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Abstract
This paper introduces a multi-objective EA, termed the Clustering Pareto Evolutionary Algorithm (CPEA). The CPEA finds and retains
many local Pareto-optimal frontiers, rather than just the global frontier as is the case of most multi-objective EAs found in the literature.
This has been achieved using a clustering technique commonly used in multivariate statistical analysis, which ensures that competition
between individuals is local in variable space, allowing the population to grow to resolve as many Pareto-optimal frontiers as necessary. The
performance of the CPEA is evaluated on several test problems taken from the literature which have either single optima or multiple local
optima and is shown to be extremely effective. The present clustering method is computationally expensive and will be replaced with an
incremental method in the near future.

1 Introduction

One of the major area of interest in large, integrated engi-
neering processes is thermodynamic, economic and environ-
mental optimisation. Typically this involves the modelling of
a large, integrated system (such as a power station) in terms
of both the configuration (choice of machines and sizes) and
the operating conditions. The aim is to optimise these models
to find a system configuration that will combine good eco-
nomics with good thermal efficiency and/or minimal environ-
mental impact.

In order to include both economic and environmental cri-
teria (for example pollution), a conventional single-objective
optimisation requires that the two criteria be combined. To
date, the Laboratoire d’Energétique Industrielle (LENI) has
done this by attributing cost factors to each pollutant and then
minimising the overall cost of installation, operation and pol-
lution. The choice of these pollution factors poses several
difficulties, and has been studied in several research projects,
such as [1], where the sensitivity of the optimal solution to
changes in pollution costs is dramatic.

The system models used are complex and the parameters
and objective functions are often non-linear, non-continuous
and disjoint with mixed real and integer variables. The res-
olution of this class of problem with numerical methods is
difficult. EAs provide a robust and effective (if a little slow)
alternative.

With most integrated systems engineers would like to have
a choice of good solutions covering a range of different tech-
nological configurations. Promising results have been ob-
tained [1][2][3] at LENI using a niching EA called the “Strug-
gle GA”[4], developed at MIT. This EA allows real, integer
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and boolean values to be mixed and tries to keep multiple
solutions which are allgoodbut which are considereddiffer-
ent by some user defined distance metric. Ideally the metric
represents different regions of the dependent variable domain
and hence different system configurations.

The advantage of multimodal optimisation is that the en-
gineer is able to choose from a set of local optima a solution
that is perhaps not theglobal optimum of the system defined
by the system model and objectives, but which may be the
bestsolution of the real system when other, difficult to quan-
tify considerations are taken into account.

Unfortunately, this implementation of the Struggle GA
does not tackle the problem of dealing with multiple ob-
jectives - hence the need for pollution factors. For envi-
ronomic optimisation knowledge of the Pareto optimal set
of cost/pollution solutions would be ideal. Existing Pareto-
optimising EAs tend to eliminate all but the best set of solu-
tions, resulting in only one technological option.

What we want to find is severallocal Pareto-optimal sets
where local refers to decision variable space - technology
type and operating conditions. This implies multiple Pareto-
optimal sets in objective space, that may overlap, or where
one local set may be entirely dominated by another, that rep-
resent different niches in the decision space.

The following sections briefly review existing algorithms,
introduce the CPEA, demonstrate its performance on test
problems, and discuss directions for future work on the al-
gorithm.

2 Existing Multiobjective Evolutionary Algo-
rithms

A survey of the literature has revealed several approaches to
Pareto-EA based optimisation. These are reviewed in [5][6]



and are described and compared in [7], and this discussion
will not be repeated here. However it is worth noting the
following points:

• They all appear to use EA schemes with binary coded
variables, in contrast to the real-variable coding used
by the Struggle GA and the CPEA.

• They all use a population-replacing generational ap-
proach, where at each generation an entire new pop-
ulation, is generated from the previous. To avoid los-
ing non-dominated solutions, some algorithms resort to
“elitism” or marking the non-dominated solutions as a
“special” population that will persist from generation
to generation.

• They try to find only the global Pareto-optimal set of
solutions for the problem, and tend to lose other local
optima.

• Many use the concept of “fitness sharing” in the ob-
jective domain to thin the points on the non-dominated
surface. Unfortunately, while similar points in param-
eter space will usually produce similar results in ob-
jective space, the converse is not usually true - hence
diversity in parameter space is lost.

3 The Clustering Pareto EA

In our algorithm, Pareto set multi-objective optimisation is
integrated with clustering concepts commonly used in statis-
tical multivariate analysis. In contrast to the algorithms men-
tioned above, we use clustering in parameter space to try to
preserve local optima, and we use a “breed and die” popula-
tion control which allows the population to expand over the
non-dominated frontier. A detailed description of the algo-
rithm is given below, and discussion follows.

3.1 Description of the Algorithm

• An initial population ofpi individuals is randomly gen-
erated and the objectives for each individual are evalu-
ated.

• Distances between every pair of points are calculated.

• A linkage analysis [8] is performed using the distances
between the points.

• The solutions are clustered, either using a cutoff value
for the inconsistency of the cluster tree lengths[9], or
on given number of clusters,ncl.

• The individuals in each cluster are given a rank based
on how many other individuals in the cluster dominate
or are dominated by the point.

• Each cluster is given the chance to producench chil-
dren. A single child is created by the following pro-
cess:

– A parent is chosen from the cluster in question.
The choice is made with a preference for better-
ranked parents.

– A decision is made as to whether the other parent
will come from this cluster, or from another.

– A child is created using a real variable crossover
mechanism [4] which provides the search element
normally provided by binary crossover and muta-
tion. This creates children in a hypercube defined
by the two parents.

– The cluster which contains the new point is found,
and is marked for later “culling”.

• In each cluster that has been marked for culling an at-
tempt is made to reduce the cluster size. Several strate-
gies are tried:

– poorly ranked points are are consecutively
marked for removal until the cluster is smaller
than a given maximum cluster size,nmax.

– all points with a rank equal to or worse than a
rmax are marked for removal.

– if the cluster contains a sufficient number of
points in its best rank, its entire worst rank is
marked to be removed.

– if none of the above conditions are met, one
randomly chosen point from the worst rank is
marked to be removed.

• All the marked points are removed from the popula-
tion, and the children are added. If the total number of
function evaluations is less thannev, execution returns
to the linkage analysis.

• As a final step, the clusters are “cleaned up” - all indi-
viduals with a rank worse than one are removed from
the population.

3.2 Notes on the CPEA

• For most of the test problems (except Zitzler’st3), the
distances between the points were Euclidian distances
in a normalised parameter space. In many cases, how-
ever, using only some of the parameters, and/or using
some of the objectives, in the calculation of distance
may be more appropriate. Ideally, we would like to find
an automatic distance measure that works in a large
number of cases, however for real problems the dis-
tance function will probably have to be defined by the
user, as in the Struggle GA.

• Currently, the clustering is a hierarchical Ward cluster-
ing performed by the MATLAB functioncluster-
data [9]. This means that a complete clustering algo-
rithm is performed at each iteration, which is very slow.
A priority in the development of the algorithm, once



its performance has been proved on large environomic
problem will be to implement incremental clustering.

• In our tests, using a fixed number of clusters was far
superior to using an inconsistency measure. Unfortu-
nately, this means the user must havea priori knowl-
edge about the number of local optima. We would pre-
fer that the clustering algorithm worked without help,
and expect that this will be possible with a little work
on the clustering.

• The ranking used isonly local. The “best” point in a lo-
cality that is dominated by other clusters has the same
rank (1) as the global best point. The ranking currently
implemented is that described by Goldberg[10], where
the non-dominated are given rank 1 and removed from
the rank search, the new non-dominated are given rank
2 and removed and so on until each individual has a
rank. Zitzler and Thiele[11] propose a ranking scheme
with a higher resolution than that described by Gold-
berg, and we hope to implement and test this ranking
in the near future.

• In one iteration, each cluster can breed several times.
Practically, this is because the reclustering and ranking
at the beginning of each iteration is very slow. Perhaps
ideally, the reclustering could be performed after each
birth and death. However, if viewed from the “elitism”
point of view, this implies that nearly the entire popu-
lation is elite, for each (small, single individual) gener-
ation. We hope to investigate the effect of the number
of children per generation in the near future.

• The algorithm gives an equal chance of breeding to
eachcluster, and not to each individual. This is very
important for the performance of the algorithm, as oth-
erwise large clusters (which may have already finished
evolving) get far more process time than smaller clus-
ters (which are probably evolving more rapidly).

• The choice of the second parent favours a parent in the
same cluster as the first, and small clusters are more
likely to chose a local parent than large ones, thus
favouring the growth and evolution of small clusters.
If the parent is non-local, the parent’s cluster is chosen
randomly.

• No locally non-dominated points are ever marked for
removal, and this means that the population can, and
generally does increase. We retain all these points so
as to retain information about the non-dominated fron-
tier. Techniques for thinning the non-dominated fron-
tier based on objective space clustering exist [7], but at
the moment our goal is to develop an algorithm that can
cope with a large population, some of which is close to
a local optima, and thus no longer evolving, while other
parts of the population are still evolving fast. Hence
the equal breeding probability for each cluster, and the

importance of the development of an incremental clus-
tering algorithm.

• In all the tests run on the CPEA,rmax was 5. We hope
to perform tests on the effect of this parameter in the
near future.nmax was chosen as large as possible while
not slowing the algorithm too much. Again, we hope
to study its effect on convergence (and not computation
time) soon.

• Because more than one point can be removed from a
cluster marked for culling, the population can, and oc-
casionally does, decrease. The long term trend, how-
ever, is for a growing population.

• In general, after the breeding phase, we expect all clus-
ters to be marked for culling. Theabsenceof “to be
culled” flag is used to prevent a small cluster that has
received no new individuals from having its population
reduced.

• The clean-up performed at the end of the CPEA is
mainly for the clarity of visualisation of results. If
it was wished to continue the simulation from where
it ended, it would be better to use the population be-
fore clean-up. In most cases it has been observed that
the clean-up removes very few points, as the CPEA
progresses, most points in the population are non-
dominated. Those cleaned-up are usually the worst of
the last “generation” of children.

4 Performance on Test Problems

In order to follow the progress of the CPEA, extensive use
has been made of problems with two objectives and one or
two variables since these may be plotted in two dimensions.
In addition the algorithm has been applied to some problems
with 30 variables as used by [7]. The results of five problems
are presented and discussed in the following section.

4.1 Single Variable, Single Local Optima Test

This is a simple one dimensional test with 2 objectives, as
used by Schaffer[12] and used by others [13][7][14].

Minimise f1 = x2 (1)

Minimise f2 = (x− 2)2

The problem was solved in the domain−1000 < x < 1000
with pi = 10, ncl = 2, nch = 4, nmax = 20 andnev = 750.
Figures 1 and 2 show a typical result with 334 individuals dis-
tributed over the Pareto-optimal frontier. We have observed
that one of the two clusters converges very quickly (within
150 evaluations) to the Pareto-optimal frontier, while the sec-
ond cluster, favoured for its distance from the first, takes the
next 500 or so iterations to converge to the Pareto-optimal
frontier. Thus, in this case, the niching behaviour of the



CPEA slows the progress of theentirepopulation to the opti-
mal frontier. However, as shown in the following test, niching
is necessary where several local optima exist
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Figure 1: Schaffer’sf1 andf2 with the Final Population in
Variable Space
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Figure 2: Schaffer’sf1 andf2 with the Final Population in
Objective Space

4.2 Single Variable, Multiple Local Optima

To demonstrate the local optima preserving features of the
algorithm, the function below was tested.

Minimisef1 = sin(x) ∗ (1 ∗ x/20) (2)

Minimisef2 = cos(x) ∗ (1 ∗ x/20)

This function has three local Pareto-optimal regions in the
domain0 < x < 20, the rightmost completely dominating
the other two. A typical final population from the CPEA
(pi = 10, ncl = 3, nch = 4, nmax = 10, nev = 2000) is
shown in Figures 3 and 4. All three local Pareto-optimal fron-
tiers are well defined after only 250 evaluations and remain so
even after 2000 evaluations - the dominant frontier does not
overwhelm the other two.

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f1
,f2

x

Figure 3: The Sin-Cos Function - Final Population in Variable
Space
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Figure 4: The Sin-Cos Function - Final Population in Objec-
tive Space

4.3 Single Optimum Multidimensional Test Problem

Zitzler[7] used a set of test functions based on forms proposed
by Deb[15]. These tests take the general form:

Minimise t(x) = (f1(x1), f2(x)) (3)

subject to f2 (x) = g(x2···n) · h(f1(x1), g(· · · ))

The first of these tests, Zitzler’st1 was run with 30 variables
as a comparison with his method.

f1 (x1) = x1

g (x1···n) = 1 +
9

n− 1

n∑
i=2

xi (4)

h (f1, g) = 1−
√
f1/g

The problem has only one, global, Pareto-optimal frontier,
and this is attained for a givenx1 when g = 1. Because
there is only one frontier, the CPEA was run with one clus-
ter. Figure 5 shows all of Zitzler’s results for 30 runs with a
population of 100 for 250 generations, and all the results of
10 runs of the CPEA (Pi = 30, ncl = 1, nch = 10, nmax =
200, nev = 25000). The final population for the CPEA aver-
aged 630 individuals.
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Figure 5: Distance of Final Populations from the Pareto-
Optimal Frontier Fort1

From observations the progress of the CPEA it was noted
that after a few thousand evaluations nearly all of the points
in the population are non-dominated and thus have the same
rank. Any “domination-based” ranking is now worthless
and the algorithm progresses by breeding along the non-
dominated frontier. Once this point has been reached the only
way to aid convergence to the Pareto-optimal frontier is to en-
sure that information about the non-dominated frontier is not
lost, and that all computational effort is spent as close to the
frontier as possible.

This is achieved by the CPEA’s preservation of non-
dominated points and growing population - neither the rank-
ing scheme nor the clustering help at all.

Using parameter space clustering for this problem would
be to commit the error noted by Spears[16] - preserving di-
versity for the sake of diversity, not for its appropriateness.
Here, it is inappropriate to perform evaluations that are far
from the global non-dominated frontier, and thus wasted.

We suspect that the CPEA outperforms the SPEA on this
problem because of its very strong elitism. However, it should
be noted that many tests were performed on the SPEA, and
until we have time to run them all, no conclusions can be
drawn about the usefulness of the CPEA’s strong elitism.

4.4 Multiple Optima Multidimensional Test Problem

Zitzler’s t3 (Equation 5), unliket1, has five local optima, all
of which contribute a part of the global Pareto-optimal fron-
tier.

f1 (x1) = x1

g (x1···n) = 1 +
9

n− 1

n∑
i=2

xi (5)

h (f1, g) = 1−
√
f1/g − (f1/g) sin(10πf1)

Obviously, t3 is a good function for testing the clustering,
however, clustering on all ofx yields very poor results. This
is because thex2···30 have a much larger combined effect on
the distance function thanx1, the only variable with a clear
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Figure 6: Final Populations fort3 with One and Five Clusters.

effect on the objectives. Clustering on justx1 however, gives
an interesting result.

The final populations from solving the problem with a sin-
gle cluster (Pi = 30, ncl = 1, nch = 10, nmax = 100, nev =
25000, 8 runs, average final pop. 330), and with 5 clusters
(Pi = 30, ncl = 1, nch = 3, nmax = 40, nev = 25000, 6
runs, average final pop. 560) inx1 is shown in Figure 6.

Here, it is clear that the single cluster solution only pre-
serves information about the global optimal frontier, while
the multiple cluster solution preserves the entirety of each lo-
cal frontier.

One can also see that the five cluster solution is at least as
close to the global optimal frontier as the single cluster solu-
tion, and fact, the five cluster solution shown here iscloserto
the optimal frontier. This is despite the fact that the five clus-
ter solution has supposedly “wasted” evaluations that could
be used developing the global frontier on developing each lo-
cal frontier.

This preliminary result would seem to indicate that by us-
ing an algorithm like the CPEA, information about entire lo-
cal frontiers can be obtained with a similar amount of work as
would be needed to develop just the global optimal frontier.
This is similar to the way a multi-objective EA can be used to
obtain information about an entire optimal region, with little
more work than it takes a single-objective EA to develop a
single optimal point.

4.5 Himmelbau’s Function

Himmelbau’s function has been used as a niching and multi-
modal test problem by several authors [17][4]. The function
has four equal height peaks, and we test to see if all solutions
are found and maintained for a large number of generations.
Here, to make a multiobjective problem,f2 is a second Him-
melbau function of half the size.

f1(x, y) = 5− (x2 + y − 11)2 + (x+ y2 − 7)2

200
(6)

f2(x, y) = f1(α, β) where α = 2x, β = 2y

To be considered effective for this problem, an algorithm
must not only find all four optima quickly, but it must also
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tion

be able to “keep” those optima for many thousands of evalu-
ations past the point that they are found.

The results of running the CPEA (Pi = 100, ncl =
5, nch = 2, nmax = 20, nev = 6000) are shown in Figures 7
and 8. The contours are from−5 < f(1,2) < −4 and the lo-
cations of the real optima for each function, as defined by [4]
are shown by the circles. Note that the Pareto-optimal fron-
tiers are generally well defined after 1500 iterations, here, we
attempt to show that the optima all remain (and become better
defined) if the algorithm is left to run long after convergence.
When we wish to find many local optima, this kind of sta-
bility is very desirable. Here, though we know the function
has only four local optima, we choose five clusters so that the
clustering algorithm can handle outlying points without los-
ing one of the optima. This is viewed as a weakness of the
current clustering algorithm which we hope to rectify in the
near future.

5 Conclusions

A new evolutionary algorithm using a clustering technique
from multivariate statistical analysis has been presented and
its performance evaluated on several test problems taken from

the literature. The Clustering Pareto Evolutionary Algorithm
(CPEA) has been shown to be as effective as the existing al-
gorithms in finding global Pareto-optimal frontiers.

In addition the CPEA has been shown to find and keep
multiple local Pareto frontiers thus providing the designer
with multiple differentgoodsolutions.

6 Future Work

Work is continuing in an attempt to remove the need to spec-
ify the number of clusters, to examine the importance of the
scaling function, and to find the best variables on which to
cluster. An incremental clustering algorithm will be imple-
mented to speed up the algorithm and so allow a more thor-
ough investigation of its behaviour on test cases.

The relationship between “elitist” algorithms, and our
“breed and die” approach will be investigated, as will the ef-
fect of clustering on the objectives as well as the problem
variables or on a reduced set of these.

For the moment, we wish to implement an algorithm that
performs well with large populations, but it is possible that in
the future we will investigate methods for “thinning” at the
non-dominated frontier.

Work has also begun to apply the algorithm to a real en-
vironomic problem which has been studied in [1] consisting
of approximately 50 independent variables, both real and in-
teger.
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