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Abstract. In this paper, we propose an approach that combines a mod-
ified version of the maximin fitness function and the hypervolume indi-
cator for selecting individuals into a Multi-Objective Evolutionary Al-
gorithm (MOEA). Our proposed selection mechanism is incorporated
into a MOEA which adopts the crossover and mutation operators of
the Nondominated Sorting Genetic Algorithm-II (NSGA-II), giving rise
to the so-called “Maximin-Hypervolume Multi-Objective Evolutionary
Algorithm (MH-MOEA)”. Our proposed MH-MOEA is validated us-
ing standard test problems taken from the specialized literature, using
from three to six objectives. Our results are compared with respect to
those produced by MC-MOEA (which is based on the maximin fitness
function and a clustering technique), MOEA/D using Penalty Boundary
Intersection (PBI), which is based on decomposition and iSMS-EMOA
(which is based on the hypervolume indicator). Our preliminary results
indicate that our proposed MH-MOEA is a good alternative to solve
multi-objective optimization problems having both low dimensionality
and high dimensionality in objective function space.

1 Introduction

In the real world, there are many optimization problems which involve multiple
objective functions (normally in conflict with each other) that need to be satisfied
at the same time. They are called multi-objective optimization problems (MOPs).
In MOPs, the notion of optimality refers to the best possible trade-offs among
all the objectives. Consequently, there are several optimal solutions (the so-
called Pareto optimal set whose image is called the Pareto front). The use of
evolutionary algorithms for solving MOPs has become very popular, giving rise
to the so-called Multi-Objective Evolutionary Algorithms (MOEAs). We can
classify MOEAs, based on their selection mechanism, into two groups: (i) those
that incorporate the concept of Pareto optimality, and (ii) those that do not use
Pareto dominance to select individuals. Since Pareto-based MOEAs have several
limitations (from which the main one is that their behavior quickly degrades as
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we increase the number of objectives), MOEAs of type (ii) have gained increasing
popularity in the last few years.

We are interested in the maximin fitness function (MFF) and the hypervol-
ume indicator (IH). Both are of type (ii). MFF has some interesting properties
and its complexity is linear with respect to the number of objective functions.
IH is the only unary indicator which is known to be “Pareto compliant” [18].
The main disadvantage of MOEAs based on IH is their high computational cost.
In this paper, we propose a hybrid of MFF and IH for selecting individuals into
a MOEA. The motivation behind this proposal is to alleviate the disadvantages
of MFF which does not select well-distributed individuals [13, 15]. Our conjec-
ture is that it is possible to improve the approximation of the Pareto optimal
set obtained by a MOEA based on MFF, if we can improve the diversity of the
population at each generation. Therefore, we propose to use IH to correct the
possible errors produced when selecting with MFF. Finally, we incorporate our
new selection mechanism into a MOEA that uses the crossover and mutation
operators of NSGA-II to create new individuals. Our proposed MOEA is called
“Maximin-Hypervolume Multi-Objective Evolutionary Algorithm (MH-MOEA)”.

The remainder of this paper is organized as follows. Section 2 states the
problem of our interest. The maximin fitness function is described in Section 3.
Section 4 describes the hypervolume indicator. Our proposal is discussed in Sec-
tion 5. Our experimental validation and the results obtained are shown in Sec-
tion 6. Finally, we provide our conclusions and some possible paths for future
work in Section 7.

2 Problem Statement

We are interested in the general multi-objective optimization problem (MOP),
which is defined as follows: Find x∗ = [x∗1, x

∗
2, . . . , x

∗
n]T which optimizes

f(x) = [f1(x), f2(x), . . . , fk(x)]T (1)

such that x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible region of the problem.
Assuming minimization problems, we have the following definitions.

Definition 1 We say that a vector x = [x1, . . . , xn]T dominates vector y =
[y1, . . . , yn]T , denoted by x ≺ y, if and only if fi(x) ≤ fi(y) for all i ∈ {1, ..., k}
and there exists an i ∈ {1, . . . , k} such that fi(x) < fi(y).

Definition 2 We say that a vector x = [x1, . . . , xn]T weakly dominates vector
y = [y1, . . . , yn]T , denoted by x � y, if x is not worse than y in all objectives.

Definition 3 A point x∗ ∈ Ω is Pareto optimal if there does not exist any
x ∈ Ω such that x ≺ x∗.

Definition 4 For a given MOP, f(x), the Pareto optimal set is defined as:
P∗ = {x ∈ Ω|¬∃y ∈ Ω : f(y) ≺ f(x)}.

Definition 5 Let f(x) be a given MOP and P∗ the Pareto optimal set. Then,
the Pareto Front is defined as: PF∗ = {f(x) | x ∈ P∗}.
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3 Maximin Fitness Function

The maximin fitness function (MFF) was proposed by Balling [3]. Balling and
Wilson proposed the modified MFF [5] which works as follows. Let’s consider
a MOP with K objective functions. Let f ik be the normalized value of the kth

objective for the ith individual in a particular generation. Then, the modified
MFF of individual i is defined as:

fitnessi = maxj 6=i,j∈ND(mink(f ik − f
j
k)) (2)

where ND is the set of non-dominated individuals. The min is taken over all
the objective functions, and the max is taken over all non-dominated individuals
in the population, except for the same individual i. From eq. (2), we can say
the following: any individual whose maximin fitness is greater than zero is a
dominated individual, any individual whose maximin fitness is less than zero is
a non-dominated individual and, any individual whose maximin fitness is equal
to zero is a weakly nondominated individual. Also, MFF penalizes clustering of
non-dominated individuals and the maximin fitness of dominated individuals is
a metric of the distance to the non-dominated front.

MFF and its modified version have been incorporated into evolutionary
algorithms such as genetic algorithms [5, 4], particle swarm [11, 12] and ant
colony [10] optimizers. However, in those papers, only low dimensionality MOPs
were considered and no extra diversity mechanism was adopted based on the idea
that MFF penalizes clustering. In recent years, two important disadvantages of
MFF were identified in [13]. The main disadvantage of MFF is related to the
following question: Is it better to prefer weakly nondominated individu-
als to dominated individuals? The answer provided in [13] was that it is not
good to prefer weakly nondominated individuals (even if they are weakly non-
dominated by any dominated individual). The authors showed in [13, 15] that if
we use a MOEA based on MFF to solve a MOP in which one objective function
is easier to solve than the others, it is likely that the MOEA only obtains weakly
Pareto points or that its convergence slows down. In order to address this prob-
lem, the following constraint was proposed in [13]: Any individual that we want
to select must not be similar (in any objective function) to another (selected)
individual.

The second disadvantage of MFF has to do with the poor diversity obtained
in objective function space when we use it to select individuals. In [13, 15], the
authors proposed to combine either MFF or its modified version with a clustering
technique in order to improve diversity.

4 Hypervolume Indicator

The hypervolume indicator (IH) was originally proposed by Zitzler and Thiele
in [17]. If Λ denotes the Lebesgue measure, IH is defined as:

IH(A,yref ) = Λ

 ⋃
y∈A
{y′ | y ≺ y′ ≺ yref}

 (3)
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where yref ∈ Rk denotes a reference point that should be dominated by all the
Pareto optimal points. The contribution to IH of a solution x is defined as:

CH(x,A) = IH(A,yref )− IH(A \ x,yref ) (4)

where x ∈ A. Then, the contribution of x is the space that is only covered by x.
Perhaps, the most popular MOEA based on IH is the S metric selection Evo-

lutionary Multi-Objective Algorithm (SMS-EMOA) [8]. SMS-EMOA generates
only one solution by iteration using the crossover and mutation operators of the
NSGA-II. After that, it applies Pareto ranking. When the last front has more
than one solution, SMS-EMOA uses the contribution to IH to decide which
solution will be removed. Therefore, when all individuals are non-dominated,
SMS-EMOA needs to calculate the contribution to IH of all individuals in the
population and the contribution of the new individual. This is not good because
we know that calculating these contributions is computationally expensive for
more than three objective functions. There are other MOEAs based on IH . How-
ever, most of them use the same competition scheme. Recently, a new selection
scheme based on IH and its locality property [2, 1] was proposed in [14]. It works
as follows: Let’s assume that at each iteration of a MOEA, only one solution xnew

is created and the current population is P. Then, we choose the nearest neighbor
(xnear) of xnew in P and we also choose (randomly) another solution, xrand,
such that xrand ∈ P and xrand 6= xnear. After that, xrand, xnew and xnear) will
compete to survive. The solution with the worst contribution to IH is eliminated.

5 Our Proposed Approach

We propose here a selection mechanism based on the modified MFF and IH .
The idea is to use the modified MFF as our main selection mechanism and IH to
correct its possible errors. Unlike SMS-EMOA [8] or iSMS-EMOA [14], in which
only one individual is created per iteration, our mechanism is designed to work
with population schemes. This is possible for two reasons: The maximin fitness
of each individual determines the order in which each individual competes to
survive using IH and in the competition scheme proposed in [14] each individual
only competes with two other individuals of the population (its nearest neighbor
and a randomly selected individual). Then, the combinatorial problem no longer
exists.

Our selection mechanism works as follows: If we want to select S individuals
from a population P, we assign first a fitness value to each individual using
the modified MFF (see eq. (2)). Then, we proceed to select the individuals
according to their fitness, verifying similarity between selected individuals (see
Algorithm 1, lines 5 to 11). If we consider all individuals in the population and we
do not select S individuals, we select the remaining individuals considering only
the maximin fitness (see Algorithm 1, lines 13 to 20). If we already selected the
S individuals but there are still non-dominated individuals in P who have not
participated in the selection process, then, we proceed to use the contribution
to IH as follows: Let S be the set of current selected individuals. Then, for each
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nondominated individual P[i] who has not participated in the selection process,
we obtain the index of its nearest neighbor in S (we call it NN) and we choose
a random index RI such that RI ∈ {1, · · · , ||S||} and RI 6= NN . Finally, we
calculate the contribution to IH of P[i], S[NN ] and S[RI]. If P[i] has a better
contribution than S[NN ] or S[RI], then P[i] replaces the individual with the
worst contribution (S[NN ] or S[RI]). See Algorithm 1, lines 22 to 34). The
process to verify similarity between individuals is shown in Algorithm 2, where
min dif is the minimum difference allowed between solutions with respect to all
objective functions and K is the number of objective functions.

In order to evaluate our new selection mechanism, we incorporate it into
a MOEA that uses the crossover and mutation operators of NSGA-II to cre-
ate new individuals. The proposed MOEA is called “Maximin-Hypervolume
Multi-Objective Evolutionary Algorithm (MH-MOEA)” and it works
as follows: If the size of the population is P , then we create P new individuals.
We use a binary tournament to select the parents. At each tournament, two
individuals are randomly selected and the one with the higher maximin fitness
value is chosen. After that, we combine the population of parents and offspring
to obtain a population of size 2P . Then, we use our proposed selection mecha-
nism to choose the P individuals that will take part of the following generation.
This process is repeated for a certain (pre-defined) number of generations.

6 Experimental Results

We compared our proposed MH-MOEA with respect to MC-MOEA [15] (the
version in which the modified MFF is used all the time), MOEA/D [16] (using
PBI to decompose the MOP1) and iSMS-EMOA [14].2 For MOEA/D, we gen-
erated the convex weights using the technique proposed in [6] and after that,
we applied clustering (k-means) to obtain a specific number of weights. It is
worth noticing that all of these MOEAs use the same operators to create new
individuals, which allows a fair comparison of the selection operators.

For our experiments, we adopted seven problems from the Deb-Thiele-Lau-
manns-Zitzler (DTLZ) test suite [7]. We used k = 5 for DTLZ1, DTLZ3 and
DTLZ6 and k = 10 for the remaining test problems. Also, we adopted seven
problems from the Walking-Fish Group (WFG) toolkit [9], with k factor = 2
and l factor = 10. For each test problem, we performed 30 independent runs. For
all algorithms, we adopted the parameters suggested by the authors of NSGA-II:
pc = 0.9 (crossover probability), pm = 1/n (mutation probability), where n is
the number of decision variables. Both for the crossover and mutation operators,
we adopted ηc = 15 and ηm = 20, respectively. In the case of MC-MOEA
and our MH-MOEA, we used min dif = 0.0001. We performed a maximum of

1 We decided to use the PBI approach because the resultant optimal solutions in the
PBI should have a more uniform distribution than those obtained by the Tchebycheff
approach [16].

2 The source code of the all algorithms used here can be provided by the first author
upon request.
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Algorithm 1: Maximin-Hypervolume Selection
Input : P (Population), S (number of individuals to choose S < ‖P‖).
Output: S (Selected individuals).
/*Assign fitness to each individual in the population, using the modified maximin

fitness function */
1 AssignFitness(P);
2 numNonDom← Number of nondominated solutions in P;

/*Sorting with respect to the maximin fitness */
3 Sort(P);
4 s← 1, i← 1, S ← ∅;

/*Fill up the new population with the best copies according to the maximin fitness,
verifying that there is not a similar one */

5 while s ≤ S AND i ≤ ‖P‖ do
6 if P[i] is not similar to any individual in S then

/*Select individual i */
7 S ← S ∪ P[i];
8 s← s + 1;

9 end
10 i← i + 1;

11 end
12 if s ≤ S then

/*Choose the remaining individuals considering only the maximin fitness */
13 i← 1;
14 while s ≤ S do
15 if P[i] has not been selected then
16 S ← S ∪ P[i];
17 s← s + 1;

18 end
19 i← i + 1;

20 end

21 else
/*Improve the diversity according to the contribution to IH */

22 while i < numNonDom do
23 if P[i] is not similar to any individual in S then
24 NN ← Index of nearest neighbor to P[i] in S;
25 RI ← Index of a randomly selected individual in S such that NN 6= RI;

/*Calculate the contributions to the hypervolume */
26 CNN ← CH(S[NN ],S);
27 CRI ← CH(S[RI],S);
28 Ci ← CH(P[i],S);

/*Remove the individual with the worst contribution */
29 worst← Index of the individual with the worst contribution (NN , RI or i);
30 if worst = NN or worst = RI then
31 Replace S[worst] with P[i];
32 end

33 end

34 end

35 end
36 return S;

Algorithm 2: Verify similarity
Input : x (individual), S (population).
Output: Returns 1, if the individual x is similar to any individual in the population S;

otherwise, returns 0.
1 for i← 1 to ‖S‖ do
2 for k ← 1 to K do
3 if |x.f [k]− S[i].f [k]| < min dif then
4 return 1;
5 end

6 end

7 end
8 return 0;
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50,000 fitness function evaluations (we used a population size of 100 individuals
and we iterated for 500 generations). Only in DTLZ3 we performed 100,000
evaluations (we used a population size of 100 individuals and we iterated for
1000 generations).

6.1 Performance Indicators

We adopted only IH to validate our results because it rewards both conver-
gence towards the Pareto front as well as the maximum spread of the solu-
tions obtained. Also, IH is Pareto compliant. To calculate the hypervolume in-
dicator, we used the following reference points: yref = [y1, · · · , yM ] such that
yi = 0.7 for DTLZ1, yref = [y1, · · · , yM ] such that yi = 1.1 for DTLZ(2-6),
yref = [y1, · · · , yM ] such that yM = 6.1 and yi 6=M = 1.1 for DTLZ7. In the
case of the WFG test problems, we generated the reference point using a value
slightly higher than the highest value found for each objective function taking
into account all the outputs of the algorithms.

6.2 Discussion of Results

In Table 1, we present the results obtained with respect to IH as well as the
statistical analysis applied to the experiments using Wilcoxon’s rank sum. In
(a), we can see that our MH-MOEA obtained better results than MC-MOEA in
thirteen problems. It is important to see that we can reject the null hypothesis
“medians are equal” in all cases, and then, we can say that in these problems
our MH-MOEA outperformed MC-MOEA. Only in DTLZ1, MC-MOEA out-
performed our MH-MOEA. In (b), we compare our MH-MOEA with respect
to MOEA/D and we can see that it outperformed MOEA/D in thirteen cases
and, only in DTLZ1, MOEA/D outperformed our MH-MOEA. Finally, in (c),
we can see that iSMS-EMOA outperformed our MH-MOEA in six problems, our
MH-MOEA outperformed iSMS-EMOA in four problems and, in four problems,
we can observe that the null hypothesis cannot be rejected, which means that
both algorithms have a similar behavior. Also, in (d), (e) and (f), we show an
scalability analysis with respect to the number of objectives for some of the prob-
lems adopted, using four, five and six objective functions. In these Tables, we
can see that our MH-MOEA continues to work well when we increase the num-
ber of objectives. For example, we can say that our MH-MOEA outperformed
MC-MOEA and MOEA/D because it obtained better results with respect to
IH , in all problems, and only in two cases, the null hypothesis cannot be re-
jected: In DTLZ3 with six objectives, our MH-MOEA has a behavior similar to
MC-MOEA and in DTLZ7 with six objective functions, our MH-MOEA has a
similar behavior to MOEA/D. With respect to iSMS-EMOA, our MH-MOEA
outperformed iSMS-EMOA in two problems, it is outperformed by iSMS-EMOA
in four problems and they have a similar behavior in three problems. Finally, in
Table 2, we present plots of the average running time required by each algorithm
to find the approximation of the Pareto optimal set in the problems adopted for
the scalability analysis and we can note that MOEA/D and MC-MOEA are the
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fastest algorithms. However, in Table 1, we saw that they are outperformed by
our proposed MH-MOA. An interesting thing is that our MH-MOEA requires
less running time than iSMS-EMOA and, as we saw in Table 1, it obtains com-
petitive results with respect to iSMS-EMOA.

f
mc-moea

IH

mh-moea
IH P (H)

DTLZ1(3)
0.311634

(0.001536)
0.301778

(0.059500)
0.000 (1)

DTLZ2(3)
0.696078

(0.008462)
0.757779

(0.000125)
0.000 (1)

DTLZ3(3)
0.666299

(0.022591)
0.732405

(0.073179)
0.000 (1)

DTLZ4(3)
0.703924

(0.008896)
0.757701

(0.000329)
0.000 (1)

DTLZ5(3)
0.424854

(0.005358)
0.439303

(0.000034)
0.000 (1)

DTLZ6(3)
0.381283

(0.026286)
0.406017

(0.020026)
0.002 (1)

DTLZ7(3)
1.851081

(0.202273)
1.939227

(0.218993)
0.000 (1)

WFG1(3)
17.622577
(1.379125)

21.038451
(0.602411)

0.000 (1)

WFG2(3)
0.115221

(0.009956)
0.118381

(0.012508)
0.016 (1)

WFG3(3)
0.407785

(0.006808)
0.465227

(0.001959)
0.000 (1)

WFG4(3)
20.858572
(0.557784)

33.806224
(0.339882)

0.000 (1)

WFG5(3)
7.997923

(0.203347)
9.877391

(0.011298)
0.000 (1)

WFG6(3)
0.920378

(0.012003)
1.024659

(0.003593)
0.000 (1)

WFG7(3)
17.286919
(0.727687)

22.748887
(0.086435)

0.000 (1)

moead
IH

mh-moea
IH P (H)

0.303053
(0.000450)

0.301778
(0.059500)

0.000 (1)

0.708105
(0.000205)

0.757779
(0.000125)

0.000 (1)

0.702575
(0.004807)

0.732405
(0.073179)

0.000 (1)

0.708295
(0.000133)

0.757701
(0.000329)

0.000 (1)

0.416468
(0.000529)

0.439303
(0.000034)

0.000 (1)

0.352563
(0.026612)

0.406017
(0.020026)

0.000 (1)

1.607354
(0.202304)

1.939227
(0.218993)

0.000 (1)

16.211830
(0.312977)

21.038451
(0.602411)

0.000 (1)

0.088530
(0.006124)

0.118381
(0.012508)

0.000 (1)

0.388538
(0.014871)

0.465227
(0.001959)

0.000 (1)

22.853573
(0.541417)

33.806224
(0.339882)

0.000 (1)

8.501790
(0.147219)

9.877391
(0.011298)

0.000 (1)

0.845541
(0.009395)

1.024659
(0.003593)

0.000 (1)

16.227431
(1.859549)

22.748887
(0.086435)

0.000 (1)

isms-emoa
IH

mh-moea
IH P (H)

0.206981
(0.099188)

0.301778
(0.059500)

0.000 (1)

0.757459
(0.000122)

0.757779
(0.000125)

0.000 (1)

0.049505
(0.122515)

0.732405
(0.073179)

0.000 (1)

0.757900
(0.000071)

0.757701
(0.000329)

0.000 (1)

0.439351
(0.000017)

0.439303
(0.000034)

0.000 (1)

0.416488
(0.019702)

0.406017
(0.020026)

0.017 (1)

1.923408
(0.229443)

1.939227
(0.218993)

0.620 (0)

21.211584
(0.164660)

21.038451
(0.602411)

0.579 (0)

0.124559
(0.009472)

0.118381
(0.012508)

0.000 (1)

0.466669
(0.000707)

0.465227
(0.001959)

0.003 (1)

29.382365
(0.077628)

33.806224
(0.339882)

0.000 (1)

9.875098
(0.013724)

9.877391
(0.011298)

0.662 (0)

1.023947
(0.002415)

1.024659
(0.003593)

0.264 (0)

23.897145
(0.106150)

22.748887
(0.086435)

0.000 (1)

(a) (b) (c)

f
mc-moea

IH

mh-moea
IH P (H)

DTLZ3(4)
0.857388

(0.036140)
1.027826

(0.032578)
0.000 (1)

DTLZ5(4)
0.205774

(0.028565)
0.436266

(0.000698)
0.000 (1)

DTLZ7(4)
0.554462

(0.066262)
0.758183

(0.103790)
0.000 (1)

DTLZ3(5)
0.999126

(0.042205)
1.117145

(0.321966)
0.000 (1)

DTLZ5(5)
0.164502

(0.026344)
0.444185

(0.001890)
0.000 (1)

DTLZ7(5)
0.064793

(0.013324)
0.153578

(0.056167)
0.000 (1)

DTLZ3(6)
1.060825

(0.096036)
1.098540

(0.492904)
0.125 (0)

DTLZ5(6)
0.138851

(0.044069)
0.453138

(0.004788)
0.000 (1)

DTLZ7(6)
0.003920

(0.001524)
0.020082

(0.011365)
0.000 (1)

moead
IH

mh-moea
IH P (H)

0.849726
(0.008275)

1.027826
(0.032578)

0.000 (1)

0.395004
(0.003938)

0.436266
(0.000698)

0.000 (1)

0.510402
(0.136447)

0.758183
(0.103790)

0.000 (1)

0.907270
(0.016862)

1.117145
(0.321966)

0.000 (1)

0.384474
(0.004732)

0.444185
(0.001890)

0.000 (1)

0.090559
(0.025208)

0.153578
(0.056167)

0.000 (1)

0.836798
(0.127543)

1.098540
(0.492904)

0.001 (1)

0.386218
(0.005819)

0.453138
(0.004788)

0.000 (1)

0.017423
(0.001653)

0.020082
(0.011365)

1.000 (0)

isms-emoa
IH

mh-moea
IH P (H)

1.013137
(0.102415)

1.027826
(0.032578)

0.000 (1)

0.437185
(0.000308)

0.436266
(0.000698)

0.000 (1)

0.739654
(0.162259)

0.758183
(0.103790)

0.145 (0)

1.288363
(0.026772)

1.117145
(0.321966)

0.000 (1)

0.446454
(0.000582)

0.444185
(0.001890)

0.000 (1)

0.164838
(0.056642)

0.153578
(0.056167)

0.233 (0)

1.178007
(0.604886)

1.426338
(0.222236)

0.000 (1)

0.461971
(0.001111)

0.453138
(0.004788)

0.000 (1)

0.027512
(0.008047)

0.020082
(0.011365)

0.206 (0)

(d) (e) (f)

Table 1: Comparison of results in the DTLZ and WFG test problems using IH . We show average values over 30
independent runs. The values in parentheses correspond to the standard deviations. The third column of each table
shows the results of the statistical analysis applied to our experiments using Wilcoxons rank sum. P is the probability
of observing a given result (the null hypothesis is true). Small values of P cast doubt on the validity of the null
hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1
indicates that the null hypothesis can be rejected at the 5% level.
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Table 2: Time required by MC-MOEA, MOEA/D, iSMS-EMOA and our proposed MH-MOEA for the test problems
adopted in the scalability analysis. s = seconds. All algorithms were compiled using the GNU C compiler and they
were executed on a computer with a 2.66GHz processor and 4GB in RAM. We can see that the worst algorithm,
regarding running time, is ISMS-EMOA in all three MOPs (DTLZ3, DTLZ5 and DTLZ7 with 4, 5 and 6 objective
functions). While the best algorithm is MOEA/D. Also, we can see that our MH-MOEA outperforms iSMS-EMOA
in all cases.
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7 Conclusions and Future Work

We have proposed a new selection mechanism based on the modified maximin
fitness function (MFF) and the hypervolume indicator (IH). Unlike other se-
lection mechanisms based on IH , such as the one adopted in the SMS-EMOA
algorithm or its improved version (iSMS-EMOA), our selection mechanism works
with populations. Our idea is to use the modified MFF as our main selection
mechanism and IH to correct the possible errors in the selection process. Our
preliminary results indicate that our MH-MOEA is able to outperform MOEAs
such as MC-MOEA and MOEA/D, both with few and many objectives. Also,
MH-MOEA is competitive with respect to iSMS-EMOA, outperforming it in
some cases, while requiring a lower computational time.

As part of our future work, we are interested in studying mechanisms to
approximate the contribution to IH and to use one of them instead of adopting
the exact calculation. Since we only use IH to correct possible errors generated
when we select with the maximin fitness, we expect to retain, as much as possible,
the quality in our solutions when we approximate the contribution to IH .
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