of the data, say N. Data compression by divergence-
constrained vector quantization (DVQ; all for equiprobability,
equierror, and joint equiprobability/error) is such a case. From
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_the competition bias, a strategy of weight mutation is obtained.
The second is the opposite case: M is larger than N. A
Euclidian traveling salesperson problem (TSP) and extended
vehicle routing problems (EVRP) with sets of real-world data
are such cases. The EVRP is a case containing all types of
constraints. Through general discussions and experiments with
the above classes, the following can be claimed:

o Harmonic competition is an eligible strategy to find a
preferred solution to the Pareto optimal set (noninferior
solution set) [12, pp. 331-332] of the multiple criteria
optimization. That is, this learning mechanism picks up a
trade-off between the main cost and subcosts.

+ The parameter A has quite a wide dynamic range. Setting
this parameter requires some sort of prior knowledge.
Therefore, the subcosts should be controlled so that their
ratio to the main cost changes slowly. This adjustment
covers a wide dynamic range of the parameter . It gives
a better, or at least, a comparable performance to the static
method which relies upon a priori information.

» The weight mutation can be derived from the competition
bias. This method helps to avoid bad local minima.

+ The rule presented is applicable to the case of multiple
constraints. A wide variety of problems can be cast in the
learning algorithm presented.

II. CosT WITH PENALTIES

As was introduced in Section I, harmonic competition is a
phase of finding a learning neuron for the optimization of the
total cost. The total cost is made up of two parts: the main
cost and subcosts. The main cost has the role of measuring
the degree of ‘data approximation. The subcosts are selected
according to the nature of the problem to be solved. Ubiquitous
applications use only the main cost. In what follows, however,
we present a class of composite costs whose usage will widely
expand the class of problems solvable by competitive learning.
The harmonic cost, i.e., the total cost, is the key concept of the
following discussions. The terminology harmonic competition
refers to competitive learning of the harmonic cost.

A. Combination of Subcosts

Let {xn} ! be a set of input vectors to the leammg
network wh1ch contains a set of weight vectors {'wm}
Let Q(z,w) be a mapping such that

1, if the weight vector w is assigned
Qz,w) = to the input vector x , (1)
0, otherwise.

The average cost of the approximation by the weight vectors
is then

N-1

7 1 def 1

f= N f(xnawm)Q(zna 'wm) Z an(zna'wm)
n=0

‘ v , @)

This is the main cost. Let gnk({zi}f\;gl,{wj}jﬂigl),

(k = ,---,K 1), be constraints added to f,. Let

hne ({i}5e", {wi}jie"). (¢ = 0, ---, L — 1), be
multiplicative penalties. The cost of the mapping Q(Zn, W)
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is then

M-1 K-1 L-1
Dn: Z (fn+ Z AnkQ’nk)(l_I hn[) $n,wm)dfde .
m=0 k=0 £=0
' ©))
Here, z,, = £ is the actual input at the tth data supply of -
the learning phase. That is, the superscript ¢ is the number of
iterations treated as time count. On the other hand, 7 = {¢/N |
is called the sweep. The parameters Az, (k = 0, , K —
1), combine the subcosts. These parameters appear when a
convex multiple criteria optimization is transformed into a
cost function approach. The average of the total cost, i.e., the
harmonic cost, is then

~ N-1 1 N-1
d:Zdn:NZDn. (4)
n=0 n=0

The first step of harmonic competition is to find a minimization

element for d,, with respect to a successively given input data
® —

¥ = =z,

(t)

Gy = )

= arg mind, = arg min D,.
0<m<M 0<m<M

w

. Ties are broken appropriately. The above w'®, | is called the

m(n)
winner which is treated as the case where Q(z, W, ()
The neural weight vector is updated for leaming by

@+ _ 0 (®)

m(n) — m(n)

)=1.

+ Aw'? 6)

m(n)
where the modification term is

AN 8d,
(®) _¢€ -
A'wm(n) 5 3w( 5 =

m(n)

e® oD,
. (@)
2 Bw(t)

m(n)

¢® is a learning parameter. The derivation in (7) is
od, _ oD,

ow® . 0w

m(n) m(n)

a L—-1
(fn + Z kgnk> a_wT (IIO hnl)
m(n) \{£=

®

If we consider a cooperative neighborhood, N min)? of the
®

winner w, .y, then the following update is also applied:
(t+1) ) (®)
Wy = Wiy T O mey Ay ©)

Here, the parameter O‘s\f){ m(n)} specifies a degree of coopera-
tion, possibly affected by the multiplicative handicap e [15],
[171.

The above learning strategy has the following effective in-
terpretation: The harmonic competition by (5) and (6) indicates
only the most appropriate agent with respect to the input is
eligible to learn. This means that the learning is undertaken
by the agent which suffices to change the total system only the
least. In this sense, the harmonic competition is an embodiment
of the minimum learning principle.
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B. Weight Update for the Euclidian Cost

Here, we compute the case where the term f,, of (3)
is Euclidian. Note that the class with additive subcosts is
already significantly wide. Thus, this case is discussed first.
Multiplicative penalties will be discussed later jointly with the
extended vehicle routing problems.

Consider the case where \,x def Aand hyy = 1; ie.,
K = L =1 and the combination parameters are independent

of n. Then

M-1
= Z (”xn - 'w7n”2 + )\gn>Q($n7wm)-
m=0
Here, || - || is the Euclidian metric. Then, one obtains from
(4) that
N-1
-1
— Dn
! N n=0
] Nl 1 N-1(M-1
:N ”3771 - wm(n)” +A Z { Z gnQ(zn; wm)}
n=0 n:O m=0
1 V=2 1 M-
2
=7 n — Wm((n A= m(n
anollf Wi () || + anzo[g] )
RSV (10)

where [g]pm(n) means that the winner w,y,(,) is identified in
g Then, one obtains from (7) and (8) that

2O 8[g]
®  —® ® Y_¢ Jlm(n)
Al =0 (20 —w)) - woR an

Here, the superscript ¢ for () and A(®) specifies the values at
the t¢th data input. Thus, the harmonic competitive learning is
a combination of actions described by (5), (6), (9), and (11).
The derivation of the winner w t(n in (10) requires detailed
specifications of g. Therefore, this part is discussed in Sections
III and IV depending upon the form of .

The control of the parameters ¢ and A®) also depends
on the class of problems. The learning parameter ¢(*) can be
controlled by

D) = O 4 AG(FO, FED 50 50-1) ).

This form includes the case of predefined control. We note
here that ) need not monotonically decrease to zero. In some
regularization problems, a monotone increase with saturation
is even desirable.

In any problem, the subcost parameter A(*) can be fixed
provided an appropriate value is known a priori (static rule).
This figure, however, can never be given in advance. Thus,
the problem itself is ill conditioned. One naive method is to
perform repeated experiments changing this value. Since the
main cost and the subcost are heterogeneous in nature, many
experiments are required to cover the wide dynamic range of
A. Another method is to use a dynamic rule

A = AO L AN(FO, FE=D 50 g(-1) ).
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One will find that this is a method to pick up a preferred
solution from the Pereto optimal set using the harmonic
competition dynamics.

Starting from Section III, specific strategies of the harmonic
competition are given. Treated problems and their signifi-
cances are as follows:

* The case where the number of neurons, M, is smaller
than that of the data, IV, (data compression): Divergence
is selected as the subcost for the minimization. Effective
competition biases and strategies are obtained in the
following cases: ‘

a) Divergence-constrained vector quantization for
equiprobability. '

b) Divergence-constrained vector quantization for
_ equierror. ’

c) Divergence-constrained vector quantization - for
joint equiprobability and equierror.

» The case of M > N (regularization).

a) Euclidian traveling salesperson problem.
b) Extended vehicle routing problem (an example of
three subcosts with multiplicative constraints).-

The duality of the above two cases is an important subject
to be observed throughout the text.

IIT. DATA COMPRESSION WITH CONSTRAINTS

Data compression is the case in which the number of
neurons, M, is less than that of the data, N. In this case,
Q(2r,wr,) = 1 means that the input data =,, is approximated
by the weight vector w,,. Then, each input is expressed by
log, M bits achieving data compression. Since z,, is a vector,
such a case is called vector quantization. Since the input
vectors are fed into the learning mechanism one by one, the
strategy is called a successive mode. On the other hand, there
is a learning method which uses the whole training data set
repeatedly [11]. This is called a batch mode. Both successive
and batch modes of their plain versions suffer from traps
at undesirable local minima. We present methods which use
the divergence (Kullback—Leibler number) to make up this
deficiency. The divergence can be éffective either for output
probability equalization (equiprobability) or for output error
equalization (equierror).

A. Equiprobability Vector Quantization

The equiprobability constraint is incorporated as a subcost
in'the case where the usage of the weight vectors w,, , (m =
0,---,M — 1), is requested to be uniform. This means that
the output entropy is maximized, or equivalently, the output
divergence: is minimized. Since the divergence includes a
target probability, nonuniform distributions can be the design
object. In the experiments, only uniform distribution is treated
since there is no specific requirement for nonuniformity in
applications. so far.

Let p, be the probability that the weight vector w,,
is selected. Then, p,, is the expectation of Q; pm =

£[Q(%n, wn)]. Denote {p,,} M3 by P. Let @ % {g,,,
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be a set of desirable output probabilities; e.g., ¢,, = 1/M for
the uniform case. The divergence is then

M-1 p
> pmlog=™.
i Im

Here, log is the natural logarithm. The average cost (10) for
equiprobability harmonic competition is then

9(PlIQ) =

_ B 1N 1 M-1
d=F+27=5 D ll#n = wn)ll’ +A2pmlogq—.
m=0 m

n=0

That is

N Z {Z |lEn — || Q(zn:"”m)}+)‘ E Pm IOg—‘ .

n=0

Since the data z,, is drawn uniformly from the finite source
{,}Z1, the probability p,, in the long run is as follows:

1 N-1
—N_ Z Q(znvwm)'
n=0

Then, one obtains

M-1
llzn — wm, 24 Ao gﬂ) Ty, Wiy
NZ{Z(| 12+ Mo 22 ) @z, )
1 N-1 Py |
|Zn — Wi (n 1> + Alog Pmn }
That is
Pm(n)
Glm(n —log (12)
[9)m(n) P

Thus, harmonic competition for the equiprobability is

@  _ : )2 I’_m}
w = arg min < ||z, — w + Alo, . 13
min) Ong<M {“ ml & 4 )
Note that (12) is the log-conscience [16] whose approximation
of logz ~ z — 1 around = = 1, as well as, ¢,,, = 1/M is the
conscience [5). The second term, Awf;)(n), of (11) can be
omitted in successive data inputs. Thus, the increment is
(t) (®)
Awm(n) )

m(n)/’’

~ e(t)(z'n —w 14)

The learning algorithm is then described as follows.

Equiprobability Harmonic Competition:

Step 1) (initialization; ¢ = 0)

A set of tra1n1ng data {z,}\ 4
vectors {w'y }M-1 are given.

Step 2) (data feeding; increment ¢)

A data z,, is given. The harmonic competition then selects

. t
the winner w(
m

and a set of initial weight

Yy USing (13).

Step 3) (weight update)

Update the winner’s weight w' )( ) using (6) and (14).

Step 4) (self-organization; optional)

Update the cooperating neurons using (9) and (14).

Step 5) (test and termination)

If a predefined stop condition is met (e.g., the number of
iterations), then iteration is halted. Otherwise, modify £(*), A(®
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;r)ld af\tf){m(n)} according to the given rules. Then, go to Step

From both computational and performance view points, Step
5) includes additional strategies. '

Sweep-Based Update; Computational Cost Reduction: In
Step 5), the quantity of the competition bias (p,, in the case of
equiprobability) is computed only at the end of every sweep.
Since the update of the parameters e, \(#) and 0‘5\/‘) {m(n)} 1S
related to this competition bias, the sweep count is used as the
time index. That is, e®, A(®) and o N{ ()} are kept constant
for Nt <t < (r+1)N.

Additional Strategies for Increasing Performance: In Step
5), additional strategies can be incorporated to increase the
total performance. Dynamic split and weight vector mutation
are such strategies. Explicit descriptions of these methods will
be given later.

B. Equierror Vector Quantization

Equierror vector quantization is considered to be asymptot-
ically optimal for errors in the form of difference distortion
measures [8, p. 376], [24]. One should, however, use this
property only when there is a considerable number of weight
vectors for much more rich source data. This is because the
property holds only in the limit. Since vector quantization is
used for low to medium rate compression, exact equierror
should not be requested. It is expected, however, that the
optimal or near-optimal solutions appear as almost equierror.
This is a clue in finding a strategy for the escape from bad
local minima where the distribution of errors is uneven.

Let r,,, be a normalized subtotal of errors due to usage of
the weight vector w,,. That is

= fm/f
with

Hxn - 'me Q(-"’n:’”m)

mTN Z
M-1

Zm—-o fm-

Therefore, Y ) r,, = 1 holds. Let R = {r,,}_5. The

subcost for the equierror is then

Z rmlog—m.

m

\I
I

D(R||Q) =

The total cost is then
d=F+ g

| N=1M- M-1
LS o w2 Y s 2
n=0 m=0 m=0
N—1M-1
1 2
=N Hxn—wm“ Q(xn,u)m)
n=0 m=0
\ Noim-od r
2 ™
— Ty — W, Ty, Wiy ) log —
an=02u *Q@n, wm)log =
1 N-1

M-
m=0

=0
{ 1+}\~log —)Hwn — wl|® }Q(Imwm)}-

—

0

n

il
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That is
|z = Wm@)I® | i)

f Gm(n)
Then, the harmonic competition for the equierror is

AL Tm
wfi)(n) = arg min { <1 + ?_log q_> [|£n — wg)]|2} (15)

0<m<M ™m

[g]m(n) =

Thus, the log-conscience acts as.a multiplicative penalty. This
corresponds to a shunting inhibition [13]. For the weight
update, (6), (9), and (14) are used.

The equierror harmonic competition is described as follows.

Equierror Harmonic Competition: Replace Step 2) of the
equiprobability harmonic competition as follows.

Step 2) (data feeding; increment )

A data z,, is given. The harmonic competition then selects
the winner w" using (15).

m(n)

In the sweep-based update of Step 5), pn, is replaced by rm '

C. Vector Quantization Jointly with Equiprobaility
and Equierror

The constraint on both equiprobability and equierror is
expected to show stronger effects on the exiting from bad
local minima.

Let u,, be a normalized subtotal of joint probability and
errors with respect to usage of the weight vector w,,. That is

PmTm def ﬁ_m

M-1 =5
Ez:o DeTe 1
In this case, Y, unm = 1. Let

Z U log—

Uy, =

DU||Q) =

Then, the total cost is

d=f+\g
1 N-1M-1
Z |25 = Win[2Q (i, wrn)
n=0 m
M-1 u
+ A U, 10g —
2, |
N—1[M-1
= — 1+ —"log lZr — wom|?
N n=0 [mZ:D {< 7] (Im ”
Q(znawm):l .
That is
_ 2
(gl (n) = Pnllon = w5 tm,

m
This is again a multiplicative penalty. Thus, the harmonic
‘competition for the joint equiprobability/error is

. ADm, ;
o = g i { (14 22 b 22 o 0l
<m m
(16)

The joint equiprobability/error competitive learning is de-
scribed as follows.

Fig. 1.
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Generation of training data. (a) Data set A. (b) Data set B. (c)-(f)
Four Gaussian clusters used for the generation of data set A.

Joint  Equiprobability/Error  Harmonic  Competition:
Replace Step 2) of the equiprobability harmonic competition
as follows.

Step 2) (data feeding; increment %).

A data =, is given. Harmonic competition then selects the
winner wg)(n) using (16).

In the sweep-based update of Step 5), pn, is replaced by .

D. Experiments of Equiprobability, Equierror, and
Joint Equiprobability/Error

In all of the following vector quantization experiments, the
updating of cooperative neurons [Step 4)] was not performed.
This is because our target was the, minimization of the ap-
proximation error taking the exit from bad local minima into
account. In the experiments of Section IV, however, updating
of the cooperating neurons [Step-4)] will be identified as an
important phase of learning.

1) Two Sets of Training Data: First, we prepare two sets of
training data illustrated in Fig. 1(a) and (b). Set A is a simple
mixture of four Gaussian clusters in a unit square.
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o Av: (ftoy ty) = (0.5,0.5), (05, 0) = (0.15,0.15); 512

points.

o Ag: (ptzy py) = (0.5,0.75), (0, 0y) = (0.1,0.005); 512
points.

o Azl (Pa,ply) = (0.25,0.25), (0z,04) = (0.0075,

0.0075); 512 points.

o Ay (Mo, tty) = (0.75,0.25), (05,04) = (0.1,0.05); 512

points with a rotation of —45°.

These are shown in Fig. 1(c)(f). The total number of
training data is N = 2048. The number of weight vectors
is M = 32.

Set A looks complicated, however, it is rather well natured.
We prepare another set for establishing the presented learning.
Set B has two square doughnut ditches centered at (0.5,0.5)
with a width of 0.1. The exterior corners of the ditches include
(0.1,0.1) and (0.3,0.3). The total number of data is kept to be
N = 2048 = 512 x 4. In set B, there are a few isolated points.
In plain successive learning, neurons trapped at such points can
never move anywhere. This occurs even if the neighborhood
update of Step 4) is used.

2) Control of the Learning Parameter e®): The learning
parameter £*) necessarily tends to zero as ¢ becomes large.
This does not mean, however, that e® s monotonically
decreasing, There are occasions where it is better for e® to
increase. We choose the dynamic control of £(*) to be updated
at every sweep (VN data supplies). That is, the sweep-based
update is adopted in Step 5) of the learning algorithms. This is
because of the reduction in the neuron’s communication cost.
Let the sweep index be 7 = |t/N]. The rule is as follows:

D) = max{e™ + Ae(™) gmaxy (17)
Here
Bu(FD = D)D), i ) < D
Ae(™ = and 5 > g™,
0, otherwise
(18)
with
_ fo.s, if et < (1)) 19
% T 0025, if D > ), 19

The control (18) allows the learning parameter e(™) to increase,
while the control (19) ensures the decreasing trend of e,

3) Dynamic Split: Our initial experiment- is to see how
ill-natured the data sets A and B are. We start with the
case where the initial weight vectors are decided by random
numbers. The next experiment with an additional strategy is
the aforementioned dynamic split of the weight vectors which
is incorporated in Step 5). The strategy of splitting the weight
vectors has been widely accepted in the batch mode where all
N data are exposed to the learning mechanism simultaneously.
Our purpose here is to see how effective the splitting is in the
successive learning.

Weight Vector Splitting for Successive Learning: First, one
weight vector is placed at the centroid of the training set. After
every « sweeps (kN data supplies), the positions of the weight
vectors are copied. Both the original and copied weight vectors
may be perturbed by the addition of small random numbers.
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TABLE I
APPROXIMATION ERROR N f FOR PLAIN STRATEGES (A = 0)

Strategy Set A | Set B
Successive learning started 2883 | 2314
with random weights ) )
Successive learning 2839 | 1.769
with dynamic split i ’
Batch learning

L 2.922 | 1.790
after dynamic split

(d)

Fig. 2. Learning results starting with a random initial weight vector set: Plain
strategy (A = 0). (a) Resulting weight vectors for data set A. (b) Resulting
weight vectors for data set B.

After xlog, M sweeps, the positions of the M weight vectors
are decided.

The dynamic split is regarded as a process of finding a
good initial state. Thus, one may use this weight vector set
as the initial one for learning. Table I summarizes the effect
of the dynamic split with x = 10 sweeps by comparing the
approximation error N f. The results of the batch mode after
the dynamic split are also given. For both of data sets A and
B, the dynamic split is found to be quite effective although
the results are still suboptimal. Observe that the batch mode
is more likely to get captured at inferior local minima. Fig. 2
shows the results of successive learning starting with random
weights. The result of set A is almost all right. It is still,
however, at a local minimum containing a null neuron to be
eliminated. With the result of set B, one ecasily realizes it is a
terrible pattern. These patterns of the resulting weight vectors
will be compared later with those of the improved strategies.

4) Effects of the Subcosts for a Fixed \: Here, we ‘show
the effects of the subcosts D(P||Q), D(R||Q) and D(U||Q).
Fig. 3(a) and (b) are the results of equiprobability constraint
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’ TABLE I
MINIMUM VALUES OBTAINED FOR A FIXED A WITH DYNAMIC SPLIT

S Set A Set B

trategy X Ni 3 |» __NF 3
Equiprobability | 0.000001 2.783 0.3042 | 0.0006 1.640 0.3449
Equierror 0.0002 2.772  0.0400 | 0.0002 1.552 0.1028
Equipr/error 0.0050 2.791 0.5330 { 1.0000 1.610 0.3168

"‘g N
9% —%s

constant A
(®

Fig. 3., Performance of log-equiprobability competition with constant . (a)
Result on data set A. (b) Result on data set B.

by D(P||Q) with the parameter )\ fixed. Fig. 4(a) and (b)
are the results of equierror constraint by D(R||Q). Fig. 5(a)
and (b) are the results of joint equiprobability/error constraint
by D(U||Q). In all experiments, the tesult of the dynamic
split is used as the initial weights. The vertical axes specify
the approximation error N f and each g. The horizontal axes
specify the combination parameter X in the logarithmic scale.
Table II summarizes the minimum values for a fixed A. These
figures and table show the followings clearly:
e All figures indicate that excessive constraint by a large A
degrades the performance of the approximation N f.
* Fig. 3 indicates that the equiprobability by minimizing
f and g conflict with each other. There is a trade-off
relationship.
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constant A
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Fig. 4. Performance of log-equierror competition with a constant A, (a)
Result on data set A. (b) Result on data set B.

» The equierror constraint of Fig. 4 indicates that minimiz-
ing f and g is compatible. Small f (actually, small N f
in the figure) is achieved at a small value of g.

* Fig. 5 shows that the constraint of the joint equiprobabil-
ity/error is quite strong. The approximation performance
N f is flat over a wide range of the combination parameter
A. This is a desirable property. The minimum value,
however, is larger than that in the case of equierror (see
Table II).

* In all cases, the dynamic range of X is quite wide.
Appropriate values of A are never given a priori (see
Table II).

* The minimum value of the approximation error is given
by the equierror harmonic competition.

5) Dynamic Control of A: The minimization of f and § is

a typical case of multiple criteria optimization. Usually, the
solution is not a unique pair (f, g). Actually, every A possesses
a corresponding point in the Pareto optimal set which is a
family of extreme pairs.of f and g. Thus, the determination -
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Fig. 5. Performance of log-equiprobability/error competition with constant
. (a) Result on data set A. (b) Result on data set B.

of an appropriate A to find a preferred solution requires some
more conditions, Since our purpose is to find the minimal
f, a decreasing trend of X is preferred. Direct control of A,
however, may not be stable because of its wide dynamic range
(see Figs. 3-5). Considering the relationship

def

d=Ff+Xg=f(1+X3/f) = f(1+R)

we adjust the parameter A(™) by the subcost ratio control

u = XDg/FO = (14 ar) ™ (20)
Note that the superscript 7 stands for the sweep (7 = [t/N]).
Thus, the controlled parameter A is updated only for every
sweep as was explained in Section III-A. This is because of
the reduction in the communication cost. The coefficient a can
easily be chosen by taking the maximum number of iterations
into account.

Table III summarizes the results of the dynamic control of
X using the control (20). Both equiprobability and equierror
are tried. Fig. 6(a)-(g) describes the resulting weight vector
positions and the learning process for the case of equierror
using (20) (@ = 0.14). In Fig. 6(c)—(g), the horizontal axes
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. TABLE III
PERFORMANCE ACHIEVED BY A DYNAMICALLY CONTROLLED A
) Set A (a=0.14) | Set B (a=0.03)
Strategy NF 3 NF 7
Equiprobability | 2.898 0.1176 1.720  0.1929
Equierror 2.787  0.0500 1.570 0.1737

specify the number of sweeps 7. From Table III, the followings
are noted:

» The equierror competition is usually superior to the
equiprobability with respect to the approximation error
Nf.

o The resulting approximation errors for the equierror are
close to the smallest values given in Table II. Such values
can be obtained by a wide range of the coefficient a.

Fig. 6 indicates the following:

» In Fig. 6(a), the regular positioning of the weight vectors
can be observed according to the shape of the data
clusters.

 As in Fig. 6(d), the learning parameter (™) can go up,
however, the trend is to decrease.

» As in Fig. 6(e), the wide dynamic range of A7) s
covered.

Instead of using the dynamic control (20), there is a perfect

autonomous control of A(™)

M(T+1) — u(f) + AM(T)- [#3))

The amount Ap(™) is described by observing the rise and fall
of f™, f=1 () and "=V, The rule is similar to (18)
and (19). The performance is similar to that of case (20). The
computation is more complex, therefore, we omit the details
here.

6) Log-Conscience Mutation of the Weight Vectors: So far,
we have observed that a combination of strategies (dynamic
initial split, log-equierror competition and dynamic control of
A) was the best way to guide the learning process to an almost
optimal result. In this section, we consider a method of guiding
the performance to a near-optimal solution in a discontinuous
way. The method is log-conscience mutation. We choose
the case of log-equierror for the following explanation: That
is, {rm}%;& is selected. In the case of other conscience
mechanisms, 1, is replaced by p,, or up,.

Log-Conscience Mutation for Equierror:

Step 1)

Let {r, }M -5 be sorted. That is, r; < 7; for ¢ < j, as well
a8 79 = Tmin and Tar—1 = Tmax-

Step 2)

Compute

M-1 r
zsz{<log:"_L)/<Zlog E )} (22)
min s Tmin

Note that M) 2, = M. The real number set {zm }m—o
is rounded to a set of integers {s,,}2_;. Fractions are
rounded to one or zero according to their magnitudes so that
E%;(} Sm = M is maintained.
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Fig. 6. Resulting weight vector sets by log-equierror with a dynamically controlled A. (a) Result on data set A. (b) Result on data set B. (c) Specified
adjustment of . (d) Trend of e. (¢) Dynamic control of A obtained. (f) Convergence of the performance N 7. (g) Effective constraint g.
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TABLE 1V
EFFECT OF A LOG-CONSCIENCE MUTATION AFTER DYNAMIC SPLIT
Set A Set B
Strategy 3 Nf 7 X N7 P
Log-equipr mutation 0.000005 2.764 0.2736 | 0.00005 1.539 0.3269
Log-equierror mutation 0.01 2.774  0.0400 | 0.009 1539  0.0952
Log-equipr/error mutation | 0.09 2.778 0.3512 | 0.008 1.544 0.5974

1) log-equipr mutation with A = 0.000005 is a result of intensive search (see Fig. 7).

Step 3)
There are three cases

Sm > 2 wy, is copied (s, — 1) times onto
other w,, ’s for which s,, =0,
Sm =1 no operation on w,, , (23)
Sm =0 wy, is changed to one
of other w,, ’s for which s,, > 2.
The log-conscience mutation of (23) maintains

271\:{:_01 Sm = M. In the weight copy of Step 3), some
small noise may be added as was seen in the dynamic split.

~ For the cases of equiprobability and joint equiprobabil-
ity/error, the logarithmic quantity log(rm/Tmin) i replaced
by 1og(Pm /Pmin) and 10g(tm /Umin). respectively.

It is important to point out that the above mutation strat-
egy is based on the log-consciences (13), (15), and (16),
respectively. The log-conscience terms result from the orig-
inal harmonic competition of the cost (10). Thus, the log-
conscience always exists in each competition. The mutation
is interpreted as occasional strong applications of the log-
conscience. In [22], a similar mechanism to our log-conscience
mutation is used. Their method, however, is simply based on
rb . The exponent b < 1 is an experimentally determined ad
hoc number. Thus, there is no theoretical foundation for the
method of equierror learning. Besides, there is no competition-
bias at all. Taking these into account, their case corresponds
to A = 0 and 7%, (b < 1), for the approximation of
our 10g(Tym /Tmia). Since A = 0 and the mutation should
be ceased before convergence, their method stays within the
bounds of the selection of better initial weight vectors.

Fig. 7(a) and (b) shows the results of log-equiprobability
mutation with dynamic split. Fig. 8(a) and (b) shows the
results of log-equierror mutation with dynamic split. Table IV
compares the minimum values of the approximation errors
N f for the three strategies; log-equiprobability, log-equierror,
and joint log-equiprobability/error with mutations. From these
figures and table, one finds the following:

» Fig. 7(a) and (b) indicate that log-equiprobability muta-
tion is again incompatible with the approximation perfor-
mance. '

+ From Fig. 8(a) and (b), one observes that the approxima-
tion error N f is flat over a wide rage of the combination
parameter A. Its level is good enough (compare with
Fig. 4). This is quite a desirable property.

o From Table IV together with Fig. 7(a) and (b), and
Fig. 8(a) and (b), the log-equierror mutation after
dynamic split is found to be the best. Comparing the
approximation errors of Table IV with those of Tables 11

constant A

(@)

constant A

()

Fig. 7. Performance of log-equiprobability competition with dynamic split,
constant A and mutation. (a) Result on data set A. (b) Result on data set B.

and III, one finds most of the minimum values here.
Equalization of the error by logarithmic order was proved
to be effective.

Next, we measure basic ability of the log-equierror mutation
without the dynamic split of initial weights. Table V is the
resulting performance starting with the same random initial
weight set used in the case of Fig. 2. The performance of
the log-equierror is again around the minimum obtained. It
is slightly inferior to the values given in Table IV, however,
where the initial dynamic split exists. Fig. 9 (a) and (b) are
the resulting positions of the weight vectors for log-equierror
started with the random set. Comparing Fig. 9 with Fig. 2,
we can easily observe quite an improvement. Null neurons
never appear. The similarity of Fig. 6 and Fig. 9 can also be
observed. _ -

In the last experiment, we measure the case of the full strat-
egy: dynamic split, dynamic control of A and log-equierror mu-
tation. Table VI shows the performance. Comparing Table VI
with Tables II-V, we can judge that the full strategy (dynamic
split, dynamic control of A, and log-equierror mutation) is not

- necessary. Thus, too strict an equierror property is harmful.

7) Recommended Strategies: We have presented the fol-

lowing five strategies: ‘
a) Dynamic control of the learning parameter &™),
b) Dynamic split of the initial weight vectors.
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Fig. 8. Performance of log-equierror competition with dynamic split, con-

stant A and mutation. (a) Result on data set A. (b) Result on data set
B.

(a) ®

Fig. 9. Resulting weight vector set by log-equietror mutation started with the
random set (A = 0.001). (a) Result on data set A. (b) Result on data set B.

c) Static existence of log-conscience with a fixed com-
bination parameter )\ (equiprobability, equierror, joint
equiprobability/error).

d) Dynamic control of the combination parameter A
(equiprobability, equierror, joint equiprobability/error).

€) Weight vector mutation (equiprobability, equierror, joint
equiprobability/error).

The dynamic control of (™), ie., strategy a) mainly im-
proves the convergence speed. It may be replaced by a
monotone decreasing function. Strategy b), the dynamic split,
is always recommended. The static A of c) is easy to apply;
however, it requires a priori knowledge of the number. If this
value is not possible to know in advance, repeated experiments
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TABLE V
EFFECT OF A L0OG-CONSCIENCE MUTATION STARTING. WITH RANDOM WEIGHTS
Strategy Set_ A Set_ B
Nf 3 Nf 3§
Log-equipr mutation (A =0.000) | 2.848 0.2479 | 1.595  0.3388
Log-equipr mutation (A =0.001) | 2.915 0.1403 | 1.883 0.1221
Log-equierror mutation (A = 0.000). | 2.815  0.0598 | 1.584 0.0344
Log-equierror mutation (A =0.001) | 2.773 0.0425 | 1.561  0.1321
Log-equierror mutation (A =0.010) | 2.805 - 0.0433 | 1.598 0.0790
Log-equierr/pr mutation (A = 0.001) { 2.861 0.6234 | 1.559 ~ 0.5484
TABLE VI
EFFECT OF THE FULL STRATEGY
Set A Set B
Strategy NT 7 NT 7
Log-equipr bias and mutation | 2.889 0.2529 | 2.144  0.1094
Log-equierror bias and mutation | 2.819  0.0505 1.609 0.0862

like Fig. 3-5 are required. Such computationally demanding
occasions are rather usual. The dynamic control of d) or
the weight vector mutation of e) is preferable. In that case,
log-conscience should be used for the equierror. Thus, our
recommendation based upon the approximation performances
is listed as follows: )

1) |b)+x (log—equierror){c) + e) with a fixed small)\}].

2) |b)+ (log-equierror)d)}.

3) |(log-equierror){c) + €) with a fixed small)\}]. ‘

4) |b) alone] .

Note that the strategy “b) alone” is recommended only if
running the risk of local optima is allowed.

E. a-divergence and log-AEP

Divergence has a more general form [2], [10]. It is called
o-divergence (see the equation shown at the bottom of the
next page.) We used the case of @ = —1 on the normalized
measures P and © (Kullback—Leibler number). The choice
of a affects the degree of the log-conscience and mutation.
That is, this number can change the trend of the logarithmic
asymptotic equipartition property (AEP) in the sense of the
quantization for source coding. The case of &« = —1 gave
our log-AEP in probability, error, and joint probability/error‘
There exists a general trend that the effect becomes weaker as
« increases [18]. The optimal value of o, however, depends on
both the nature of the source data and the number of neurons.
Thus, the optimal choices for the data set A and B are different.
Such a fine tuning is not required so far.

IV. REGULARIZATION WITH CONSTRAINTS

Here, we discuss a class of problems with the number,
M, of neurons which is larger than that of the data, N.
Since the set of data is fed into a larger population of
neurons, additional constraints are necessary. This is called
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regularization which prevents ill-conditioning. Among such
types, Euclidian traveling salesperson problems (Euclidian
TSP) and extended vehicle routing problems (extended VRP)
‘are addressed here. The traveling salesperson problem via
harmonic competition is a typical case of M > N. The
extended vehicle routing problems are much more complicated
than TSP. They are good examples of the multiple criteria case.

A. Euclidian Traveling Salesperson Problem

1) Formulation and Algorithm: The traveling salesperson
problem is a well-known NP-complete problem [7]. If the set
of cities visited by a salesperson is located in a Euclidian
space, the problem is described as follows.

Euclidian TSP: Given a positive number, T, and a set
of cities, X = {zo,---,Zm—1} specified by position vec-
tors, T, € RL(Ym), determine if there exists an ordering
(®r(0)," " » Tx(pr—1)) Which satisfies

M-1

>

m=0 modM

d(zﬂ'(m): ww(m-{—l)) <T. (24)

Here, d is the Euclidian metric and 7 is a permutation.

This problem is equivalent to finding the minimum value
of the total tour length with respect to the permutation w. We
are interested in finding good approximations to the minimal
length tour using competitive learning. Two-dimensional cases
(L = 2) are of special interest.

Let
1 N-1
rF__ 2
f= N Z_;) l|£n — wml|
and
m—1
i= Y llwn—wnnl®
m=0 (modM)
m(n)+M-—1

l|w; — wj+1||2 = [g]m(n)'

P>

j=m(n) (modM)

The use of the square norm is for simplicity of the learning
equations. The difference from the case of the Euclidian metric
is absorbed by the change in learning parameters. The total
cost is '

oo Nl _
d=NZDn=f+/\g

n=0
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with

M-1
Dn=3, {uzn ~ w2
m=0
M-1

>

j=0(modM)

+A l|lw; — ‘wj+1||2}Q(1'n,wm).

Therefore, the harmonic competition is

(t)
w0

ny = argmin Dy, = arg min lzn — w2
. 0<m<M

0<m<M

The update term is obtained from (7) as follows:
= E(t) {.’Dn _— 'lll(t) }

A'w(t)

m(n)

+ ’”Er?(n)ﬂ} (25)
where o % () \®_ An important point of this problem is
how to adjust the parameters ¢ and A®, or equivalently, ¢®
and o(®). In the previous study [17], the temporal change in
these numbers was predefined. In this paper, dynamic control
of these parameters is attempted.

The rule of control of the learning parameter is as follows:
The update is computed at every sweep (/V data supplies). The
superscript 7 is used instead of ¢. That is, 7 = |t/N|. The
learning parameter ¢(7) is adjusted by the following:

e = max{e™ + A&l gm>*}

+ a® {wg)(n)_l - 2w(t)

m(n)

(26)
with

Ael™ =

{ f( ) f(‘rg)’ if f(f) > f(T—l) and g(f) < g(T—l) ,
1) _
Ye 71y

FeD otherwise.
@7
The increment v, is
05, ifelm™tD <
Ve = {0.25, if e+ > (M) (28)

Comparing the (26)—(28) with (17)—(19), one finds a duality.
Equations (26)—(28) ensure the increasing trend of the learn-
ing parameter (™). On the other hand, (17)~(19) show the
decreasing trend of g™,

The first adjustment rule for A is based upon the follow-
ing subcost ratio:

p(™ = XD g o) (29)

M-—1 s
> (qm—permeOg‘—m (a=-1)
= Gm
D(P||Q) = 4 Efl-a 1+a
_ _ ,1=a)/2 (1+a)/2 -1 1
1‘0‘27,12::0{ 5 Pm Gm — P U }, (-l<a<l)
DED(Q|IP), (a=1)



664

with
w7 = ar.

(30)

This is again a dual case of (20). The second adjustment rule
is a weaker version on the rate of the growth

p() = aT/s(T). (€2))

The third rule for adjusting A\(") is the following:
N(T+1) - M(T> + AM(T) (32)

with (33) shown at the bottom of the page. Here
7=g"/Fo. (34)

This is an autonomous control rule. In later experiments, the
above three adjustment rules on A{™) will be examined.
The harmonic competition for TSP is summarized as fol-
lows.
Harmonic Competition for TSP with Dynamic Adjustment:
Step.1) (initialization; ¢t = 0, 7 = [¢/N] = 0)
The following data set and initial values are- given:
* Set of cities X = {zn}fz_ol.
* Set of neural weight vectors W = {w,, }%[:_01. Here, each
vector wy, 'is placed on a closed curve.
+ A dynamic rule for (™ of (26).
+ A dynamic rule for o™ = &MA") by one of the
(30)-(32).
* Neighborhood weight f(m,7)I(Jm| < h("). Here, I(B)
is an {0, 1}-indicator function for the event B; h(™) is a
decreasing function of sweep 7. Note that f(0,7) =1 is
the maximum.
¢ Catch rate vigilance 7¢.
Step 2) (feed city and increment time t)
A city # is selected at random from X. Find a winner wgﬁ)
satisfying
min |l — w2
0<m<M
Step 3) (weight update and self-organization)
For w}) with |m — £] < h{7), compute the following:

wtD = w® 1 O fm — 4,7 (jm — 6] < B (z — wd)
+ oM@, — 20® +w® ). (35)

Here, m = £ is the case of the winner update. The rest of the
cases m # £ are for the self-organization.

Step 4) (test and termination) i

The following test and update are executed at every sweep.
If each city has a distinct winner, then the learning is com-
pleted. Otherwise, if the catch percentage is greater than rg and
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not increasing, there is a'winner for multiple cities. This weight
is copied. Then, (), a(™, f (m,T) are updated according to
(26) and one of (30)—(32). Then, go to Step 2).

2) Experiments: The USA 532 set [20] is used for testing
the ability of the harmonic competition with dynamic control
of the parameters. This data set contains N = 532 cities in the
USA which are located quite nonuniformly. The initial neural
weights are placed on an ellipse of the USA territory. The
total number of neurons is M = 2500. Common specifications
throughout the experiments are: ¢(® = 025; f(k,7) =
exp(—k?/20%(7)); o(r) = o(0)(1 — s)7; and A7) = 20(7).
Fig. 10(a), (b), and (c) show the process of learning and the
resulting tour. The adjustment rule for A\(") uses (31) with
a =2N?x 107", Fig. 10(a) shows the initial configuration of
neurons (1 = 0). Fig. 10(b) illustrates the intermediate state
of learning (7 = 85). Fig. 10(c) is the resulting tour with a-
length of 8.9731 at T = 130. Fig. 10(d) illustrates the progress
of learning by showing the parameter (7). One observes from
this figure that the learning parameter ¢(™) has an increasing
trend. This is the dual case of Chapter IIl where (™) had a
decreasing trend [Fig. 6(d)].

Table VII compares the performances of the previously
obtained results of the static control [17] and the newly
obtained ones by dynamic control. Note that there are three
dynamic rules on the adjustment of A(); (30)—(32). Comparing
the performance and the required computation, the dynamic
rule of (31) is recommended. We note here that the method of
Angéniol et al. [1] is omitted. This is because that method
corresponds to the case of A(”) = 0 which gives inferior
results. :

B. Extended Vehicle Routing Problems

The vehicle routing problem [4] arose from the multiple
person TSP. In the vehicle routing problem, however, drivers
visit cities and collect or deliver their items (demands). There
is a maximum load for the acceptable amount for each vehicle.
Thus, the target of optimization is both the route length and
vehicle load.

The extended vehicle routing problems (EVRP’s) tried here
have more constraints to be satisfied: Each city has its own
preference for specific vehicles. Rejected vehicles cannot visit
the cities which refuse them. This property, together with the
optimization of the tour and demands, is a good example
showing multiplicative constraints.

1) Formulation and Algorithm: There are K vehicles
which start from, and come back to, the same depot. The
kth vehicle’s subtour length is

Nj—1

>

1, =0 mod Ny

Dk - d(mvr(ik)azﬂ'(ik+l))7 (k = Oa t ‘aK - 1)

0,

,yﬁown(ﬁ('r) _ ,,7(7——1))/,,7(7‘—1)’
YRR (™) — =D (=D,
VPl — D=,

Ap( =

if f(7) < f~1 and (") < =1 |
if (7 < f7=1 and g™ > gru
if (7 > f0=1 and g < g-D
if ) > fr=1 and §(7) > glr=1)

(33)
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TABLE VII

Tour LENGTHS OBTAINED FOR THE USA-532 SET
Method Tour length Computation
A dynamically controlled
by 4 =arfe (31) 8.9731 (2.49% longer) 4.1 h (SS1)
A dynamically controlled | o o0 o 65% longer) | 4.2 h (S51)
by autonomous rule of (32)
A dynamically contralled 9.0628 (3.52% longer) | 4.1h
by p=ar {30)
Static control of A 9.0357 (3.21% longer) 2.8h (SS1)
Simulated annealing 9.1728 (4.44% longer) | 0.33 k (SS1)
Blastic net 11.7521 (34.23% longer) | 170 h
Branch and cut 8.7550 (0.00% longer) | 6.0 h (Cyber 205)

1) Tour lengths of static control on ), simulated annealing
[21], and elastic net [6] were obtained from the study
[17].

2) The tour length of “branch and cut” was given in [20].
This solution required the linear programming package
XMP on a Cyber 205 supercomputer.

3) SS1 is a conventional workstation with a speed of 12.5
MIPS and 1.4 MFLOPS.

4) Simulated annealing [21] required many repeated trials
to find the best cooling schedule.

Note that p is the depot. Every city is visited by a single

vehicle. The total number of cities is 35— Ny = N. The
total demand of the kth vehicle is
Np—1
Bi= Y b(@a), (k=0,---,K-1).
i)c=0

The grand total demand is B = f;ol By. Thus, the
basic vehicle routing problem is an optimization of
(Do, «++,Dg_1; By, -+, Bk_1) given a set of city positions
and demands, (z,,b(z,)),(n = 0,---,N — 1). In the
extended vehicle routing problems, each city has a type for
specifying acceptable vehicles, {g¢y, Q':_Ol. Here, ¢, is an
element of the power set of K vehicles excluding the null
set. For instance, the city z2 accepts only even-numbered
vehicles (k¢ = 0,2,---, | K/2]). Thus, the extended vehicle
routing problem is a multiple criteria optimization problem
of (Zn,b(%s),qn),(n = 0,---, N — 1). We will discuss the
following four types of ?(roblems

[EVRP1] Minimize Y, _, Dy as long as the city preference
and the upper bound By < By is met.

[EVRP2] Try EVRP1 with the further restriction that the
maxy Dy is kept small.
- [EVRP3] Try EVRP1 with the further restriction that the
maxg By is kept small.

[EVRP4] Try EVRP1 with the further restriction that the

maxz Dy and maxy By, are jointly kept small.
The constraints imposed on the EVRP’s are realized by the
following multiplicative handicaps for harmonic competition

1, if the city = accepts the vehicle & ,

h(@ns Wi, n) = {oo otherwise
, .

The infinite penalty is equivalent to “using other vehicles

only.” To suppress the maximum of the subtour lengths

Dy, Dy,

D XD-py K=0K

-1)
(36)

is further multiplied for competition cost. Here, D =

E P 01 Dy,. To enhance this penalty, the maximum of the sub-

tour lengths Dy, say Dpax, is replaced by Dmax (K Dmax/D).

h2(Ina W, qn) =

This is valid for 2D, < D. In all of the experiments, -

this enhancement was used. For the minimization of the
maximum of subtotal demands, the above handicap (36) with
the substitutions of Dy, by By and D by B are used. This
handicap is denoted by hjz. Thus, for EVRP1 to EVRP4,
the multiplicative handicaps h1, hihs, h1hs, and hihohg are
used, respectively.

The dynamic control is the same as (31). The algorithm is
as follows:

Algorithm for EVRP’s:

Step 1) (initialization; ¢t = 0, 7 = [t/N| = 0)

The following data set and initial values are given:

o Set of cities {zo, -+, Ty_1}, T, € R2.

e City z is the depot. ’

e K vehicles with specified capacities.

o Each city has a fixed amount of demand {bg,---,by—-1}.

e Each city specifies acceptable vehicles by {go, -, gn—_1}-

e Neural weight vectors are located on K closed curves. K
overlapping circles are allowed if tie-breakers of competition
are incorporated. The K neural rings are as follows:

W = il
(k=0,---,K —1).

,'ka Libs w) € R?,

¢ Dynamic control rule of &(™ and A(™.

e Neuron’s cooperation weight f(m,7)I(|m| < h().

o Initial handicap of each neuron is unity.

e Catch rate vigilance 7.

Step 2) (feed city)

A city « is selected at random from the city set. If z is a
regular city, go to Step 3). If it is the depot, go to Step 4).

Step 3) (update weights for a regular city).

Find a winner wgk such that

(0

Wy}, = min [handicap] lz — w(t)NH2 '

min
0<k<K~1 0<m<M,.—

For w() itself and w( ) ) With [m — £ < h(7), the weight
vectors are updated as follows
(H—l) (t)

m,k

mlc
+e® fm — £,7)I(Jm — £ < BO)(z —w?))

+ a(T)(‘"’Sr?,kH (t)k +"”Sz)k—1 . G7
Here, o) = e(M)(r). Then, go to Step 5).
Step 4)

For the depot £ = xq, find k¥ winners w @®

.k Satisfying

i — w2 —0.... K —
somin o= wlE (=0, K 1),

The update of the weights are the same as in (37). Then, go
to Step 5).
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Fig. 10. = Obtained tour and the progress of learning by the dynamic control of A (length=8.9731; 2.49% longer than the true optimal). (a) Initial configuration
of neurons (7 = 0). (b) Progress of sclf-organization (r = 85). (c) Resulting tour (r = 130). (d) Dynamic control of € obtained.

Step 5) (halt iteration and parameter update)

If there is a distinct winner for each city, the learning
is completed. Else if the catch percentage is greater than
ro and not increasing with the iterations, then there is a
multiple winning neuron. The weight of such a neuron is
copied. Parameters and functions such as (™) and o(") are
then updated. .

2) Experiments: In the following experiments, problems
with four vehicles, K = 4, are selected. The data set is
the USA-532 set. The depot x, is (0.6745,0.6781). Each
city’s demand and city type are generated by the following
method: If each city position is (0.z122%3%74,0.91Y2Y3¥4)
in decimal floating point numbers, the demand is set to be
x3 + y3(mod 10) and the type number is z4 + ya(mod 4).
Type O cities (marked by “(0” in the illustrations) accept
only vehicle k = 0. Type 1 cities (matked by “A” in the
illustrations) accept vehicles £ = 0 and 1. Types 2 and 3
cities (marked by “[1” in the illustrations) are treated as the
same class: They accept any type of vehicles (k = 0,1, 2, 3).
Fig. 11(a) shows the initial state of neural weight vectors
on four overlapping circles. Each circle contains N = 532
neurons. Thus, the total number of neurons is M = 4N =
2128 at the start. The city described by a filled square is
the depot. Fig. 11(b) is the progress of the self-organization
(r = [t/N] = 1). Fig. 11(c)«(f) are the results of EVRP1
to EVRP4. In these experiments, a = N? x 10~7. Other
parameters are the same as those specified in Section IV.

Table VIII compares the results of the presented dynamic
method and the previous static case [17]. Underlined are
numbers to be compared. For the EVRP1, only the total length
is tested. In the case of the EVRP2, the total length and the

* maximum subtour length are evaluated. For the EVRP3, the

total length and the maximum demand are checked. In the
EVRP4, the total length and both maxima of the subtour length
and the demand are compared. By this Table VIII, one finds
that the results of the EVRP1, EVRP3 and EVRP4 are superior
to.those of the static method. Especially, in the EVRP4 which
is the most difficult problem with optimization conflicts, the
obtained answer is more desirable by far: It has a much shorter
total length. The maximum subtour length is also shorter. The
maximum demand is smaller too. Thus, we can conclude that
the dynamic control presented in this paper is very effective.

V. CONCLUDING REMARKS

General competitive learning was discussed. The cost to be
minimized included the main cost for data approximation and
the subcosts for constraints reflecting the problem to be solved.
The harmonic competition is a learning strategy to minimize
such composite costs for multiple criteria optimization.

In this paper, we presented two classes of problems: multiple
criteria vector quantization and traveling salesperson problems
with their sophisticated versions. All of these are based on
competitive learning with subcosts. Such a subcost approach
can also be effective in problem solving with other learning
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Fig. 11. Extended vehicle routing problems. (2) Initial configuration of neurons (four overlapping circles). (b) Progress of self-organization (7 = 1).
(c) Resulting tours of vehicles for EVRPL. (d) Resulting tours of vehicles for EVRP2. (e) Resulting tours of vehicles for EVRP3. (f) Resulting tours

of vehicles for EVRP4.

paradigms. Such an extended study including the supervised interpreted as minimal learning. This concept is not because
learning is given in [18]. of the minimization (5). Rather, such a notion came from

All algorithms are expected to minimize the total cost (4) the interpretation that the learning should be performed by
every time a data z,, is fed. Finding a winner to learn was * the most appropriate neuron so that the system modification
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TABLE VII
COMPARISON OF THE DYNAMIC AND STATIC CONTROLS
OF A FOR THE EXTENDED VEHICLE ROUTING PROBLEMS

Dynamic control Static control
Strategy Total length  Sublength Subdemand | Total length Sublength Subdemand
0.5784 - 108 0.8385 118
EVRP1 | 10.0105 17810 s 10.2421 20294 2
- 41710 768 | T 4.4200 816
3.5302 1188 2.9542 1001
1.9980 281 2.2389 304
2.9379 37 2.8597 612
EVRP? | L5512 2.9741 5o | 114967 3.3520 863
6412 908 3.0481 598
3.8359 485 3.6453 465
3.2863 . 574 3.1572 : 595
EVRPS | 13.5380 3.4034 654 130006 3.4288 649
3.0124 664 3.4753 668
3.4628 410 3.5326 415
3.1641 628 3.1099 629
EVRP4 | 13.045 3.3543 662 13.35¢ 3.1970 630
3.0639 677 35103 653

1) “Static control” were the results obtained in [17).

is kept minimal. Even if the problem is described as a
maximization, the neuron of “arg max” instead of “arg min”
is the minimal learning element. Suppose that nonminimal
learning neurons were selected to learn. Such a learning
strategy will not properly converge. Thus, the minimal learn-
ing is stable and effective by finding the most appropriate
element to be modified. This interpretation remains valid for
most of supervised learning: Only the minimum necessary
modifications are applied to achieve the learning.

All of the aforementioned learning strategies were described
based upon the Euclidian metric. The presented methods,
however, remain valid for a class of non-Euclidian distortion
measures [14]. Especially, the log-AEP can be derived for
various distortion measures.
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