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Abstract

Local Selection (LS) is a simple selection scheme in evolutionary algorithms.

Individual �tnesses are accumulated over time and compared to a �xed

threshold, rather than to each other, to decide who gets to reproduce. LS,

coupled with �tness functions stemming from the consumption of �nite shared

environmental resources, maintains diversity in a way similar to �tness shar-

ing. However it is more e�cient than �tness sharing, and lends itself to

parallel implementations for distributed tasks. While LS is not prone to

premature convergence, it applies minimal selection pressure upon the pop-

ulation. LS is therefore particularly suitable in problem classes involving

cover and Pareto optimization. This paper presents experiments in which

ELSA, an evolutionary algorithm employing local selection, is applied to two

multi-criteria optimization problems. Because of its e�ciency, ELSA signif-

icantly outperforms other well-known evolutionary computation approaches

to Pareto optimization (VEGA and NPGA). These experiments con�rm ear-

lier results in which LS algorithms were applied to a general class of graph

search problems. The paper also discusses the issue of scalability and poten-

tial distributed applications of the algorithm.



1 Introduction

When there are multiple solutions to a problem, each of which meets some

requirements of the problem better than others, but no solution meets all of

the requirements, we have a multi-criteria or Pareto optimization problem.

If we know some good way to combine the performance of a solution at the

various criteria, then we can optimize a single combined �tness function, and

there are many techniques (including evolutionary algorithms) that apply.

But if we do not know how the di�erent criteria should be combined, then

we need to �nd the set of solutions that represent the best compromises

between the con
icting criteria. This set is called the Pareto front. By

quickly locating the Pareto front of a multi-criteria optimization problem,

we can devote further e�orts to more expensive evaluations of the various

alternatives and their trade-o�s.

Evolutionary algorithms (EAs) are based on the idea that a population

searches the space in a parallel fashion, and therefore they seem amenable

to Pareto optimization. The population of solutions at a given time may

be used to represent the current consensus on the set of solutions deserving

further attention. Ideally, the population would converge not to a single

point, but to the entire Pareto front.

Many characteristics of evolutionary algorithms have been considered in

the search for ways to devise e�cient and e�ective Pareto optimization algo-

rithms. Selection schemes have emerged as the aspect of evolutionary com-

putation that most directly addresses the issue of multi-criteria optimization.

In fact, selective pressure determines how fast the population converges to a

solution. Even in standard (single-criterion) optimization, the exploration-
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exploitation dilemma is commonly invoked to explain the delicate tension

between an algorithm's e�ciency and its tendency to prematurely converge

to a suboptimal solution.

This paper discusses the locality of a selection scheme and its e�ects on

an evolutionary algorithm's behavior with respect to convergence, perfor-

mance, e�ciency, and parallelism. We can loosely de�ne local selection (LS)

as a selection scheme that minimizes interactions among individuals. The

issue of locality in selection schemes is certainly not new in the evolutionary

computation community [9, 11, 5, 23].

Parallel EAs often impose geographic constraints on evolutionary search

to assist in the formation of diverse subpopulations [12, 3]. The motivation

is in avoiding the communication overhead imposed by standard selection

schemes; di�erent processors are allocated to subpopulations to minimize

inter-process dependencies and thus improve e�ciency. The poor match be-

tween parallel implementations and the standard notion of optimization by

convergence is noted for example by McInerney [26], who distinguishes be-

tween convergence | all individuals converging on the best solution | and

cover| all good solutions being represented in the population | as measures

of successful termination. Parallel EAs are more amenable to cover optimiza-

tion than to standard convergence criteria, due to the limited communication

inherent in most parallel implementations. For example, applying a parallel

EA to optimize a bimodal �tness function, the traditional selection schemes

| truncation, linear rank, and proportional selection | cause the popula-

tion to rapidly converge to one mode of the �tness function or the other,

while localized selection strategies generate two separate populations that
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have converged, each to a separate peak [26].

The problem of ill-convergence exhibited by global selection schemes for

multi-criteria �tness functions is related to the issue of niching. According

to Goldberg [7], we may view a niche intuitively as an organism's job or role

in an environment, and we can think of a species as a class of organisms with

common characteristics:

As reproduction, crossover, and mutation proceed, the popula-
tion climbs the [�tness] hills, ultimately distributing most of the
strings near the top of one hill [ : : : ] This ultimate convergence
on one peak or another without di�erential advantage is caused
by genetic drift | stochastic errors in sampling caused by small
population sizes. Somehow we would like to reduce the e�ect
of these errors and enable stable subpopulations to form around
each peak [ : : : ] We also might like to modify the performance of
simple evolutionary algorithms in multi-criteria problems where
the peaks are not all of the same magnitude [ : : : ] Perhaps we
would even like to allocate subpopulations to peaks in proportion

to their magnitude [ : : : ]

Although there is a well-developed biological literature in both niching

and speciation [14], its transfer to the arti�cial evolutionary search has been

limited [7]. Standard EAs are ine�ective for niching, or multi-criteria function

optimization, due to high selective pressure and premature convergence [6].

Several methods have been devised to deal with this problem by maintain-

ing diversity. One example for proportional selection is to tune the selective

pressure adaptively, by a nonlinear scaling of the �tness function [34]. Di�er-

ent selection methods of course impose varying degrees of selection pressure.

For example, tournament selection is known to converge slowly and to have

niching e�ects [8].
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The most notable selection variations explicitly aimed at niching are

crowding [4, 20] and �tness sharing [10, 15, 21]. In both of these methods,

selection is somehow altered to take into account some measure of similarity

among individuals. Shortcomings of both methods are problem-dependency

and ine�ciency; if p is the population size, selection has time complexity

O(p) rather than O(1) per individual. The slowdown can be important for

practical cases with large populations, and computing similarity imposes a

large communication overhead for parallel implementations. Moreover, even

assuming that the number of niches H is known a priori, it is estimated that

the population size required to maintain the population across niches grows

super-linearly with H (with a large constant) [22]. The role of selection for

multi-criteria and parallel optimization remains an active area of research in

the evolutionary computation community [13, 23, 16].

This paper describes ELSA, an EA based on a biologically-inspired lo-

cal selection scheme, which lends itself naturally to multi-criteria and cover

optimization applications. The algorithm is illustrated in the next section,

and its main distinctions from other evolutionary algorithms are outlined. In

the following section we report on experiments in which ELSA is compared

with other EAs in three broad classes of computational tasks. Finally, we

discuss the results of these experiments and try to address the advantages,

limitations, and possible applications of local selection.
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initialize population of agents, each with energy �=2
while there are alive agents

for each agent a
a0
 mutate(clone(a))

for each energy source k
�E  min(Fitness(a0; k);Ek

envt)
Ek
envt  Ek

envt ��E
Ea  Ea + �E

endfor

Ea  Ea � Ecost

if (Ea > �)
insert a0 into population

Ea0  Ea=2
Ea  Ea � Ea0

else if (Ea < 0)
remove a from population

endif

endfor

replenish Eenvt

endwhile

Figure 1: ELSA pseudo-code.

2 Local Selection Algorithms

2.1 ELSA

The original motivation for considering local selection stemmed from an in-

terest in ecological modeling [30, 29]. Local selection is a more realistic repro-

duction scheme in an evolutionary model of real populations of organisms.

In such a model, an agent's �tness must result from individual interactions

with the environment, which contains �nite shared resources along with other

agents. We can best characterize local selection and succinctly describe its

di�erences from global schemes by casting the EA into the same ecological

framework. The resulting algorithm, which we call ELSA (Evolutionary Lo-

cal Selection Algorithm), is illustrated at a high level of abstraction in Figure

1.

Each agent (candidate solution) in the population is �rst initialized with
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some random solution and an initial reservoir of energy. If the algorithm is

implemented sequentially, parallel execution of agents can be simulated with

randomization of call order.

In each iteration of the algorithm, an agent explores a candidate solution

similar to itself (in its mutation neighborhood). The agent is taxed with Ecost

for this action and collects �E from the environment. The net energy intake

of an agent corresponds to its �tness. This is a function of how well the

agent performs with respect to the (possibly many) criteria being optimized.

But the energy also depends on the state of the environment. For example,

in the experiments illustrated in this paper, the environment corresponds

to the set of possible values for each of the criteria being optimized.1 We

imagine an energy source for each criterion, divided into bins corresponding

to its values. So, for criterion Fk and value v, the environment keeps track

of the energy Ek
envt(v) corresponding to the value Fk = v. Further, the

environment keeps a count of the number of agents Pk(v) having Fk = v.

The energy corresponding to an action (alternative solution) a for criterion

Fk is given by

Fitness(a; k) =
Fk(a)

Pk(Fk(a))
: (1)

This is equivalent to a sort of crowding. However, actions result in energetic

bene�ts only inasmuch as the environment has su�cient energetic resources;

if these are depleted, no bene�ts are available until the environmental re-

sources are replenished.

1If a criterion takes continuous values, these can be discretized.
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Ereplenish  Ebin �B
for each bin v (vmax::vmin)

for each energy source k
�E  min(Ereplenish;Ebin � Ek

envt(v))
Ereplenish  Ereplenish � �E
Ek
envt(v) Ek

envt(v) + �E
endfor

endfor

Figure 2: Pseudo-code for energy replenishment in ELSA .

In the selection part of the algorithm, an agent compares its current

energy level with a threshold �. If its energy is higher than �, the agent

reproduces. The mutated clone that was just evaluated becomes part of the

population, with half of its parent's energy. When an agent runs out of

energy, it is killed.

The environment acts as a data structure that keeps track of the net ef-

fects of the rest of the population. This way, direct communications between

individuals (such as comparisons, ranking, or averaging of �tness values)

become unnecessary, and the only interactions consist in the indirect compe-

tition for the �nite environmental resources. In a non-distributed or single-

criterion task, the environment may reduce to a single global process with

the trivial role of ensuring balanced allocation of computational resources to

the individuals.

In the experiments illustrated in this paper, Ecost for any action is a

constant unless otherwise stated. Figure 2 shows how the environment is

replenished at each time step. The quantity Ebin is also typically a constant:

Ebin / Ecost: (2)

The idea is to �ll each bin to Ebin, starting with the bins with highest criteria
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values and until we run out of replenishment energy. B is the number of

values taken by any criterion, or bins into which the values of a continuous

criterion are discretized. Thus the total amount of replenishment energy

typically depends on the size of the problem.

On the other hand, if we want to maintain the population average around

some �xed value p0 irrespective of problem size, we can let

Ebin = p0 � Ecost=B: (3)

In fact, since energy is conserved, the average amount of energy that leaves

the system per unit time (through costs) has to be equal to the amount of

energy that enters the system per unit time (through replenishment):

hpEcosti = BEbin

hpiEcost = p0Ecost

hpi = p0

where h�i indicates time average.

In an implementation based on the pseudo-code of Figure 1, some other

details would need to be �lled in. For example, if crossover is to be used, a

candidate solution can be recombinedwith another member of the population

before being evaluated or before being inserted into the population, in case

the parent is selected for reproduction. The same applies for any other genetic

operators or problem-speci�c local search steps warranted by the task at

hand. Recombination is not used with ELSA in any of the experiments in

this paper. The only genetic operator used is mutation, and the details are
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illustrated for each problem.

2.2 Local versus global selection

Selection is the central point where this algorithm di�ers from most other

evolutionary algorithms. Here an agent may die, reproduce, or neither (cor-

responding to the solution being eliminated from the pool, selected, or main-

tained). Energy is always conserved. The selection threshold � is a constant

independent of the rest of the population | hence selection is local. This

fact reduces communication among agent processes to a minimum and has

several positive consequences.

First, two agents compete for shared resources only if they are situated

in the same portion of the environment. It is the environment that drives

this competition and the consequent selective pressure. No centralized deci-

sion must be made about how long an agent should live, how frequently it

should reproduce, or when it should die. The search is biased directly by the

environment.

Second, LS is an implicitly niched scheme and therefore it naturally en-

forces the maintenance of population diversity. This makes the search al-

gorithm more amenable to cover optimization | all good solutions being

represented in the population | than to standard convergence criteria. The

bias is to exploit all resources in the environment, rather than to locate the

single best resource. This is particularly appropriate in multi-criteria opti-

mization applications.

Third, the size of the population, rather than being determined a priori,

emerges from the carrying capacity of the environment. This is determined by
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(i) the costs incurred by any action, and (ii) the replenishment of resources.

Both of these factors are independent of the population. This means that the

larger the problem search space, the larger B and the more energy is injected

into the environment during replenishment, yielding larger carrying capac-

ity and average population size. The population size need not be adjusted

depending on the problem size.

Finally, the removal of selection's centralized bottleneck makes the algo-

rithm parallelizable and therefore amenable to distributed implementations.

ELSA is therefore an ideal candidate to study the potential speedup achiev-

able by running agents on multiple remote hosts.

Local selection of course has disadvantages and limitations as well. Imag-

ine a population of agents who can execute code on remote servers in a dis-

tributed environment, but have to look up data on a central machine for

every action they perform. A typical example of such a situation would be

a distributed information retrieval task in which agents share a centralized

page cache. Because of communication overhead and synchronization issues,

the parallel speedup achievable in this case would be seriously hindered. As

this scenario indicates, the feasibility of distributed implementations of evo-

lutionary algorithms based on local selection requires that the environment

can be used as a data structure. Like natural organisms, agents must be able

to \mark" the environment so that local interactions can take advantage of

previous experience.

Local selection algorithms cannot immediately be applied to any arbi-

trary problem. First, a problem space may not lend itself to being used as a

data structure. For example, marking the environment in continuous func-
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Feature Global Selection Local Selection

reproduction threshold � = f(E1; : : : ; Epop) � = const
conserved quantity selective pressure entropy

search bias exploitation exploration
adaptive landscape single-criterion multi-criteria
convergence goal single-point cover
solution quality best (fragile) good (robust)

biological equivalent r-selection K-selection

Table 1: Schematic comparison between local and global selection schemes.

tion optimization with arbitrary precision might hinder discretization and

thus compromise the feasibility of local data structures. Second, it may be

di�cult to devise an isomorphism of the problem such that the environmen-

tal resource model could be applied successfully. For example, associating

environmental resources to partial solutions of a combinatorial optimization

problemmay require a decomposition property that the problem is not known

to possess.

In a multi-criteria or distributed task, the environment models the prob-

lem space and the resources that are locally available to individual solutions.

It is in such cases that the distinction between local and global interactions

among individuals becomes important; the selection mechanism and environ-

mental resource model capture the nature of such interactions. In a standard

EA, an individual is selected for reproduction based on how its �tness com-

pares with the rest of the population. For example, proportional selection

can be modeled by a selection threshold hEi, where h�i indicates population

average, for both reproduction (in place of �) and death (in place of 0). Like-

wise, binary tournament selection can be modeled by a selection threshold
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Er where the subscript r indicates a randomly picked individual. In local

selection schemes, � is independent of the rest of the population and the

computations that determine whether an individual should die or reproduce

can be carried out without any direct comparisons with other individuals.

Table 1 illustrates schematically the main features that di�erentiate the two

classes of selection schemes.

3 Experiments

In this section we will compare the performance of ELSA with other evolu-

tionary algorithms on problems requiring cover or multi-criteria optimization.

3.1 Previous work: Graph search

One application of evolutionary algorithms that achieve cover optimization

is the problem of retrieving relevant information in a hypertext environment.

Distributed information retrieval is an lively area of research due to the pop-

ularity of the Web and the scalability limitations of search engine technology

[33, 32]. In previous work, we tested the feasibility of local selection algo-

rithms for distributed information retrieval problems by building arti�cial

graphs to model di�erent aspects of Web-like search environments. Here we

summarize the results of those experiments [31, 28].

3.1.1 Problem description

The problem can be broadly described as searching large graphs in sublinear

time. Imagine a very large graph, where each node is associated with some
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payo�. The population of agents visits the graph as agents traverse its edges.

The problem is well studied in the case of populations of random-walkers.

The idea is to maximize the collective payo� of visited nodes, given that

there is only time to visit a fraction of the nodes in the graph. Since the

modeled search graph is typically distributed across remote servers, agents

are charged costs for using its resources, e.g., traversing edges and evaluating

nodes' payo�. Nodes model hypertext documents, edges model hyperlinks,

and payo� models some measure of relevance.

The graph search task is general enough that it can also be applied to

model several other interesting problems. Another example would use the

graph as a model of a 2-dimensional environment in which agents have to

sense their position and move to reach some goal. This would be a typical

task for a situated robot. A third example would be to reduce the graph to

model any of the environments used in reinforcement learning problems.

In our instances of the graph search task, each link l is associated with

a feature vector with components f l1; : : : ; f
l
Nf

2 [0; 1]. These features are

environmental cues, such as word frequencies, that can guide a browsing

agent toward relevant nodes. Actual payo�s are assigned to nodes from an

ad-hoc probability distribution in the unit interval. This construction process

guarantees the existence of a set of weights that, if used as coe�cients in a

linear combination of a link's feature vector, yield an \accurate" prediction

of the payo� of the node pointed by the link. The prediction accuracy of

such optimal weight vector is a user-de�ned graph construction parameter.
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3.1.2 Algorithmic details

In the ELSA implementation for this problem, each agent's genotype com-

prises a single-layer neural net or perceptron, i.e., a weight vector with com-

ponents w1; : : : ; wNf+1 2 R. The agent's representation also speci�es where

(on which node) the agent is currently situated. Therefore an action consists,

�rst of all, of evaluating each outlink from the current node. To this end, the

output of the neural net is computed for each of these links:

o(l) =
1

1 + e
�

�
wNf+1+

PNf
i=1 wif

l
i

�

and represents the agent's prediction of the payo� p(l) 2 [0; 1] of the node

that l points to.

The agent follows a link that is picked by a stochastic selector among the

links from the current node, with probability distribution:

Pr[l] =
e�o(l)P

l02node e
�o(l0)

where the � parameter is another component of the genotype. Both � and

some fraction of the weights are mutated by additive uniform noise (with the

constraint � � 0).

The energetic bene�t of an action is the payo� of the newly visited node,

provided it had not been previously visited by any agent. Nodes are therefore

\marked" to keep track of used resources. A constant energy cost is charged

for any new node visited. A smaller cost is also charged for previously visited

nodes, to prevent endless paths through visited nodes.
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The goal is to evolve agents with optimal genotypes, enabling them to

follow the best links and thus achieve maximum payo� intake. This task

can be seen as single-criterion in the sense that payo� is the only source

of energy, but it can also be seen as multi-criteria in the sense that payo�

can be scattered across separate clusters (niches) of nodes. We aim at cover

optimization because we want the agents to locate as many relevant nodes

as possible. To this end, the environment is not replenished for this task

(Ebin = 0); a node yields energy only once.

3.1.3 Results

To gauge the performance of ELSA in the graph search problem, we decided

to compare local selection with a traditional EA employing global selection.

Binary tournament selection was chosen as a representative of global selec-

tion schemes mainly because it does not require global operations such as

averaging, and thus it �ts naturally within the steady-state framework of

ELSA. Basically the same algorithm outlined above is used for tournament

selection, with the di�erence that the energy level of a randomly chosen mem-

ber of the population is used in place of both � for reproduction and 0 for

death (cf. Figure 1).

We ran a set of experiments on random graphs generated according to

three distinct parameterizations. The parameter G stands for the fraction

of nodes whose payo� is above some threshold; we call these \good" nodes.

SmallG values 
ag \needle in a haystack" problems. The parameter H is the

number of clusters into which the good nodes are grouped. For H > 1, we

consider the task to be multi-criteria. By \grouped" we mean that a node has
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G 0.025 0.05 0.1 0.2
R 0.2 0.4 0.6 0.8
H 1 2 4 8

Table 2: Parameterizations of the graph search problem.

a higher probability to be linked to another node in the same cluster than to

nodes in other clusters or to \bad" nodes. The conditional probability that

a node points to another node in the same cluster is the third parameter, R.2

Table 2 shows the parameter values used for the experiments.

In these experiments all the graphs had the same number of nodes (1000),

average fanout (5), and number of link features (16). The feature vectors were

constructed in such a way that the optimal neural net predicted payo� within

an accuracy of 0.99. The algorithm was stopped when 50% of the nodes had

been visited, and recall (the fraction of good nodes found by the population)

up to that point was recorded. Across all graph parameterizations, ELSA

signi�cantly and consistently outperformed tournament selection. Local se-

lection populations continued to discover a constant rate of good nodes, while

tournament populations tended to converge prematurely. The improvement

depended on the graph parameters, but was generally between two- and ten-

fold.

In these experiments the performance improvement of ELSA over tourna-

ment selection did not vary with G, the density of good nodes. Two trends

were instead observed relative to the other graph parameters. Decreasing

2G is the background probability and a lower bound for R; if R = G, clusters are
meaningless. We showed elsewhere that for applications such as information retrieval on
the Web, it is realistic to assume that R > G [27].
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Figure 3: Performance of ELSA and tournament selection on graph search
problems with H = 1, G = 0:1, and various values of R.In this and the
following plots, error bars indicate standard errors across multiple runs of
the same algorithm with the same parameters but di�erent initial random
conditions.
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Figure 4: Performance of ELSA and tournament selection on graph search
problems with R = 0:8, G = 0:1, and various values of H.

R, the correlation among good nodes, was equivalent to decreasing the im-

portance of locality; where an agent was situated had smaller consequence

in determining how well it would do in the future. We therefore expected

ELSA's performance to degrade accordingly. Figure 3 shows the case of uni-

modal graphs (H = 1) and intermediate G. The performance of tournament

selection also decreased with R, yielding a consistent advantage in favor of

ELSA.

The second trend was observed varying H. Increasing H makes the prob-

lem multi-criteria and therefore we expected tournament selection to degrade

in performance due to premature convergence. Figure 4 illustrates this trend

in the case of high R and intermediate G. The advantage in favor of ELSA

increased with H as predicted.
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3.2 A simple test problem: Ones and pairs

The success of ELSA in the graph search problem led us to test the approach

on other, better known problems, for which we could obtain a more fair com-

parison with other evolutionary algorithms developed speci�cally for Pareto

optimization. We wanted to pick both a problem and a set of alternative

approaches well described in the literature. We �rst focused on a simple

test problem called \unitation versus pairs" [17] and on two state-of-the-art

evolutionary algorithms for multi-criteria optimization, VEGA and NPGA

[16]. Here we report on new experiments comparing ELSA with VEGA and

NPGA on the unitation versus pairs task.

3.2.1 Problem description

The problem is very simple. Consider the combinatorial search space of size

N binary strings fs = (s0; : : : ; sN�1)jsi 2 f0; 1gg. Two criteria are de�ned:

Ones(s) =

N�1X

i=0

si

Pairs(s) =
N�1X

i=0

(si � s(i+1)modN ):

Clearly the two criteria cannot be both completely satis�ed, as maximizing

the number of ones in a string will minimize the number of f01; 10g pairs,

and maximizing the number of pairs will halve the number of ones. Therefore

this is an example of a Pareto optimization problem.

We can now give a more formal de�nition of the Pareto front. The criteria

de�ne a partial order among solutions. One solution s1 is said to dominate
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another solution s2 if 8k : Fk(s1) � Fk(s2) and 9k : Fk(s1) > Fk(s2), where Fk

is the k-th criterion. Neither solution dominates the other if 9k; l : Fk(s1) >

Fk(s2); Fl(s2) > Fl(s1). The Pareto front is de�ned as the set of undominated

solutions, i.e., no solution dominates any of the solutions in the Pareto front.

The main advantage of simple problems such as unitation versus pairs is

that the Pareto front is known. Therefore algorithms can be tested conve-

niently, and one can even assess what fraction, if any, of the Pareto front is

covered by a population.

3.2.2 Algorithmic details

The application of ELSA to this problem is a straightforward implementation

of the algorithm in Figure 1 and Equation 1, with the functions Ones(�) and

Pairs(�) as the criteria. Bins are created in correspondence of each of the

possible values of the criteria. Replenishment takes place as shown in Figure

2, with Ebin determined according to Equation 3 in order to maintain an

average population size equal to that used in the other EAs described below.

The values of the various algorithm parameters are shown in Table 3. Note

that a mutation in ELSA corresponds to 
ipping a single bit.

The �rst multi-criteria EA alternative that we consider is the Vector

Evaluated Genetic Algorithm (VEGA) [37, 38]. In VEGA, the population

is divided into subpopulations, one associated with each of the criteria. In

each subpopulation, the corresponding criterion is used as the �tness func-

tion. VEGA has been used with some success in Pareto optimization and

therefore has become one of the best known multi-criteria EAs, although it

has been reported that VEGA tends to favor extreme points of the Pareto
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Parameter Value

Ecost 4.0
� 2.0
p0 300
B 2(N + 1)

Pr(mutation) 1

Table 3: Parameter values used with ELSA in the unitation versus pairs
problem.

front over intermediate, trade-o� points [7]. VEGA can be used in conjunc-

tion with any selection scheme. Here we use binary tournament selection in

conjunction with �tness sharing, since this combination has been shown to

improve VEGA's coverage of the Pareto front [17].

The second multi-criteria EA alternative that we consider is the Niched

Pareto Genetic Algorithm (NPGA) [17, 16]. In NPGA, Pareto domination

tournament selection is used in conjunction with �tness sharing. Pareto

domination tournaments are binary tournaments in which the domination of

each candidate is assessed with respect to a randomly chosen sample of the

population. If a candidate dominated the whole sample and the other candi-

date does not, then the dominant candidate wins the tournament. If both or

neither candidates dominate the whole sample, then the tournament is won

by the candidate with the lower niche count. The size of the sample, tdom, is

used to regulate the selective pressure. NPGA has proven very successful in

Pareto optimization over a range of problems.

The various parameters used here for VEGA and NPGA are taken in

part from Horn at al. [17] and veri�ed by reproducing their results in the
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Parameter Value

�share 4.0
tdom 16
p 300

Pr(crossover) 0.9
Pr(mutation) 0.01

Table 4: Parameter values used with NPGA and VEGA in the unitation
versus pairs problem.

unitation versus pairs problem. They are shown in Table 4.

3.2.3 Results

The concept of a generation is meaningless in ELSA because the population


uctuates. Even if we de�ne a generation as a unit of time in which each

candidate solution is evaluated once (the loop over the agents in Figure 1), the

time complexities of the basic steps of the three algorithms are very di�erent

from one another. To insure a fair comparison, we count basic \operations"

uniformly across the three algorithms. A basic operation is any comparison

that has to do with the execution of the algorithm. These include both �tness

evaluations and algorithmic steps, so that the operation count is incremented

inside every loop that is required by the algorithm. The operation count is

therefore a measure of time complexity.

The �rst experiment simply compares the performance of the three algo-

rithms by measuring the cover of the Pareto front achieved over time. The

size of the problem in this experiment is N = 32 bits. Figure 5 shows the

results. ELSA is the clear winner. NPGA also achieves almost complete
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Figure 5: Coverage of the Pareto front for the unitation and pairs problem,
plotted for the three evolutionary algorithms versus time complexity.

coverage, but it takes longer because the algorithm has a higher time com-

plexity. Every time a candidate solution is evaluated, many operations must

be carried out to compute Pareto domination and �tness sharing. VEGA

appears to converge on a subset of the Pareto front.

The second experiment aims at evaluating the scalability of the two more

competitive algorithms with respect to problem size. To this end we drop

VEGA and test ELSA and two versions of NPGA on problems of di�erent

sizes between N = 16 and 128 bits. The reason for the two version of NPGA

is in the fact that like the majority of EAs, NPGA has a �xed population

size. How does one determine the right population size for a given problem?

Such problem-dependence is a problem with EAs in general. For large prob-

lems, the Pareto front is large and therefore a large population is necessary.

Conversely, a smaller population should be su�cient for small problems. The
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problem-dependence of population size is of consequence for the scalability

of the algorithm. If we don't increase population size with problem size,

Pareto cover performance will su�er. So in one NPGA version we keep the

population size constant (100), and in another we make it proportional to

the problem size (4N).3

By using the replenishment scheme of Figure 2 in conjunction with Equa-

tion 2 (Ebin = 4Ecost in these runs), ELSA does not have a problem-dependence

issue. In fact, the average population size is determined by the carrying ca-

pacity of the environment, which is automatically proportional to problem

size. The user does not need to make a decision based on knowledge of the

problem. Apart from these di�erences in population size, both ELSA and

NPGA use the parameters values shown in Figures 3 and 4, respectively.

For each problem size, Figure 6 plots the coverage of the Pareto front

achieved by the di�erent algorithms after a �xed time (one million opera-

tions). Unsurprisingly, the NPGA version with proportional population does

better than the version with �xed population on large problems (where the

�xed population is too small) and worse on small problems (where the �xed

population is larger). Once again ELSA is the winner. Not only does its pop-

ulation adjust automatically to problem size, but it also outperforms both

versions of NPGA where the di�erences are signi�cant. As N grows, the

di�erences becomes less signi�cant and ultimately all of the algorithms fail

to �nd any point in the Pareto front in the given time.

3We use the knowledge that the size of the Pareto front is also proportional to N for
this problem.
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Figure 6: Coverage of the Pareto front for the unitation and pairs problem
achieved after a �xed number of operations, plotted for the two evolutionary
algorithms versus problem size.

3.3 A real problem: Feature selection in inductive

learning

Unitation versus pairs has allowed us to quantitatively compare the perfor-

mance of ELSA and other multi-criteria EAs on a well de�ned problem, with

known Pareto front. We now turn to a more realistic problem, where the

Pareto front is unknown.

3.3.1 Problem description

In these experiments we consider the problem of feature subset selection in

inductive or similarity-based machine learning. Given two disjoint sets A1

and A2 of feature vectors in some k-dimensional space, the problem is to

construct a separating surface that allows future examples to be correctly
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classi�ed as being members of either A1 or A2. Popular techniques for this

task include decision trees, arti�cial neural networks, and nearest neighbor

methods. In this work the learn separation model is a simple k-dimensional

hyperplane, comparable to a perceptron.

In order to construct classi�ers that generalize well to unseen points, it is

important to control the complexity of the model. In many domains, biasing

the learning system toward simpler models results in better accuracy, as well

as more interpretable models. One way to control complexity is through the

selection of an appropriate subset of the predictive features for model build-

ing. There is a trade-o� between training accuracy and model complexity

(number of features); it is di�cult to determine, for a given problem, the

relative importance of these two competing objectives. The combinatorial

feature selection problem has been studied extensively in the machine learn-

ing literature, with approximate solutions being found using both �lter and

wrapper models [18, 19], and exact solutions found using integer program-

ming [36]. Further, iterative selection of feature subsets is fundamental to

traditional predictive techniques such as regression and decision tree con-

struction.

3.3.2 Pattern separation via linear programming

The problem of optimally (in a least-norm error sense) separating two point

sets can be solved using linear programming. We describe here the Robust

Linear Program (RLP) [1, 24] used in this application. The available training

points from A1 and A2 can be represented as matrices A1 and A2, with each

row of A1 (respectively A2) containing the feature values for one training

27



example from set A1 (A2). The goal is to construct a separating plane

xTw = 
 in the feature space of these examples such that all the points of

A1 lie on one side of the plane (say, A1w > e
, where e is a vector of ones of

appropriate dimension) and all the points of A2 lie on the other (A2w < e
).

This will only be possible if A1 and A2 are linearly separable, which in general

is not the case. We therefore choose to minimize the average distance between

the plane and the misclassi�ed points. This is achieved with the following

normalized minimization problem:

minimize
w;


1

n1
k(�A1w + e(
 + 1))+k1 +

1

n2
k(A2w � e(
 � 1))+k1

where kzk1 denotes the 1-norm of z and (z)+ denotes ((z)+)i = maxfzi; 0g; i =

1; : : : ;m, for z 2 Rm.

This objective can be shown to be equivalent to the following linear pro-

gram:

minimize
w;
;y;z

ey

n1
+
ez

n2

subject to

A1w � e
 + y � e

�A2w + e
 + z � e

y; z � 0:

(4)

This linear program has a number of favorable properties, including:

� If A1 and A2 are linearly separable, a separating plane is found.

� The null solution w = 0; 
 = 0 is never unique, and is only obtained

when the centroids of the two point sets are equal.
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� Use of the 1-norm error, rather than the more traditional 2-norm error,

makes Program 4 more resistant to the e�ects of outliers.

Mathematical programming models have also been used to solve the fea-

ture selection problem by incorporating feature minimization directly into

the objective. In [2], the RLP formulation was augmented with a term that

penalizes the number of non-zero coe�cient values. The resulting concave op-

timization problem was solved e�ciently using a series of linear programs, re-

sulting in signi�cant generalization improvements on high-dimensional prob-

lems. One of the problem domains explored in that paper is also used in our

experiments: the prediction of breast cancer recurrence based on cytological

features [25, 39]. A version of this data set is available at the UCI Machine

Learning Repository [35].

3.3.3 Algorithmic details

In this application the EA individuals are bit strings with length equal to

the dimensionality of the feature space. Each bit is set to 1 if the feature

is to be used in training, and 0 otherwise. We thus measure the complexity

of the classi�er as simply the number of features being used. Accuracy is

measured using the training correctness of the resulting classi�er. While this

is not a reliable estimate of generalization ability, it does allow an exploration

of the accuracy vs. complexity trade-o�. Our criteria to be maximized are

therefore

Fcomplexity(s) = 1�
Ones(s)

N

Faccuracy(s) = prediction training accuracy using feature vector s:
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Parameter Value

Ecost 0.6
� 0.3
p0 300
B (N + 1) + 100

Pr(mutation) 1

Table 5: Parameter values used with ELSA in the feature selection problem.

The application of ELSA to this problem is a straightforward imple-

mentation of the algorithm in Figure 1 and Equation 1, with the functions

Faccuracy(�) and Fcomplexity(�) as the criteria. Bins are created in correspon-

dence of each of the possible values of the criteria. While Fcomplexity has N+1

discrete values (between 0 and 1), Faccuracy takes continues values and thus

must be discretized into bins. We use 100 bins for the accuracy criterion. The

values of the various algorithm parameters are shown in Table 5. Some of the

parameters are preliminarly tuned. Replenishment takes place as shown in

Figure 2, with Ebin determined according to Equation 3 in order to maintain

an average population size equal to that used in NPGA.4

For this problem we again compare ELSA with NPGA, since VEGA has

proven a less competitive algorithm. The various parameters used for NPGA

are shown in Table 6. Note that crossover is not used in NPGA because for

this problem we don't expect any correlation across features. The higher

mutation rate, as well as the other parameter values used with NPGA, are

the result of preliminary parameter tuning.

4In this experiment only about one third of the available energy is used by the ELSA
population, so that the actual population size oscillates around hpi = 100.
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Parameter Value

�share 14.0
tdom 16
p 100

Pr(crossover) 0.0
Pr(mutation) 0.5

Table 6: Parameter values used with NPGA in the feature selection problem.

The data set used in these experiments has N = 33 features, so that the

candidate solutions in ELSA and NPGA have 33 bits.

3.3.4 Results

In the feature subset selection problem, the evaluations of the criteria ap-

pear as black boxes to the evolutionary algorithms. In fact, the accuracy

computation is very expensive and completely dominates the time complex-

ities of the algorithms.5 Given this observation, it was decided for fairness

that in the feature subset selection experiments, the only operations that

should contribute to the measured time complexities of the algorithms are

the accuracy criterion computations. Therefore time is measured in num-

ber of Faccuracy evaluations and all other algorithmic costs are assumed to

be negligible. This kind of assumption is realistic for actual multi-criteria

applications in general.

We ran the two EAs for 100,000 function evaluations. Each run took ap-

proximately 3 hours on a dedicated 400 MHz P2 Linux workstation. Figure

7 pictures the population dynamics of the algorithms in Pareto phase-space,

5The complexity computation only takes time O(N ).
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i.e., the space where the criteria values are used as coordinates. The Pareto

front is unknown, so we can only observe the populations and qualitatively

assess their progress relative to one another. Since we want to maximize

accuracy and minimize complexity, we know that a solution represented as

a point in Pareto phase-space is dominated by solutions above it (more ac-

curate) or to its right-hand side (less complex).

The general conclusion that we can draw from Figure 7 is that ELSA

tends to cover a wider range of trade-o� solutions, while NPGA focuses on a

smaller range but gets closer to the Pareto front in that range thanks to its

stronger selection pressure. These behaviors are not entirely surprising given

the analysis of Section 2.2. If closeness to the actual Pareto front is more

important than coverage, then NPGA remains a very strong competitor.

On the other hand, ELSA is able to cover almost the entire range of

feature vector complexities. A more quantitative measure of coverage can be

obtained by measuring the \area" of Pareto space covered by the population

of algorithm X at time t:

SX(t) =
1X

c=0

max
s2PX(t)

(Faccuracy(s)jFcomplexity(s) = c)

where PX(t) is the population of algorithm X at time t.6 Figure 8 plots the

areas SELSA and SNPGA versus time. These measures highlight the superior

coverage achieved by ELSA. Consequently, by looking at the extremities of

the population front, we can use ELSA to easily answer questions like, What

6Note that the dummy variable c in the summation does in fact take discrete values
corresponding to Fcomplexity.
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Figure 7: Snapshots of the ELSA and NPGA populations in Pareto phase-
space after 3, 10, 30, and 99 thousand function evaluations.
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features are the best and worst single predictors? Or, What is the maximum

complexity of the feature subsets that we should consider, beyond which

no increase in accuracy is expected? To quickly achieve such coverage of

the Pareto space is an important property for a multi-criteria optimization

algorithm.

4 Discussion

We now discuss the advantages and limitations of the local selection algo-

rithm that we have observed based on the results described in the previous

section.
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4.1 Performance

Addressing the performance of selection strategies is equivalent to discussing

the tension between exploration and exploitation. A balance between these

two opposite forces is clearly necessary even in single-criterion EAs, so that

the population can make progress toward good solutions without prematurely

converging to suboptimal ones. All multi-criteria optimization EAs enforce

diversity by constraining exploitation, to keep the population from converg-

ing at all. The di�erent techniques to achieve this goal result in di�erent

algorithmic behaviors, which are naturally problem-dependent. This paper

is intended to discuss local selection rather than to compare and critique

di�erent evolutionary approaches to Pareto optimization (see, e.g., [16] for

such a review).

LS is a weak selection scheme, so it ensures better performance in tasks

where the maintenance of diversity within the population is more important

than a speedy convergence to the optimum. We have shown that ELSA is well

suited to multi-criteria optimization and sublinear graph search applications.

In fact the population quickly distributes itself across the whole ranges taken

by the criteria. And for easy problems such as unitation versus pairs, ELSA

outperforms other e�ective multi-criteria EAs such as NPGA at locating the

entire Pareto front.

On the other hand, the exploitation of information is also necessary to cut

the search space and make progress. For problems requiring e�ective selection

pressure, local selection may be too weak, as we have shown in the case of

the feature subset selection problem. We have also applied ELSA to NP-

complete combinatorial optimization problems such as SAT and TSP, with
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little success [31]. The only selection pressure that ELSA can apply comes

from the sharing of resources. Therefore the way in which environmental

resources are coupled with the problem space in a particular application of

ELSA is crucial to its success. One limitation of ELSA may be in the fact

that the appropriate mapping of a problem onto an environmental model

may be hard to determine.

The observations that NPGA is better at multi-criteria optimization in a

more focused area of Pareto space, while ELSA is more e�cient in covering

the whole Pareto space, suggest that the two approaches could be combined.

Local selection could be used at the beginning of a run, and once a wide

range of trade-o� solutions has been located, then further resources can be

allocated to domination selection.

4.2 E�ciency

LS algorithms can be used whenever the �tness function is evaluated by an

external environment, in the sense that the environment provides appropriate

data structures for maintaining the shared resources associated with �tness.

Consider, for example, evaluating a robot in a physical environment: the

environment itself holds information about its state. The robot prompts for

some of this information through its sensors, and storing such information

may be less e�cient than simply prompting for the same information again

as needed. It may be impossible to store all relevant observations about a

distributed, dynamic environment. The environment therefore takes the role

of a data structure, to be queried inexpensively for current environmental

state.
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At a minimum, in order for LS to be feasible, an environment must allow

for \marking" so that resources may be shared and in �nite quantities. In

the graph search problem, visited nodes are marked so that the same node

does not yield payo� multiple times.7 If marking is allowed and performed in

constant time, the time complexity of LS is also O(1) per individual. This is

a big win over �tness sharing and Pareto domination tournaments, the best

alternative schemes for distributed or multi-criteria optimization. The e�-

ciency advantage of ELSA contributes to its success over NPGA and VEGA

in the unitation versus pairs problem. Further, in a distributed implemen-

tation there is little communication overhead and thus the parallel speedup

can be signi�cant.

4.3 Scalability

In the graph search problem, we have shown that ELSA responds robustly

to increases in the the number of clusters. As the search space becomes more

niched, subpopulation naturally form to cover the various niches.

The unitation versus pairs experiment with increasing problem size also

provides us with evidence of the scalability properties of local selection.

ELSA su�ers less than NPGA from the severe (doubly exponential) growth

of the search space.

Another aspect of ELSA's scalability is the robustness of its population

size in the face of problems of increasing complexity. Unlike other evolution-

ary algorithms, ELSA does not require a problem-dependent decision by the

7In a distributed information retrieval application, this issue would entail a discussion
on distributed caching.
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user regarding on appropriate population size. These scalability properties

seem crucial for evolutionary algorithms in general.

4.4 Applications

Since one of the major strengths of ELSA is its minimal centralized control

and consequent parallelization potential, distributed and parallel computa-

tion tasks seem amenable to the local selection approach. Examples of such

problems that we might attack with ELSA include distributed scheduling,

distributed resource allocation, and constrained search.

Local selection has already been applied to agent-based distributed infor-

mation retrieval, e.g. for autonomous on-line Web browsing. The InfoSpi-

ders project [28, 32] shows promise in taking advantage of several properties

of evolutionary local selection algorithms: (i) coverage, for quickly locating

many relevant documents; (ii) distributedness, to conserve bandwidth by

enabling agents to run on the remote servers where documents reside; and

(iii) localization, so that each agent may face an easier learning problem by

focusing on a limited set of features | words | that are locally correlated

with relevance.

The application to inductive learning can be extended to perform wrapper-

model feature subset selection. Local selection can be applied as in the ex-

periments described in this paper to identify promising feature subsets of

various sizes. The best of these can then be subjected to a more thorough

and costly analysis such as cross-validation to obtain a more reliable estimate

of generalization accuracy. This approach would be particularly attractive in

an \any-time learning" context, in which little overhead would be required
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to maintain a record of the best individual encountered so far. Note also that

the measure of complexity can easily be adapted to other predictive models

such as arti�cial neural networks or decision trees.

Local selection can also serve as a framework for experiments with ensem-

ble classi�ers. By extending the environmental model to associate resources

with features, in addition to criteria values, we can encourage individual clas-

si�ers to specialize in particular regions of the feature space. The predictions

of these \orthoganal" classi�ers can then be combined (say, by voting) to

produce a single classi�cation system that is more accurate than any of the

individuals working alone.

Distributed robotics is another application area for which evolutionary

local selection algorithms may prove feasible. For example, populations of

robots may be faced with unknown, heterogeneous environments in which

it is important to pay attention to many sensory cues and maintain a wide

range of behaviors to be deployed depending on local conditions.

4.5 Future directions

The applications outlined above are attractive directions for future work

aimed at further analysis and testing of evolutionary local selection algo-

rithms. The two multi-criteria problems considered in this paper are insu�-

cient to fully evaluate ELSA. We hope to identify applications that will allow

us to better assess the performance and e�ciency of local selection, and to

better characterize the problem domains in which ELSA may be feasible and

successful.

One aspect of scalability that we have not addressed is the algorithmic
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behavior with respect to increases in the number of criteria. We have followed

the common practice of testing algorithms on \toy" problems and real-world

problems with only two criteria. It is imperative to explore the performance

of ELSA in real Pareto optimization problems with large numbers of criteria.

The interactions of local selection with recombination operators, in par-

ticular with local rather than panmictic mating, have not been explored and

deserve attention in the future.

We also intend to study the e�ect of reinforcement learning within an

agent's lifetime and its interaction with local and global selection schemes.

Some initial experiments suggest a strong duality between local selection and

reinforcement learning, where the two adaptive mechanisms can be viewed as

attempts to internalize environmental cues at multiple spatial and temporal

scales [28].
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