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Abstract

Feature subset selection is an important problem in knowledge discovery, not only

for the insight gained from determining relevant modeling variables but also for the

improved understandability, scalability, and possibly, accuracy of the resulting models.

Feature selection has traditionally been studied in supervised learning situations, with

some estimate of accuracy used to evaluate candidate subsets. However, we often cannot

apply supervised learning for lack of a training signal. For these cases, we propose a new

feature selection approach based on clustering. A number of heuristic criteria can be

used to estimate the quality of clusters built on the basis of a given feature subset. Rather

than attempting to combine such criteria, we use ELSA, an evolutionary local selection

algorithm capable of maintaining a diverse population of solutions that approximate the

Pareto front in a multi-dimensional objective space. Each evolved solution represents

a feature subset and a number of clusters; a standard K-means algorithm is applied

to form the given number of clusters based on the selected features. We evaluate the

approach with two synthetic data sets, one with ad-hoc distributions of points in a low-

dimensional space and one with random distributions in a high-dimensional space. We

also apply the algorithm to real data. Our preliminary results show promise in �nding

Pareto-optimal solutions through which we can identify the signi�cant features and the

correct number of clusters.
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1 Introduction

Feature selection and clustering are active research areas in pattern recognition, machine

learning, and data mining. Feature selection is de�ned as the process of choosing a subset

of the original predictive variables by eliminating redundant features and those with little

or no predictive information. If we extract as much information as possible from a given

data set while using the smallest number of features, we can not only save a great amount

of computing time and cost, but often build a model that generalizes better to unseen

points. Further, it is often the case that �nding the correct subset of predictive features is

an important problem in its own right.

We adopt the wrapper model [16] of feature selection which requires two components:

a search algorithm that searches through the possible combinations of features, and one or

more criterion functions that evaluate the quality of each feature subset. Let D represent

the original feature dimension of a given data set. The whole search space is O(2D), making

exhaustive search impractical for data sets with even moderate dimensionality.

Most research on search algorithms has used heuristic search approaches in favor of

eÆciency rather than optimality. For instance, algorithms such as sequential search [30, 19],

branch and bound [26], nonlinear optimization [5], and simulated annealing [27] have been

applied. The formulation of feature selection as a combinatorial optimization problem has

also lead to the use of genetic algorithms [28, 31]. A recent review of these methods can be

found in [8]. Regardless of the search algorithm employed, most previous methods evaluated

potential solutions in terms of predictive accuracy. Speci�cally, the data set could be divided

into training and test sets, with the error rate on the test set used to estimate the classi�er's

true error rate. However, in many situations we don't have information about the class to

which each data point belongs, and thus we can not apply supervised learning to estimate

subset quality.

Instead, we may wish to �nd natural grouping of the examples in the feature space.

This problem of clustering or unsupervised learning is another active research area in the

knowledge discovery community. The idea is to represent groups of points by a cluster

center after determining the inherent number of clusters in the given data set. For example,
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clustering can be used very e�ectively in target marketing. Based on customer behavior

such as brand loyalty, price sensitivity, or quality sensitivity, manufacturers can use di�erent

marketing strategies. Furthermore, they can save time and expense by restricting their

concern to a group of customers who are most likely to buy their goods. One diÆculty

in clustering is to determine the number of clusters. Once a number of clusters have been

formed based on some given features, we must to evaluate how well this model represents

the complexity of the data. Clustering may be performed using iterative methods such as

K-means [17] or expectation maximization (EM) [12], probability models [7], or optimization

models [6]. Recent research has focused on scaling methods like K-means to large data sets

[4]. We take the view that an e�ective way to scale a clustering algorithm is to reduce the

dimensionality of the data by using a subset of the points to select a subset of the features.

A number of heuristic criteria can be used to estimate the quality of the clusters. Ex-

amples include the compactness of each cluster and the separation among di�erent clusters.

Several attempts have been made to combine di�erent heuristic quality measures into some

single quantity to be optimized [9]. This is a diÆcult problem to solve in the general case,

since any given data set may have unique characteristics, and any given decision maker

will have their own mental model of the tradeo�s among criteria. In such situations we

must use multi-objective or Pareto optimization. Formally, each solution si is associated

with an evaluation vector F = (F1(si); : : : ; FC(si)) where C is the number of quality cri-

teria. One solution s1 is said to dominate another solution s2 if 8c : Fc(s1) � Fc(s2) and

9c : Fc(s1) > Fc(s2), where Fc is the c-th criterion, c 2 f1 : : : Cg. Neither solution dominates

the other if 9c1; c2 : Fc1(s1) > Fc1(s2); Fc2(s2) > Fc2(s1). We de�ne the Pareto front as the

set of nondominated solutions. The goal is to approximate as best possible the Pareto front,

presenting the decision maker with a set of high-quality solutions from which to choose.

To this point, feature selection and clustering have been studied separately. In this study,

we solve the two problems simultaneously by proposing an unsupervised algorithm to select

a subset of features. As a search algorithm, greedy methods such as sequential 
oating

search are suitable for small- and medium-scale problems [21]. Since we are interested in

large-scale problems, we turn to evolutionary algorithms (EAs) to intelligently search the

space of possible feature subsets. An EA is a parallel and global search algorithm that works
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with a population of solutions to simultaneously evaluate many points in the search space.

Ideally the population of an EA converges to the global optimum. However, standard

EAs often converge prematurely to local optima. Furthermore, standard EAs assume a single

�tness function to be optimized and thus cannot consider multiple �tness criteria e�ectively.

A number of multi-objective extensions of evolutionary algorithms have been proposed in

recent years [29]. Most of them employ computationally expensive selection mechanisms to

favor dominating solutions and to maintain diversity, such as Pareto domination tournaments

[15] and �tness sharing [13].

Since we wish to search the space in parallel without sacri�cing eÆciency, we use a new

evolutionary algorithm that maintains diversity over multiple objectives by employing a

local selection scheme. This Evolutionary Local Selection Algorithm (ELSA) works well for

Pareto optimization problems [24]. In this framework, each individual solution is allocated

to a local environment based on its criteria values and competes with others to consume

shared resources only if they are located in the same environment. Eventually, its chance to

reproduce is jointly a�ected by its quality and by the presence of similar solutions sharing

its local environmental resources. The more densely populated the local environment, the

more competition among individuals for resources, resulting in bias toward di�erent local

environments. In this application, the EA automatically maintains diversity among solutions

by biasing its search toward uncovered combinations of features.

In order to evaluate the quality of a subset of features, we use the standard K-means

algorithm [17] with each solution's selected subset of features. K-means requires the number

of clusters, K, as input. In our approach we do not want to commit to some estimate of

the number of clusters, nor to search exhaustively or greedily over possible values of K.

Therefore we evolve K as part of the genotypic representation of each individual solution,

along with the feature subset. If the selected features are suÆcient to explain the data, we

expect our clustering to be e�ective.

The remainder of the paper is organized as follows. In Section 2, we discuss our approach

in detail, justifying our heuristic clustering quality metrics, illustrating our evolutionary

algorithm, and describing how ELSA is combined with K-means. Section 3 presents some

experiments with synthetic and real data sets, and discusses the interpretation of the ELSA
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output to select a subset of good features. Finally, we conclude the paper by suggesting

directions for future work.

2 Feature selection algorithm

2.1 Heuristic metrics for clustering

A number of numerical measurements are available to evaluate clustering quality [14, 9].

Most of them are based on geometric distance metrics and therefore they are not directly

applicable because they are biased by the dimensionality of the space, which is variable

in feature selection problems. In our study we use four heuristic �tness criteria, described

below. Two of the criteria are inspired by statistical metrics and two by Occam's razor [3].

Each objective, after being normalized into the unit interval, is to be maximized by the EA.

Fwithin : This objective is meant to favor dense clusters by measuring cluster cohesiveness.

It is inspired by the total within-cluster sum of squares (TWSS) measure. Formally,

let xi; i = 1; � � � ; n, be data points and xij be the value of the j-th feature of xi. Let d

be the dimension of the selected feature set, J , and K be the number of clusters. Now,

de�ne the cluster membership variables �ik as follows:

�ik =

8><
>:

1 if xi belongs to cluster k

0 otherwise

where k = 1; � � � ; K and i = 1; � � � ; n. The centroid of the k-th cluster, 
k, can be

de�ned by its coordinates:


kj =

Pn
i=1 �ikxijPn
i=1 �ik

; j 2 J:

Fwithin can �nally be computed as follows:

Fwithin = 1�
1

Zwithin

1

d

KX
k=1

nX
i=1

�ik
X
j2J

(xij � 
kj)
2 (1)

4



where the normalization by the number of selected features, d, is meant to compensate

for the dependency of the distance metric on the dimensionality of the feature subspace.

Zwithin is a normalization constant meant to achieve Fwithin values spanning the unit

interval. Its value is set empirically for each data set.

Fbetween : This objective is meant to favor well-separated clusters by measuring their distance

from the global centroid. It is inspired by the total between-cluster sum of squares

(TBSS) measure. We compute Fbetween as follows:

Fbetween =
1

Zbetween

1

d

1

k � 1

KX
k=1

nX
i=1

(1� �ik)
X
j2J

(xij � 
kj)
2 (2)

where, as for Fwithin, we normalize by the dimensionality of the selected feature sub-

space and by the empirically derived constant Zbetween.

Fclusters : The purpose of this objective is to compensate for the previous metrics' bias to-

wards increasing the number of clusters. For example, Fwithin = 1 in the extreme case

when we have the same number of clusters as the number of data points, with each

point allocated to its own cluster. Clearly such over�tting makes the model more com-

plex and less generalizable than can be justi�ed by the data. Therefore, other things

being equal, we want fewer clusters:

Fclusters = 1�
K �Kmin

Kmax �Kmin
(3)

whereKmax (Kmin) is the maximum (minimum) number of clusters that can be encoded

into a candidate solution's representation.

Fcomplexity : The �nal objective is aimed at �nding parsimonious solutions by minimizing the

number of selected features:

Fcomplexity = 1�
d� 1

D � 1
: (4)

Note that at least one feature must be used. Other things being equal, we expect

that lower complexity will lead to easier interpretability of solutions as well as better
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initialize population of agents, each with energy �=2
while there are alive agents and for T iterations

for each energy source c
for each v (0 .. 1)

Ec
envt

(v) 2vEc
tot

endfor

endfor

for each agent a
a0
 mutate(clone(a))

for each energy source c
v  Fitness(a0; c)
�E  min(v; Ec

envt
(v))

Ec
envt

(v) Ec
envt

(v) ��E
Ea  Ea +�E

endfor

Ea  Ea �Ecost

if (Ea > �)
insert a0 into population

Ea0  Ea=2
Ea  Ea � Ea0

else if (Ea < 0)
remove a from population

endif

endfor

endwhile

Figure 1: ELSA pseudo-code. In each iteration, the environment is replenished and then
each alive agent executes the main loop. In sequential implementations, the main loop calls
agents in random order to prevent spurious sampling e�ects. Extinction does not occur in
the experiments described in this paper, so we stop the algorithm after T iterations. The
values of this and other parameters are discussed in Section 3.

generalization.

2.2 Evolutionary local selection algorithm

ELSA springs from algorithms originally motivated by arti�cial life models of adaptive agents

in ecological environments [23]. Modeling reproduction in evolving populations of realistic

organisms requires that selection, like any other agent process, be locally mediated by the

environment in which the agents are situated. An agent's �tness must result from individ-

ual interactions with the environment, which contains other agents as well as �nite shared

resources.

We now brie
y describe the ELSA implementation for the feature selection problem

discussed in this paper. A more extensive discussion of the algorithm and its application

to Pareto optimization problems can be found elsewhere [24]. Figure 1 outlines the ELSA

algorithm at a high level of abstraction.

Each agent (candidate solution) in the population is �rst initialized with some random
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solution and an initial reservoir of energy. The representation of an agent consists of D +

Kmax � 2 bits. D bits correspond to the selected features (1 if a feature is selected, 0

otherwise). The remaining bits are a unary representation of the number of clusters.1 The

motivation for this representation over a binary one stems from the desire to preserve the

regularity of the number of clusters under the mutation operator: mutating any one bit will

change K by one. Mutation is the only genetic operator (no crossover operator is used in

the experiments described here) and therefore it is the only means of exploring the search

space.

In each iteration of the algorithm, an agent explores a candidate solution similar to itself.

The agent collects �E from the environment and is taxed with Ecost for this action. The

net energy intake of an agent is determined by its �tness. This is a function of how well the

candidate solution performs with respect to the criteria being optimized. But the energy

also depends on the state of the environment. The environment corresponds to the set of

possible values for each of the criteria being optimized.2 We imagine an energy source for

each criterion, divided into bins corresponding to its values. So, for criterion �tness Fc and

bin value v, the environment keeps track of the energy Ec
envt(v) corresponding to the value

Fc = v. Further, the environment keeps a count of the number of agents Pc(v) having Fc = v.

The energy corresponding to an action (alternative solution) a for criterion Fc is given by

Fitness(a; c) =
Fc(a)

Pc(Fc(a))
: (5)

Candidate solutions receive energy only inasmuch as the environment has suÆcient resources;

if these are depleted, no bene�ts are available until the environmental resources are replen-

ished. Thus an agent is rewarded with energy for its high �tness values, but also has an

interest in �nding unpopulated niches in objective space, where more energy is available.

The result is a natural bias toward diverse solutions in the population. Ecost for any action

is a constant (Ecost < �).

In the selection part of the algorithm, each agent compares its current energy level with

1The cases of zero or one cluster are meaningless in this application. Therefore we count the number of

clusters as k = �+ 2 where � is the number of ones and 2 � k � Kmax.
2Continuous objective functions are discretized.
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assign each data point to a randomly chosen cluster

calculate the centroid 
k of each cluster k
do

for each point i
move i to nearest cluster argmink distance(i; 
k)

endfor

recalculate the centroids of clusters whose data sets have changed

while at least one point changed cluster assignment

Figure 2: K-means clustering algorithm.

a threshold �. If its energy is higher than �, the agent reproduces: the mutated clone that

was just evaluated becomes part of the population, with half of its parent's energy. When an

agent runs out of energy, it is killed. The population size is independent of the reproduction

threshold; � only a�ects the energy stored by the population at steady-state.

When the environment is replenished with energy, each criterion c is allocated an equal

share of energy:

Ec
tot =

pmaxEcost

C
(6)

where C = 4 criteria in this study. This energy is apportioned in linear proportion to the

values of each �tness criterion, so as to bias the population toward more promising areas

in objective space [11]. Note that the total replenishment energy that enters the system at

each iteration is pmaxEcost, which is independent of the population size p but proportional

to the parameter pmax. This way we can maintain p below pmax on average, because in

each iteration the total energy that leaves the system, pEcost, cannot be larger than the

replenishment energy.

2.3 K-means algorithm

In order for ELSA to assign energy to a solution, it needs to evaluate the �tness criteria

corresponding to the solution's feature subset and number of clusters. Therefore it must form

the given number of clusters based on the selected features. In the experiments described

here, the clusters to be evaluated are constructed using a standard K-means algorithm [17].

K-means is one of the most often used non-hierarchical clustering methods. It iteratively

assigns each data point to the cluster whose centroid is located nearest to the given point,

and recalculates the centroids based on the new set of assignments. Some variants of K-
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means have been suggested in order to improve the eÆciency of the algorithm, avoid initial

seed value e�ects, or �nd the global optimum [20, 1]. However, in our study we use the

standard K-means algorithm as summarized in Figure 2.

Each time a new candidate solution is evaluated, the corresponding bit string is parsed

to get a feature subset J and a cluster number K. The K-means algorithm receives in input

the projection of the data set onto J and uses it to form K clusters. The four �tness criteria

Fwithin, Fbetween, Fclusters, and Fcomplexity are then computed and returned to ELSA.

3 Evaluation

By de�nition it is hard to evaluate the quality of an unsupervised clustering algorithm.

Feature selection problems present the added diÆculties that the clusters depend on the

dimensionality of the selected features and that any given feature subset may have its own

clusters, which may well be incompatible with those formed based on di�erent feature subsets.

For these reasons we take a gradual approach to evaluate the proposed approach. First,

we use a small-dimensional synthetic data set, in which the points have been generated

carefully with well-de�ned distributions and clusters along each feature dimension. This

data set allows us to validate our algorithm by determining whether any given solution

evolved by ELSA represents a sensible compromise between the con
icting heuristic quality

objectives.

Second, we use a high-dimensional synthetic data set, in which the distributions of the

points and the signi�cant features are known, while the appropriate clusters in any given

feature subspace are not known. This data set allows us to estimate the performance of

the algorithm by observing which portions of the signi�cant features are identi�ed by the

evolved solutions.

Finally, we use a real data set for which we have knowledge about the clusters and the

relevant features. In this case, we can evaluate the solutions both by examining the selected

features and by judging the semantics of the resulting clusters.

Another way to evaluate our approach is by comparison with an alternative algorithm.

For this purpose we have implemented a greedy heuristic algorithm known as two-way se-
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quential selection [18]. Our implementation of this algorithm for clustering requires a set

value of K and uses Fwithin as the only optimization criterion. The algorithm begins by �nd-

ing the single dimension along which the objective is optimized. This dimension constitutes

the initial feature set. At each successive step, the algorithm adds the feature that, when

combined with the current set, forms the best clusters. It then checks to see if the least

signi�cant feature in the current set can be eliminated to form a new set with superior per-

formance. This iteration is continued until all the features have been added. For comparison

purposes, we repeated the algorithm for the same values of K considered by ELSA.

3.1 Experiment 1

The �rst synthetic data set has n = 300 points and D = 6 features. It is constructed as

follows. One cluster is formed along feature 1 and two clusters are formed randomly along

feature 2. Therefore if we plot the data projected onto dimensions 1 and 2 we obtain two

clearly separated clusters. Along feature 3, we randomly reassign the points to two indepen-

dent clusters. We repeat the process for feature 4. Finally, for features 5 and 6, the points

are distributed uniformly. All the clusters along each dimension are formed by generating

points from a pseudo-Gaussian distribution obtained by averaging the coordinates of some

number of uniformly distributed points.3 Figure 3 illustrates this data set by projecting the

points onto some of the feature subspaces with d = 2.

The motivation for this data set is to have an understanding of the relationships between

the di�erent features, and at the same time a realistic mixture of signi�cant, less signi�cant,

and insigni�cant features. If we consider the subsets of dimensionality d = 2, feature 1 taken

in conjunction with feature 2, or 3, or 4 creates two correlated clusters. However, if we pick

any two of features 2, 3, or 4, the clusters in each dimensions are not correlated and thus

there are four clusters. If we considered d = 3 and we picked features 2, 3, and 4, we would

�nd 23 = 8 clusters. The last two features are white noise and thus of no signi�cance.

The individuals are represented by strings with 12 bits, 6 for the features and 6 for the

number of clusters, so that Kmax = 8. There are 7 energy bins for Fclusters, 6 for Fcomplexity,

3The standard deviation of these pseudo-Gaussian distributions is � � 0:06.
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Figure 3: The data set of Experiment 1, plotted in some of the possible 2-dimensional subsets
of the features space.

Parameter Value
Pr(mutation) 0.1
Pr(crossover) 0

pmax 100
Ecost 0.2
� 0.3
T 400

Table 1: ELSA parameters values. The probability of mutation refers to a per-bit mutation
rate.
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and 10 each for Fwithin and Fbetween. The values used for the various ELSA parameters are

shown in Table 1.

The best solution with four clusters in more than one dimension included features 2 and

3. The best solution with K = 2 and more than one dimension included features 1 and

4. As depicted in Figure 3, both of these solutions describe the data very well. The �nal

population was dominated by solutions with one feature, which typically look extremely

good along two criteria: complexity, and either Fwithin (many centers inside one true cluster)

or Fbetween (well-separated centers along a random dimension).

As expected, the greedy search method performed very well on this simple data set. With

K = 2, features were added in the order 1, 3, 2, 4, 5, 6; with K = 4, the order was 1, 3,

4, 2, 5, 6. As it happens, the two-dimensional clusters along features 1 and 3 are somewhat

better (in terms of Fwithin than those along features 1 and 2.

3.2 Experiment 2

With the second data set we intend to test the algorithm on a problem with higher dimen-

sionality, while retaining the \realistic" 
avor of the smaller data set. In other words we

have some \signi�cant" features (in which points belong to correlated normal clusters), some

\Gaussian noise" features (in which values are drawn from single or bimodal normal distribu-

tions along each dimension, but the distributions along di�erent features are uncorrelated),

and some \white noise" features (in which points are drawn from uniform distributions).

The data set has n = 500 points and D = 30 features. It is constructed so that the

�rst 10 features are signi�cant, with 5 \true" clusters consistent across these features. The

next 10 features are Gaussian noise, with points randomly and independently assigned to 2

normal clusters along each of these dimensions. The remaining 10 features are white noise.

The standard deviation of the normal distributions is � � 0:06 and the means are themselves

drawn from uniform distributions in the unit interval, so that the clusters may overlap |

the actual number of clusters may be smaller than constructed, along each dimension.

Individuals are represented by 38 bits, 30 for the features and 8 forK (Kmax = 10). There

are 9 bins for Fclusters and 10 each for Fcomplexity, Fwithin, and Fbetween. The parameters for

ELSA are the same as those used in Experiment 1 (see Table 1), except that T = 8000
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Figure 4: ROC curve showing sensitivity and speci�city of the individuals in the �nal gen-
eration for data set 2, along with the solutions generated by the greedy algorithm.

iterations.

Another way to evaluate the performance of our algorithm is by looking at the sensitivity

and speci�city of each evolved solution. These measures are de�ned as follows:

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

where TP (true positive) is the number of selected signi�cant features, FP (false positive)

is the number of selected noise features, TN (true negative) is number of discarded noise

features, and FN (false negative) is the number of discarded signi�cant features. Ideally, both

measurements would be close to 1, as only signi�cant features would be selected. However,

as we increase a solution's complexity (decrease Fcomplexity), more features are selected and

as a result sensitivity goes up while speci�city goes down. Therefore, if we plot sensitivity

versus speci�city (an ROC curve) for the solutions in the �nal population, we can estimate

the algorithm's e�ectiveness at discriminating between signi�cant and noise features.

Figure 4 shows such an ROC curve for our large synthetic data, along with the values
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for the solutions generated by the greedy algorithm for K = 2; � � � ; 10 clusters. ELSA can

successfully discard noise features, as shown by speci�city values up to 95%. The range of

the sensitivity among the evolved solutions is smaller, with a peak of 70%. This is consistent

with the data set, since the clusters along the 10 signi�cant dimensions are correlated and

therefore not all those features are necessary. The trend displayed by the intermediate ELSA

solutions attests to the trade-o� between sensitivity and speci�city in this diÆcult problem.

The greedy algorithm �nds a few solutions with both high sensitivity (up to 80%) and

high speci�city (up to 90%), but it has additional knowledge about the problem | it uses

a complexity of 10 features, corresponding to the number of signi�cant dimensions in the

data.

3.3 Experiment 3

In addition to the arti�cial data sets discussed above, we also test our algorithm on a real

data set, the Wisconsin Prognostic Breast Cancer (WPBC) data [22, 2]. This data set

records 30 numeric features quantifying the nuclear grade of breast cancer patients at the

University of Wisconsin Hospital. It also contains traditional prognostic variables tumor size

and number of positive lymph nodes, along with a binary variable indicating whether lymph

status was recorded. This results in a total of 33 features for each of 227 cases.

Individuals are represented by 37 bits, 33 for the features and 4 for K (Kmax = 6),

therefore there are 5 bins for Fclusters. Other ELSA parameters are the same as those used

in Experiment 2 (see Table 1), except that T = 10,000.

We analyze clustering performance on this data set by looking for clinical relevance in

the resulting clusters. Speci�cally, we can observe the actual outcome (time to recurrence, or

known disease-free time) of the cases in the various clusters. Figure 5 shows a Kaplan-Meier

estimate of the true disease-free survival times for patients in the clusters represented in one

solution from our �nal population. This solution contained three clusters in 7 dimensions.

It was chosen by picking the best individual (in terms of Fbetween and Fwithin) with three

clusters from the �nal population.

The �gure clearly shows that the clustering solution found three groups with well-

separated survival characteristics. The best prognostic group (represented by the top curve)
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Figure 5: Estimated survival curves for the groups found by the ELSA-based clustering
method. Choosing best solution with three clusters created groups corresponding to good,
intermediate, and poor prognosis.

was relatively small, containing 22 cases, with only three recurrences. Because of its small

size, it was not statistically signi�cantly di�erent from the intermediate group (p = .075).

The intermediate group was well-di�erentiated from the poor group (p < 0.01).

The chosen dimensions included a mix of nuclear morphometric features such as sym-

metry, concavity and texture, along with lymph status and tumor size. We note that the

inclusion of lymph status requires dissection of the ancillary nodes for staging purposes,

leaving the patient at risk for painful complications. While we would prefer to make treat-

ment decisions without this feature, the clustering results consistently indicated that it was

relevant to the forming of prognostic groups.

4 Conclusions

We presented a novel approach for large-scale feature selection problems using unsupervised

learning. ELSA, an evolutionary local selection algorithm, was used successfully in previous

work in conjunction with supervised learning [24, 25]. In this paper we used ELSA to

search for possible combination of features and numbers of clusters, with the guidance of the
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K-means algorithm. While the search biases of ELSA and K-means may not be ideal for

this application, the combination of a multi-objective search algorithm with unsupervised

learning provides a promising framework for feature selection. We summarize our �ndings

as follows.

� ELSA covers a large space of possible feature combinations well while simultaneously

optimizing the multiple criteria.

� The standard K-means algorithm can be used to guide ELSA by evaluating the quality

of a subset of features.

� A number of possibly con
icting heuristic metrics can be plugged into the algorithm,

while remaining agnostic about their relative worth or their relationships.

� Most importantly, in the proposed framework we can select signi�cant feature subsets

without training examples, while at the same time identifying the inherent numbers of

clusters.

In future work we would like to compare the performance of ELSA on the unsupervised

feature selection task with other multi-objective EAs [10], using each in conjunction with the

standard K-means algorithm. We will also consider the use of di�erent clustering algorithms

that may be more appropriate in speci�c situations, such as problems with nominal features

or clusters with di�erent shapes.

Another interesting direction is the further analysis of the interactions among our various

optimization criteria. For instance, increasing the number of features dramatically a�ects

both of our cluster quality metrics. While we corrected for much of this e�ect with normaliza-

tion terms, further study is needed to decorrelate the e�ects of the various criteria. Further,

the Fbetween measure does not necessarily correlate directly with one's intuition about cluster

quality. Well-separated, but nearby, clusters are judged harshly by the traditional TBSS

measure on which Fbetween is based. We will explore other objectives that implement the

idea of forming well-separated clusters.

Although in theory the best thing that an algorithm can do in multi-objective optimiza-

tion is to approximate the Pareto front, it would be desirable from the standpoint of a
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non-expert user to identify one single solution, out of the �nal population, representing a

\best compromise." Once the algorithm has identi�ed a manageable set of candidate solu-

tions (the Pareto front approximation in the �nal population), we might be able to apply

some more expensive statistical or geometric method. For example, we might look along

the approximate Pareto front for a point of maximal curvature, by considering tangential

hyperplanes in Pareto space.

From a knowledge discovery perspective, our algorithm o�ers several advantages. Cer-

tainly the simplicity bias of Occam's Razor is well-established as a means for improving

generalization on real-world data sets. Further, it is often the case that the user can gain

insight into the problem domain by �nding the set of relevant features; consider, for example,

the signi�cant literature on prognostic factors in breast cancer, or the target marketing prob-

lem described in Section 1. Finally, a key problem in data mining is the scaling of predictive

methods to large data sets. Our algorithm can easily be used as a preprocessing step to

determine an appropriate set of features (and number of clusters), allowing the application

of iterative algorithms like K-means on much larger problems.
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