ARTIFICIAL
INTELLIGENCE

ENGINEERING

ELSEVIE Artificial Intelligence in Engineering 15 (2001) 309-317

www.elsevier.com/locate/aieng

An ant colony optimization approach to addressing a JIT sequencing
problem with multiple objectives

Patrick R. McMullen™

Department of Management, Auburn University, College of Business, Auburn, AL, USA
Received 30 November 2000; revised 25 January 2001; accepted 28 March 2001

Abstract

This research presents an application of the relatively new approach of ant colony optimization (ACO) to address a production-sequencing
problem when two objectives are present — simulating the artificial intelligence agents of virtual ants to obtain desirable solutions to a
manufacturing logistics problem. The two objectives are minimization of setups and optimization of stability of material usage rates.
This type of problem is NP-hard, and therefore, attainment of IP/LP solutions, or solutions via complete enumeration is not a practical
option. Because of such challenges, an approach is used here to obtain desirable solutions to this problem with a minimal
computational effort. The solutions obtained via the ACO approach are compared against solutions obtained via other search heuristics,
such as simulated annealing, tabu search, genetic algorithms and neural network approaches. Experimental results show that the ACO
approach is competitive with these other approaches in terms of performance and CPU requirements. © 2001 Elsevier Science Ltd. All rights

reserved.

Keywords: Ant colony optimization; Simulated annealing; Tabu search; Genetic algorithms; Artificial neural networks; Heuristics; Optimization

1. Introduction

Successful implementation of just-in-time (JIT) produc-
tion systems is very important to modern manufacturing
firms. If firms can consistently maintain minimal inven-
tories, they can maximize their flexibility and better
manage product quality, and subsequently, enhance their
competitive positions. Successful JIT implementation,
however, requires discipline on the part of management,
and prerequisites for this JIT success have been well
documented — demand management and scheduling are
two of the more common prerequisites. This research is
concerned with the scheduling of JIT production. Of
specific interest here is the sequencing of items to be
made when there are two scheduling objectives of interest:
minimization of setups between differing products and
optimization of the usage rates of raw materials. It is
also noted here that these objectives of finding minimal
setups and optimal levels of usage rates are inversely
related to each other. As a result, finding sequences having
desirable levels of both objectives is difficult. This fact is
demonstrated later.

* Tel.: +1-334-844-6511; fax: +1-334-844-6511.
E-mail address: pmcmullen @business.auburn.edu (P.R. McMullen).

Finding production sequences with desirable levels of
both number of setups and material usage rates forces one
to address the combinatorial aspects of the problem — these
problems are NP-hard. As the size of the problem increases,
the number of feasible solutions increase in an exponential
fashion, making attainment of optimal solutions impractical.

There are then, two complicating features to the problem
on hand: two objectives which are inversely related to each
other and the problem is NP-hard. As a result, effort is
required to find solutions are found providing desirable
combinations of both required setups and usage rates in a
reasonable amount of CPU time. Search heuristics can be
exploited to address such a problem. Ant colony optimiza-
tion (ACO) is used here to address this problem. ACO is an
artificial intelligence procedure that simulates the behavior
of social insects in an attempt to perform some complicated
task — this issue is discussed in detail.

This paper presents an ACO approach to address the
multiple-objective JIT sequencing problem as described
above. The relevance and general contribution of this effort
is that the artificial intelligence agents of virtual ants are
used to address an important issue in manufacturing. The
experimental results presented in a later section also suggest
that the performance of the methodology is, in general,
desirable.

0954-1810/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0954-1810(01)00004-8

310 P.R. McMullen / Artificial Intelligence in Engineering 15 (2001) 309-317

2. The mixed-model sequencing problem and its attributes
2.1. Objective functions

Prior to discussion of the models associated with this
multiple objective problem, the following variables are
defined: S is the number of setups required for sequence,
U the usage rate associated with sequence, x;; the number of
item of type i through position k in sequence, s; the setup
indicator — if item in position k # item in position k — 1,
s = 1; otherwise s; = 0, d; the demand for item of type i, n
the number of types of items in sequence and Dr is the total
demand for all items

The total demand for all items in a sequence is as follows:

Dy =Y d, (1
i=1

Determination of the number of setups in a sequence is as
follows:

Dy
S=1+> 5)
k=1

Of course, lower values of S are desired. The usage rate, a
metric measuring the stability of the parts usage as
presented by Miltenburg [1], is as follows:

>3 (ki)
U= (xik - —1) 3)
k=1 i=1 Dr

The usage rate of Miltenburg in Eq. (3) is a formalized
metric embellishing the earlier argument made by Monden
[2] regarding the stability of material usage rates. Lower
usage rates are desired — they are indicative of more
stability in material usage (or production ‘smoothing’).

2.2. Efficient frontier

As there are two objectives of interest here (setups and
usage rates), which happen to be measured using differing
metrics, a single, ubiquitous measure of overall performance is
not available. One possible remedy for this would be to use
weights for each of the two factors and obtain a composite
measure, but this approach is not taken due to the associated
difficulties with weighting and scaling issues. Instead, an
efficient frontier approach [3] is used to find sequences with
desirable levels of both required setups and usage rates. In the
present context, the efficient frontier here is similar to the one
used in basic economic principles — a collection of points that
collectively dominate others. Here these ‘points’ are combina-
tions of required setups for sequences and their associated
usage rates. A point (or sequence) is classified as efficient if
its usage rate is minimal for the associated required number of
setups. Otherwise, the point (or sequence) is classified as
inefficient, or dominated by the efficient sequence for that
particular required number of setups.

As a simple example of how this efficient frontier works,
consider the example where three unique items need to be
made (n = 3), where demand for the items is as follows:
dy=6,d,=4andd; =3. One possible sequence is:
BBBBAAAAAACCC (where ‘A’ represents item 1, ‘B’
represents item 2 and ‘C’ represents item ‘C’). From Eq.
(2), the number of required setups for this sequence would
be 3 (S = 3). From Eq. (3) the usage rate associated with
this sequence is 69.7 (U = 69.7). Another possible sequence
would be: ABCABACABACBA. This sequence [4]
requires 13 setups (S = 13), and has an associated usage
rate of 3.4 (U = 3.4).

From inspection of this example, it is obvious that there is
an apparent trade-off between usage rate and required setups
[5]. The first sequence results in fewer setups with a higher
usage rate, while the second provides a lower usage rate
with the associate expense of more setups. This trade-off
is typical of problems having these two objective functions.
As a result of this trade-off, the efficient frontier approach
provides the decision-maker an opportunity to find the
sequences having minimal values of the usage rate for
each associated required number of setups.

The efficient frontier for the example problem above is
constructed by enumerating all possible sequences and find-
ing the minimum usage rate associated with each required
number of setups. A plot of the efficient frontier for the
example problem is as follows.

From inspection of Fig. 1, it is appropriate to note that it is
not possible for sequences to exist ‘southwest’ of the
efficient frontier — this is a collection of sequences that
can only be equal in terms of usage rate at the associated
number of required setups, never surpassed. Sequences to
the ‘northeast’ of the frontier are inefficient, or dominated
by the ones existing on the frontier.

It is also noted that the example problem above is a very
simple one, and is intended to serve as an illustration for a
real-world, industrial-scale problem (an industrial-scale
problem would likely have more than 13 members requiring
sequencing). While the industrial-scale problem is much
larger than this simple example problem, the example

Inefficient Sequences

Efficient Frontier

Usage Rate

Setups

Fig. 1. Efficient frontier for example problem — numbers are usage rates
for each associated number of setups.

P.R. McMullen / Artificial Intelligence in Engineering 15 (2001) 309-317 311

problem does illustrate the trade-off between the number of
setups and usage rate, which is also present in the larger,
industrial-scale problems.

2.3. Combinatorial complexity

Capturing the efficient frontier above is not a trivial
matter. The number of possible sequences for this type of

pr()blem 1S as fOllO WS:
(1—1 dl) .
.7

0 “)

[@)

i=1

Possible sequences =

For the example above, there are 60,060 possible
sequences:

6+ 4+ 3)!
6H4HAan

If the demand for each of the five unique items were to be
increased by one item each (d, =7, d, =5, d3 = 4), the
total number of possible sequences would be 1,441,440 — a
demonstration of a combinatorial explosion. It is therefore
difficult to obtain optimal efficient frontiers to problems of
real-world dimensions. As a result, decision-makers must
strive to find desirable or near-optimal solutions to this
type of problem while simultaneously keeping the required
CPU resources to a reasonable amount. Search heuristics
provide such an opportunity. Techniques like simulated
annealing, tabu search, genetic algorithms, and, most
recently, ACO, have been demonstrated to provide near-
optimal solutions to NP-hard problems with a relatively
little computational effort.

= 60,060

3. Ant-colony optimization

ACO is a branch of a larger field referred to as Swarm
Intelligence. Swarm Intelligence is the behavioral simula-
tion of social insects such as bees, ants, wasps and termites.
This behavioral simulation came about for many reasons —
optimization of systems and learning about self-organiza-
tion are two of many reasons why scientists are interested in
simulating these insects [6,7]. More specifically, ACO
simulates the collective foraging habits of ants — ants
venturing out for food, and bringing their discovered food
back to the nest. Ants have poor vision and poor commu-
nication skills, and a single ant faces a poor probability of
longevity. However, a large group, or swarm, of ants can
collectively perform complex tasks with proven effective-
ness, such as gathering food, sorting corpses or performing
division of labor.

The key to such group effectiveness is pheromone — a
chemical substance deposited by ants as they travel.
Pheromone provides ants with the ability to communicate

with each other. Ants essentially move randomly, but when
they encounter a pheromone trail, they decide whether or
not to follow it. If they do so, they deposit their own
pheromone on the trail, which reinforces the path. The prob-
ability that an ant chooses one path over another is governed
by the amount of pheromone on the potential path of
interest. Because of the pheromone, trails that are more
frequently traveled by ants become more attractive alterna-
tive for other ants. Subsequently, less traveled paths become
less likely paths for other ants.

With time, the amount of pheromone on a path
evaporates. Prior to the establishment of the most desirable
pheromone trails, individual ants will use all potential paths
in equal numbers, depositing pheromone as they travel. But
the ants taking the shorter path will return to the nest first
with food. The shorter pathway will have the most phero-
mone because the path has ‘fresh’ pheromone and has not
yet evaporated, and will be more attractive to those ants that
return to the food source. The dynamics of a pheromone trail
is illustrated by Fig. 2, which shows a distribution of ants
over a set of pathways between a nest and a food source over
time. Early on, the ants are equally distributed, but even-
tually they favor the shorter route.

There is, however, always a probability that an ant will
not follow a well-marked pheromone trail. This probability
(although perhaps small) allows for exploration of other
trails, which is beneficial in that it allows for discovery of
shorter or alternate pathways, or new sources of food. Given
that the pheromone trail evaporates over time, the trail will
become less detectable on longer trails, since these trails
take more time to traverse. The longer trails will hence be
less attractive, another benefit to the colony as a whole.

The above description of ants foraging for food has a
strong association with the traveling salesman problem
(TSP) — finding the most efficient route through a network
[8]. This association is exploited to find production
sequences concerned with optimization of the objective

functions described above.
Food Food Food Food

£ 3
* &
T [*
* o % ROk My
E 3
x * *
*
s, Ao aos s
£ 3
* *
’-Nest rNest ’/Nest l—Nest
Initial State Time=1 Time=2 Final State

Fig. 2. Dynamics of pheromone trail — ants converge to the most ‘popular’
trails.

312

Table 1

P.R. McMullen / Artificial Intelligence in Engineering 15 (2001) 309-317

Spatial strategies for sequencing problems (Note: i is an index commencing at 1 and ending at Dr)

Strategy X Coord. Y Coord. Z Coord. Objective
ACO-1 0.5+0.5 cos(360(i/Dr)) 0.5+0.5 sin(360(i/Dr)) N/A Minimal setups
ACO-2 0.5+0.5 cos(360(i/Dr)) 0.5+0.5 sin(360(i/Dr)) Rand() Setups/both
ACO-3 Rand() Rand() N/A ?

ACO-4 0.5+0.5 cos(360(i/Dr)) 0.5+0.5sin(360(i/Dy)) N/A Minimal usage
ACO-5 0.5+0.5 cos(360(i/Dr)) 0.5+0.5 sin(360(i/Dr)) N/A Both

ACO-6 0.5+0.5c0s(360(i/Dr)) 0.5+0.5 sin(360(i/Dr)) Rand() Usage/both

4. ACO heuristic for JIT sequencing with multiple
objectives

4.1. ‘Spatialization’ of problem

The problem data is transformed into spatial data so that a
TSP approach can be used to find production sequences
offering desirable levels of both setups and usage rates.
Each node in space is associated with an item to be placed
in sequence. The route through the spatial system becomes
the production sequence.

Specifically, six different spatial approaches are investi-
gated, each offering a unique strategy in an attempt to find
desirable production sequences. Each spatial strategy is
either two-dimensional or three-dimensional and have
minima at zero and maxima at one. Some of the strategies
attempt to obtain sequences with minimal setup strategies,
while others attempt to obtain sequences with minimal
usage rates, while others attempt to excel at both. Table 1
details each of these strategies.

The ACO-1 strategy attempts to obtain sequences with
few setups. ACO-2 does the same thing, with the addition of
a third, randomly generated component intended to

X

Fig. 3. ACO-1 strategy for example problem.

motivate discovery of sequences also favoring minimal
usage rates. ACO-3 uses two randomly generated compo-
nents explicitly preferring neither setups nor usage, but with
ambitions of finding sequences excelling at both. ACO-4 is
like ACO-1, except here minimal usage rates are explicitly
preferred instead of minimal setups. ACO-5 is a strategy
directed at obtaining desirable levels of both setups and
usage rates. Here, minimal usage rates are preferred for
the first 50% of the sequence, while minimal setups are
preferred for the second 50% of the sequence. ACO-6 is
similar ACO-2, but here, minimal usage rates are preferred
along with the randomly generated third component. While
Table 1 may provide ample information to assist in differ-
entiating the strategies, Figs. 3—8 below are provided to
show spatial details of these six strategies with regard to
the example problem described above — note how the
graph of each strategy reflects its intent.

4.2. ACO heuristic

As stated above, each ‘item’ in the sequence is mapped as
a node in space. From this spatial mapping, a distance
matrix is computed to obtain pairwise distances. The

Fig. 4. ACO-2 strategy for example problem.

P.R. McMullen / Artificial Intelligence in Engineering 15 (2001) 309-317 313

X

Fig. 5. ACO-3 strategy for example problem.

distance between nodes r and u is represented by &(r,u) in
the spatial system is as follows:

8(r,u) = 5)

L 2
> Gri = Vi)
i=1

where y,; and y,; are the coordinates for nodes r and u,
respectively, and where / is the number of dimensions in
the spatial system — £ will be either two or three for this
research.

The following additional variables are also defined: 7(r,u)
is the amount of pheromone between nodes r and u, M, the
set of all nodes assigned to the sequence, B the parameter

X

Fig. 6. ACO-4 strategy for example problem.

1

X

Fig. 7. ACO-5 strategy for example problem.

weighing the relative importance of closeness between
nodes, a the updating parameter, ants the number of ants
employed in the search, and p,(r,s) is the probability that ant
moves from nodes r to s.

Initialization of all parameters occurs. Values of 8, a and
ants are chosen, and pheromone values for all links (7¢(r,u))
are initialized as the reciprocal of the product of the number
of nodes in the system (Dr) and the length of an initial tour
(Ly) as determined by the nearest neighbor heuristic.
Mathematically, this is as follows:

7o(r, u) = (DrLy) ™' (6)

Y o °

Fig. 8. ACO-6 strategy for example problem.

314 P.R. McMullen / Artificial Intelligence in Engineering 15 (2001) 309-317

Usage Rate

Setups

Fig. 9. Efficient frontier obtained via ACO-1 for example problem —
numbers are usage rates for each associated number of setups for sequence
obtained via ACO search.

When each ant commences its (singular) tour, the set of
nodes included in the tour is empty. The probability that the
current ant moves from node r to s is as follows:

7(r, 8)6(r, s)fB
Z 7(r, u)é(r, u)fl3 ’

uEM,

pi(r,s) = if s € My; 0 otherwise

)

Monte-Carlo simulation is used to select the node to visit
next. The selected node then joins the set of visited nodes
(My). Local updating of the pheromone trail is performed to:
(1) prevent various trail links from becoming dominant and
(2) to emulate the evaporation in the pheromone trail. If
node s is selected to follow node r, then local updating
follows this relation:

7(r,s) = (1 — a)7(r,s) + ary(r,s) (8)

Each ant that completes a tour through the system results
in a singular tour, or production sequence. The Euclidean
distance of this sequence is determined (L). If this value of L
is less than the smallest value of L found thus far, then
global updating is performed to all links in this recently
found tour according to the following relation:

7(r,s) = (1 — a)r(r,s) + aL !)

Global updating is done to enhance, or strengthen, the
probability of these ‘shorter’ tours occurring. In short,
local pheromone updating encourages ‘exploration’ of
alternative solutions (in an attempt to find near-optimal
solutions), while global pheromone updating encourages
‘exploitation’ of the most promising solutions.

As stated, each ant that completes its tour through the
system results in a sequence. With each sequence, the
number of required setups (S) and usage rate (U) are
determined from Eqs. (2) and (3), respectively. If the
usage rate for the associated number of setups is less than
the lowest usage rate found thus far for the associated
number of setups, than the newly discovered usage rate
for that number of setups claims its place on the efficient

frontier. Mathematically, this is as follows:
If U(S) < UBest(S), then UBest(S) = U(S) (10)

where U(S) is the usage rate for the current sequence with S
setups, and UBest(S) is the lowest usage rate found thus far
having S setups. After ants number of ants are simulated, the
search process is complete. The efficient frontier is then
reported.

4.3. Example of ACO heuristic on example problem

Fig. 9 shows the efficient frontier obtained when the
ACO-1 strategy is employed for the example problem
detailed earlier. Parameter values used were a = 0.1, B =
2 and ants = 1000.

Close inspection of Fig. 9 shows two frontiers — the
‘lower’ frontier is the same as the one from Fig. 1. The
‘upper’ frontier is the one obtained from the ACO-1
heuristic described above, and its usage values are presented
in the chart. From three setups to seven setups, and for nine
setups, the ACO-1 frontier is identical to the optimal
frontier. For eight setups, and for 10—13 setups, the ACO-
1 frontier is inferior to the optimal frontier obtained via
enumeration. On average, inferiority is 0.741%, which is
obtained via computing the average percentage inferiority
for each position on the frontier. This measure of perfor-
mance is referred to as average inferiority hereafter. Of the
60,060 solutions obtained via enumeration, 37 of them were
superior to the solutions obtained via the ACO-1 approach
at the associated number of setups. This, then, places the
ACO-1 strategy in the 99.9384th percentile as compared to
the optimal frontier. Another way to express this percentile
performance is in the number of inferiors per 1,000,000
solutions (via enumeration), which would be 616.05 for
this example problem. This second measure of percentile
performance is used hereafter because it better emphasizes
differences in percentile performance as compared to the
first measure.

5. Experimentation

To gauge the performance of the presented ACO
methodology, the six strategies are used on some problems
from the literature [9] (where several problem sets were
presented in an earlier attempt to find sequences with mini-
mal usage rates). Additional problem sets used here were
taken from the literature [16] (in an earlier attempt to find
sequences performing competitively with regard to both
minimal setups and usage rates). The performance of
these ACO-based search approaches is compared to results
from other search heuristic techniques.

5.1. Design of experiment

Appendix A details the example problems used for this
analysis. The six ACO strategies are compared to solutions

P.R. McMullen / Artificial Intelligence in Engineering 15 (2001) 309-317 315

Table 2
Performance statistics for problem set 1 — ACO-1 and ACO-2 provide the
most desirable performance of the ACO-based approaches

Table 4
Performance statistics for problem set 3 — the desirability of CPU ratio of
the ACO-based approaches becomes clear

Approach Inferiority rate (Std.) Percentile (Std.) CPU ratio (Std.)

Approach Inferiority rate (Std.) Percentile (Std.) CPU ratio (Std.)

ACO-1 0.68 (0.87) 49.13 (74.32) 1.20 (0.00)
ACO2 0.85(0.99) 42.52 (45.16) 1.20 (0.00)
ACO-3 1.60 (2.32) 137.63 (168.20) 1.20 (0.00)
ACO4 3.15(2.84) 142.04 (124.46) 1.20 (0.00)
ACO-5 210 (1.87) 90.39 (70.86) 1.20 (0.00)
ACO-6 272 (2.02) 111.49 (97.76) 1.20 (0.00)

GA 431 (2.52) 222.03 (164.23) 0.71 (0.00)
SA 0.69 (1.03) 102.04 (113.71) 1.20 (0.00)
ANN 0.73 (1.30) 24.57 (43.49) 0.28 (0.41)
TS 1.15 (1.39) 83.14 (104.35) 1.20 (0.00)

ACO-1 10.63 (8.89)
ACO-2 10.84 (6.12)
ACO-3 14.23 (10.03)
ACO-4 16.36 (11.27)
ACO-5 17.51 (13.96)
ACO-6 18.43 (11.69)

31.68 (40.99)
35.43 (42.63)
15.47 (21.70)
21.61 (28.21)
17.57 (16.37)
25.02 (28.16)

663.60 (959.72)
663.60 (959.72)
663.60 (959.72)
663.60 (959.72)
663.60 (959.72)
663.60 (959.72)

GA 4.10 (4.05) 80.89 (55.29) 302.67 (323.43)
SA 1.23 (1.42) 5.22 (7.05) 509.20 (544.14)
ANN 10.10 (6.54) 12.71 (18.98) 11.94 (17.04)

TS 2.23 (3.09) 13.66 (14.76) 509.20 (544.14)

to the same problems obtained from simulated annealing
(SA [10,11]), tabu search (TS [12,5]), genetic algorithm
(GA [13,14]) and artificial neural network (ANN [15,16])
approaches. To make a fair comparison between the differ-
ent heuristics, the same number of solutions were evaluated
for each during the search process — this encourages a
‘level playing field’. The number of solutions evaluated
for the heuristics are listed in Appendix A. The three perfor-
mance measures of interest here are: the average inferiority,
percentile performance and the ratio of CPU time required
to obtain the optimal, enumerated frontier to the CPU time
required to obtain the efficient frontier based upon the
heuristic search. For average inferiority and percentile
performance (as described in Section 5) low values are
desired, and for the CPU ratio, larger values are desired.

Generation of all efficient frontiers (both heuristic and
enumerated) were done using C/C++ coding on dual
Intel Pentium III 500 MHz processors. In all instances,
efforts were made such that computations were done as
efficiently as possible. For all ACO approaches, the following
parameter values were used: o = 0.1 and 3 = 2, because
previous research and pilot testing have confirmed their
robustness.

5.2. Experimental results and discussion
Tables 2—4 show performances of the search heuristics

Table 3
Performance statistics for problem set 2 — ACO-1 and ACO-2 provide
most desirable inferiority rates of ACO-based approaches

organized by the problem set. Table 5 shows mean per-
formance measures of the search heuristics for all problem
sets. From inspection of these tables, it is immediately
clear that of the ACO heuristics, ACO-1 and ACO-2 out-
perform the others. ACO-3 through ACO-6 provide less
promising results in terms of average inferiority. Because
of this, discussion of ACO-3 through ACO-6 will be made
sparingly.

From inspection of the summary information in Table 5,
it is clear that both the SA and TS approaches perform well
regarding inferiority rate and percentile performance, along
with a desirable showing in terms of CPU needs. The GA
approach offers a desirable performance in terms of
inferiority rate, but shows a less competitive performance
in terms of percentile and CPU performance. The ANN
approach is very strong in percentile performance, reason-
able for inferiority rate, but performs quite poorly in terms
of CPU requirements.

ACO-1 and ACO-2 are clearly outperformed by SA and
TS in terms of inferiority rate and percentile performance.
They are more competitive with the GA and ANN
approaches in terms of these two performance measures.
The vast majority of the ‘inferiority’ associate with ACO-
1 and ACO-2 resides in the ‘high-setup end’ of the efficient
frontier. This claim is supported by the example problem
as well in Fig. 9. Typically, these two strategies closely

Table 5

Performance statistics for all problem sets — performance for ACO-1 and
ACO-2 are evident, as well as the CPU performance for all ACO-based
approaches

Approach Inferiority rate (Std.) Percentile (Std.) CPU ratio (Std.)

Approach Inferiority rate (Std.) Percentile (Std.) CPU ratio (Std.)

ACO-1 6.46 (6.31) 105.40 (73.65) 11.07 (12.69)
ACO-2 6.26 (6.59) 107.46 (101.20) 11.07 (12.69)
ACO-3 7.16 (5.13) 47.50 (36.20) 11.07 (12.69)
ACO-4 12.67 (9.85) 83.42 (51.93) 11.07 (12.69)
ACO-5 7.82 (6.22) 65.79 (39.44) 11.07 (12.69)
ACO-6 7.01 (5.01) 74.41 (42.47) 11.07 (12.69)
GA 1.13 (1.14) 53.98 (58.59) 5.23 (4.44)
SA 0.65 (0.64) 26.99 (28.14) 8.8 (7.46)
ANN 1.80 (1.55) 20.20 (18.59) 0.32 (0.34)
TS 0.79 (0.94) 32.33 (35.86) 8.80 (7.46)

ACO-1 6.34 (7.49) 63.11 (69.62) 243.22 (640.81)
ACO-2 6.39 (6.60) 63.35(7535) 243.22 (640.81)
ACO-3 8.14 (8.39) 61.21 (101.12) 243.22 (640.81)
ACO-4 11.33 (10.31) 77.58 (86.23) 243.22 (640.81)
ACO-5 9.71 (10.94) 5532 (52.89) 243.22 (640.81)
ACO-6 9.92 (10.02) 67.01 (67.18) 24322 (640.81)
GA 3.09 (3.12) 110.72 (118.58) 111.04 (237.48)
SA 0.87 (1.07) 40.17 (71.78) 186.82 (399.52)
ANN 4.49 (5.84) 18.73 (27.06) 4.49 (11.37)

TS 1.41 (2.09) 39.84 (63.63) 186.82 (399.52)

316 P.R. McMullen / Artificial Intelligence in Engineering 15 (2001) 309-317

resemble the optimal frontier of the enumerated solution on
the ‘low-setup end’ of the frontier. This should not be
surprising given the intent of ACO-1 and ACO-2 — they
favor sequences with minimal setups. Unfortunately, the
other strategies that favor objectives or usage rate alone
generally do not perform well — their lack of performance
mainly resides on the ‘low setups end’ of the frontier.
Finding ways to improve inferiority rate and percentile
performance for these ACO approaches does provide an
opportunity for future research.

One of the more competitive features of the ACO
strategies is the CPU performance. Also desirable in this
department are the SA and TS approaches. Other research
efforts have also made this point. From a computational
standpoint, SA and TS approaches typically involve random
selection of solution components, and make swaps. The
ACO approach presented here makes Monte-Carlo based
selections, and performs pheromone updating. These three
techniques are typically computationally efficient, as
reflected here. GA and ANN approaches, however, are not
as computationally efficient, which is also reflected here.
For this type of problem, GA approaches require com-
plicated mappings of solutions, and their subsequent
manipulations via crossover and mutation. ANN approaches
require many iterations, or epochs, so that the required
‘learning’ can occur. This is very computationally
inefficient.

6. Concluding comments

The JIT sequencing problem with non-negligible setup
times has been addressed via a variety of ACO heuristics.
Use of a spatial mapping approach and simulating the
behavior of the food foraging habits of these social insects
have resulted in competitive results for two of the six
presented strategies. These two strategies (ACO-1 and
ACO-2) provide desirable results in terms of average
efficient frontier performance, percentile performance and
CPU requirements. One of the advantages of using this
approach is the CPU efficiency. While simulated annealing
and tabu search approaches provide the most desirable
results in terms of average inferiority and percentile perfor-
mance, the author still considers the results of the ACO-1
and ACO-2 strategies competitive. Furthermore, ACO is
still a new field, and with time its general performance
should improve with new developments in the field.

Some considerations regarding implementation of this
methodology must be made for industrial-scale problems.
Management must realize that they need to have a clear
understanding of the relative importance between setups
and usage rates. Some manufacturing firms may be better
off to minimize setups at the subsequent expense of high
usage rates, while other firms may be better off with the
opposite scenario (minimizing usage rates at the subsequent
expense of more setups). Furthermore, some firms may have

the need to perform reasonably well with regard to both
setups and usage rates. The point is, firms implementing
this methodology must understand which of these opposing
objectives is most important to them.

The use of social insects to assist with combinatorial
optimization problems has tremendous potential. The
methodology presented here could be used for other
scheduling and sequencing problems. There are other poten-
tial applications for this use of social insects: ants and
termites perform division of labor with regularity — this
concept could be used to assist with manufacturing design
problems such as assembly line balancing or assigning tasks
to robots. This idea could be enhanced to assist to designing
layouts for manufacturing firms. This division of labor
concept could also be extended to model a layout problem
on a much smaller physical scale — such as the design of
circuit boards. On a much larger scale, this concept could be
used for physically large-scale applications, such as place-
ment of satellites for cellular communications systems.

Given the relatively efficient CPU needs for these
techniques, and the virtually unlimited opportunities for
application, ACO techniques, and more generally, Swarm
Intelligence should be considered a serious optimization
tool.

Appendix A
Tables A1-A3.

Table Al
Problem Set 1: number of each product type in product mix — total
demand is 10

Problem Item 1 Item?2 Item3 Item4 Item5 Solutions ants

B 6 1 1 1 1 5040 5554
C 5 2 1 1 1 15,120 6269
D 4 2 2 1 1 37,800 6866
E 4 3 1 1 1 25,200 6602
F 3 3 2 1 1 50,400 7054
G 3 2 2 2 1 75,600 7318
H 2 2 2 2 2 113,400 7582
Table A2

Problem Set 2: number of each product type in product mix — total

demand is 12

Problem Item 1 Item2 Item3 Item4 Item5 Solutions ants

B 8 1 1 1 1 11,880 6112
C 7 2 1 1 1 47,520 7015
D [§ 3 1 1 1 110,880 7567
E 6 2 2 1 1 166,320 7831
F 5 3 2 1 1 332,640 8283
G 5 2 2 2 1 498,960 8547
H 4 3 2 2 1 831,600 8880
1 4 4 2 1 1 415,800 8428
J 3 3 2 2 2 1,663,200 9331

P.R. McMullen / Artificial Intelligence in Engineering 15 (2001) 309-317 317

Table A3

Problem Set 3: number of each product type in product mix — total demand is 15 (Note. For all problems, ants are the number of ants simulated, or the number
of solutions obtained via the heuristic. This is also the number of solutions evaluated for the other search heuristics)

Problem Item 1 Item 2 Item 3 Item 4 Item 5 Solutions ants

B 11 1 1 1 1 32,760 6773
C 10 2 1 1 1 180,180 7884
D 9 3 1 1 1 600,600 8668
E 7 5 1 1 1 2,162,160 9502
F 7 3 2 2 1 10,810,800 10,551
G 6 3 3 2 1 25,225,200 11,103
H 5 3 3 3 1 50,450,400 11,554
1 4 3 3 3 2 126,126,000 12,151
J 3 3 3 3 3 168,168,000 12,339
References [8] Dorigo M, Gambardella LM. Ant colonies for the travelling salesman

[1] Miltenburg J. Level schedules for mixed-model assembly lines in
just-in-time production systems. Management Sci 1989;35(2):192—
207.

[2] Monden Y. Toyota production system. Norcross, GA: The Institute of
Industrial Engineers, 1983.

[3] McMullen PR. Using search heuristics and an efficient frontier
approach to address JIT sequencing problems with setups. Proceed-
ings of the YOR 11 Conference, Cambridge, England. 2000.

[4] Ding F, Cheng L. An effective mixed-model assembly line sequen-
cing heuristic for just-in-time production systems. J Oper Manage-
ment 1993;11(1):45-50.

[5] McMullen PR. JIT sequencing for mixed-model assembly lines with

setups using tabu search. Production Plann Control 1998;9(5):504—

10.

Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from

natural to artificial systems. Oxford: Oxford University Press, 1999.

Bonabeau E, Theraulaz G. Swarm smarts. Scient Am 2000;

March:72-9.

[6

—

[7

—

problem. BioSystem 1997;43(1):73-81.

[9] Sumichrast RT, Russell RS. Evaluating mixed-model assembly line
sequencing heuristics for just-in-time production systems. J Oper
Management 1990;9:371-90.

[10] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated
annealing. Science 1983;220:671-9.

[11] McMullen PR, Frazier GV. A simulated annealing approach to
mixed-model sequencing with multiple objectives on a JIT line. IIE
Trans 2000;32(8):679—86.

[12] Glover F. Tabu search: a tutorial. Interfaces 1990;20:74—-94.

[13] Michalewicz Z. Genetic algorithm + data structures = evolution
programs. Berlin: Springer, 1994.

[14] McMullen PR, Tarasewich P, Frazier GV. Using genetic algorithms to
solve the multi-product JIT sequencing problem with setups. Int J
Production Res 2000;38(12):2653-70.

[15] Kohonen T. The self-organizing map. Proc IEEE 1990;78(9):1464-80.

[16] McMullen PR. A Kohonen self-organizing map approach to addres-
sing a multiple objective, mixed-model JIT sequencing problem. Int J
Production Econ. Forthcoming.

