
Comparing Representations and Recombination Operators for the
Multi-Objective 0/1 Knapsack Problem

Christine L. Mumford (Valenzuela)
Department of Computer Science

Cardiff University
CF24 3XF, United Kingdom

christine@cs.cf.ac.uk

Abstract- The multiple knapsack problem (MKP) is a
popular test-bed for researchers developing new Pareto-
based multi-objective evolutionary algorithms. This pa-
per explores a range of different representations and op-
erators for the MKP which have been adapted from the
single objective case. Results indicate that order-based
approaches are superior to binary representations for
the problem instances considered here.

1 Introduction

The 0/1 knapsack problem involves selecting from among
various items those that will be most profitable, given the
knapsack has limited capacity. Knapsack problems have
been extensively studied and provide a useful test-bed when
developing new optimization techniques. Their simple
structure, and close relationship with many real industrial
problems make them an ideal choice, and they have cer-
tainly proven to be very popular with researchers in the
field of evolutionary computation. The 0/1 knapsack prob-
lem, in its simplest form, consists of a set of objects O =
{o1, o2, o3, ..., on} and a knapsack of capacity C. Each ob-
ject oi has an associated profit pi and weight wi. The objec-
tive is to find a subset S ⊆ O such that the weighted sum
over the objects in S does not exceed the knapsack capacity
and yields a maximum profit.

A number of representations and genetic operators have
been developed over the years for the simple 0/1 knapsack
problem [4, 5, 9, 10], and comparative studies indicate that
some representations give much better results than others,
although performance does depend, to some extent, on char-
acteristics of the chosen data sets. Researchers develop-
ing evolutionary algorithms (EAs) for multi-objective op-
timization problems, however, have favored one particular
approach over all others when solving 0/1 multiple knap-
sack problem - the binary (or bit string) representation with
greedy repair [19] (described later). This paper concen-
trates on extending the main representations and operators
found useful for the single objective problem to the multi-
objective case and comparing their performance.

Multi-objective optimization problems involve the si-
multaneous optimization of several (often competing) ob-
jectives, and usually there is no single optimal solution.
Instead, multi-objective optimization problems tend to be

characterized by a set of alternative solutions, each of which
must be considered equivalent in the absence of further in-
formation regarding the relative importance of each of the
objectives in the solution vectors. Such a solution set is
called the Pareto-optimal set, and the objective values in the
set are located at the Pareto front. Pareto-optimal solutions
are non-dominated solutions in the sense that it is not possi-
ble to improve the value of any one of the objectives, in such
a solution, without simultaneously degrading the quality of
one or more of the other objectives in the vector.

The multi-objective, or multiple knapsack problem
(MKP) is a generalization of the simple 0/1 knapsack prob-
lem. The 0/1 MKP involves m knapsacks of capacities
c1, c2, c3, ..., cm. Every selected object must be placed in
all m knapsacks, although neither the weight of an object
oi nor its profit is fixed, and will probably have different
values in each knapsack. The present study is restricted to
problems involving two knapsacks.

To avoid confusion, it is worth mentioning a related
problem which is also known as the multiple knapsack prob-
lem. In this version, although each item can have a different
weight in each knapsack, it always has the same profit. This
is not a multi-objective problem, although it has multiple
knapsacks and is thus multi-constrained [7, 13].

For the purposes of the present study, the test problems
are taken from Zitzler and Thiele [19]:

http://www.tik.ee.ethz.ch/zitzler/testdata.html.
These problems were randomly generated with uncorrelated
profits and weights, and the knapsack capacities were set to
half the total weight, corresponding to each knapsack, of all
the items. Problem sizes vary between 100 and 750 items.
Pareto optimal solutions for three of the problems (used in
some 2D plots) are also obtained from the above web site.

2 Representations and Operators for the 0/1
Knapsack Problem

Representations and operators used for the single objective
knapsack problem are easily adapted for knapsack prob-
lems with two or more objectives. One of the major diffi-
culties with single and multi-objective versions alike, how-
ever, is handling the capacity constraint. Section 2.1 sum-
marizes the various representations and operators that have

been used in the single objective case, and Section 2.2 then
discusses how some of these approaches have been adapted
for the multiple objective case in the present study. Sev-
eral methods for handling capacity constraints are explored.
All experiments with the various representations and ge-
netic operators for the multi-objective case take place within
the framework of the SEAMO algorithm [17], which is de-
scribed in Section 4.

2.1 Representations for the Single Objective Problem

Robert Hinterding [5] provides the following broad classi-
fication of representational techniques for the 0/1 knapsack
problem:

• Binary representation – where bit i is set if the ith

item from the list of items is included in the knapsack.

• Numeric representation – here the genes are num-
bers instead of bits, and a decoder is used to produce
an ordering of the items.

• Symbolic representation – the genes represent the
items themselves in a list. The list can either contain
a subset of the items, or may consist of a permutation
of all the items. In the latter case a heuristic is used to
select items from the list to fill the knapsack.

When the binary representation is used, the capacity con-
straint can be handled either by penalizing solutions which
violate the constraint, [5, 9, 10, 14] or by using a heuris-
tic mechanism to correct any violations, [5, 9, 10]. Nu-
meric representations [5, 9, 10] and symbolic representa-
tions [4, 5], on the other hand, employ heuristic decoders to
ensure that only legal knapsacks are produced.

2.2 Representations for the Multiple Objective Problem

For the MKP most researchers to date (for example, [6, 8,
19, 20]) have favored the binary representation and a greedy
repair heuristic adapted from [9] by Zitzler and Thiele [19].
The present paper concentrates on comparing the perfor-
mance of an evolutionary algorithm using this most popular
approach to the performance of the same EA using other
approaches, including the use of penalty functions. Accord-
ing to Michalewicz and Arabas [9, 10] algorithms using
a penalty function with the binary representation perform
well on some single objective problems, although they are
reported to perform exceptionally badly on problems with
restricted knapsack capacity, i.e. only a few of the items can
be packed. In addition to exploring a number of alternatives
based on the binary representation, the present study also
includes an order-based representation introduced in [4] for
the single objective problem and adapted by the present au-
thor for the 0/1 MKP [17]. Numeric representations for the
0/1 MKP are not covered, however, due to space limitations.
In any case, previous researchers have reported rather poor

results for these techniques on the single objective problem,
[5, 10].

2.2.1 The Binary Representation with a Penalty Func-
tion

A binary representation consists of a vector, x =
(x1, x2, x3, ..., xn), with xi = 1 if item i is included in
the knapsack(s), and xi = 0, otherwise. Generating bits at
random or using EAs, can easily produce violated capacity
constraints, so that knapsacks over-fill. The simplest way to
deal with violated constraints is to apply a penalty function.

Michalewicz and Arabus [9, 10] and Olsen [14] report
good results when penalties are used with binary represen-
tations of certain 0/1 knapsack problems in the single ob-
jective case. Extending the penalty approach to the MKP
requires that penalties are applied to m knapsacks, any or
all of which may be over-filled. Following some initial ex-
perimentation, the penalty function chosen for the present
study is derived from the linear model of Michalewicz and
Arabus. In this model the penalty function grows in a linear
fashion, in proportion to the extent of the constraint vio-
lation. The alternative schemes proposed by Michalewicz
and Arabas, involving logarithmic or quadratic growth, did
not work very well when adapted for the multi-objective in-
stances explored in the present paper. Logarithmic growth
produced penalties that were far too small for the instances
of the MKP explored here, and the resulting populations
consisted entirely of illegal solutions with violated con-
straints. Quadratic growth, on the other hand, produced
penalties that were too large and overwhelmed the objec-
tive functions. The linear model adopted is defined below:

Penj(x) = ρj .(
∑n

i=1 xi.wij − Cj)

evalj(x) =
∑n

i=1 xi.pij − Pen(xj)

where Penj(x) is the penalty applied to knapsack j, pij

and wij represent the profit and weight respectively of the
ith item in the jth knapsack, ρj = maxi=1..n{pij/wij}, Cj

is the capacity of knapsack j, and evalj(x) is the adjusted
value of the total profit in knapsack j.
Note: Penalty functions are applied only to knapsacks
which are over capacity.

2.2.2 The Binary Representation with Repair

As an alternative to penalties, heuristics may be used to deal
with capacity constraints. These will either form part of a
decoder, or be incorporated into a repair mechanism. A de-
coder ensures that only legal solutions are generated, using
a step-by-step procedure to add items one at a time to ini-
tially empty knapsacks, stopping before any constraints are
violated. A repair mechanism, on the other hand, begins

with knapsacks already packed with all the items that have
their bits set, and sequentially removes items from the so-
lution until all constraints are satisfied, and no knapsack is
over-filled. Hinterding [5] has experimented with a decoder
based on a first fit algorithm, for the single objective case,
but repair methods based on the work of Michalewicz and
Arabas would seem to be far more popular. For the MKP
the repair method adapted by Zitzler and Thiele [19] is the
approach favored by researchers. This repair algorithm re-
moves items, one at a time, from the solution until all the ca-
pacity constraints are satisfied. The order in which the items
are deleted is determined by the maximum profit/weight ra-
tio per item, with the item which is least profitable, per unit
weight, being the first to be removed. Zitzler and Thiele
use chromosomes repaired in this way to ensure that only
legal solutions are produced. They do not write the repaired
chromosomes back into the population, however.

Michalewicz and Arabas experimented by writing back
to the population various proportions (from 0 % to 100 %)
of the repaired chromosomes in the single objective case,
and found that whether or not the chromosomes were re-
placed made no significant difference to the result. Ex-
periments carried out by the present author on some multi-
objective problems confirm these findings, although the re-
sults are omitted due to space limitations. None of the re-
sults presented in this paper rely on the replacement of re-
paired chromosomes into the population.

Two variations of repair have been coded for the present
study, both depend on sequential removal of objects with the
least profitable, per unit weight, being deleted first. How-
ever, the order in which the items are deleted is slightly dif-
ferent. The two methods are:

• the mechanism due to Zitzler and Thiele where items
are deleted according to their maximum profit/weight
ratio,

• and an alternative mechanism where items are deleted
according to their average profit/weight ratio.

One-point crossover and point mutation are used for all
experiments using the binary representation, for penalty as
well as repair methods.

2.2.3 The Order-Based Representation

In the order-based representation the genes represent the
items themselves and the chromosomes consist of orderings
of all the items. Because every item is included on each
chromosome, a decoder is required to produce legal solu-
tions. Hinterding [4] used a first fit heuristic for his order-
based representation in the single objective case. Starting
with an empty knapsack, he selected items in sequence from
a permutation list, starting with the first item on the list,
then working through to the second, then the third and so
on. Whenever inclusion of an item from the list would re-

sult in a constraint violation, that item was skipped over and
the next item tried. Adapting a decoder based on the first
fit algorithm for the multiple knapsack problem simply re-
quires that the constraints are tested for all the knapsacks
each time an item is considered for inclusion in the solu-
tion. The present study explores two decoders: a decoder
based on the first fit heuristic, as used by Hinterding, and
one based on the next fit heuristic, as used previously by the
current author [17]. The next fit heuristic is very similar to
the first fit heuristic: it selects items in sequence from the
permutation list. It differs from the first fit heuristic only
when it encounters an item that cannot be accommodated,
at which stage the next fit heuristic halts, rather than explore
the list any further.

Cycle crossover, CX, [12] is used as the recombination
operator for the order based experiments, and the muta-
tion operator swaps two arbitrarily selected objects within
a single permutation list. CX was selected as the recom-
bination operator because it produced better results than
other permutation crossovers in some test runs (see Fig-
ure 1). CX transmits absolute positions of objects in the
permutation lists from the parents to the offspring. Nei-
ther edge based nor order based operators would seem to
be appropriate here, for a set membership problem such
as this. Other recombination operators tried were the fol-
lowing: partially matched crossover (PMX) [3], a version
[11] of order crossover [1] that preserves absolute positions
better than the original, and uniform order based crossover
(UOBX) [2].

2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

Plots for 750 objects in 2 knapsacks

PMX
CX
OX
UOBX

Figure 1: Non-dominated solutions for different crossovers

The comparative runs shown in Figure 1 support the
choice of CX as the recombination operator. This figure
compares the performance of the four above mentioned

order-based operators on Zitzler and Thiele’s 750 object, 2
knapsack problem. Populations of 250 were used for these
experiments, and each of the test runs was terminated after
15,000 generations. Clearly the plot using CX gives a much
more diverse set of solutions than any of the other plots,
although the UOBX solutions are of slightly better qual-
ity. The quality of the CX solutions, relative to UOBX, was
found to improve when the population size was increased,
however.

3 Performance Measures Used

Presenting and analyzing the results of multi-objective opti-
mization is a challenge. Algorithms that solve single ob-
jective problems produce single answers that are easy to
present graphically and lend themselves readily to statisti-
cal analysis. Multi-objective techniques, on the other hand,
usually produce a large set of answers that are far more dif-
ficult to handle, and there is no general agreement amongst
researchers on which performance measures are best for
such problems. In the present study the C, and S metrics
of Zitzler and Thiele [19] are used, together with some 2D
plots. The C and S metrics are described below.

3.1 The C Metric

This is a measure of the coverage of two sets of solution
vectors. Let X ′, X ′′ ⊆ X be two sets of solutions vectors.
The function C maps the ordered pair (X ′, X ′′) to the inter-
val [0, 1]

C(X′,X′′) = |{a′′∈ X′′; ∃ a′∈ X′: a′º a′′}|
|X′′|

The value C(X ′, X ′′) = 1 means that all the points in
X ′′ are dominated by or equal to points in X ′, (i.e. all the
points in X ′′ are weakly dominated by points in X ′). The
opposite, C(X ′, X ′′) = 0, represents the situation when
none of the points in X ′′ is weakly dominated by X ′. Note
that both C(X ′, X ′′) and C(X ′′, X ′) have to be considered,
since C(X ′, X ′′) is not necessarily equal to 1 − C(X ′′, X ′)
(i.e. when many solutions in X ′ and X ′′ neither dominate
nor are they dominated by solutions in the alternative set
set).

The C metric can be used for both maximization and
minimization problems, and can be used to tell which of two
algorithms produces the better outcomes. It does not, how-
ever, give any indication as to how much better these out-
comes are. Results are quoted as percentages in the present
paper.

3.2 The S Metric

This is a measure of the size of the dominated space, or hy-
pervolume. Let X ′ = (x1, x2, . . . , xl) ⊆ X be a set
of l solution vectors. The function S(X ′) gives the vol-

ume enclosed by the union of the polytypes p1, p2, . . . , pl,
where each pi is formed by the intersection of the follow-
ing hyperplanes arising out of xi, along with the axes: for
each axis in the objective space, there exists a hyperplane
perpendicular to the axis and passing through the point
(f1(xi), f2(xi), . . . , fk(xi)). In the two dimensional case,
each pi represents a rectangle defined by the points (0, 0)
and (f1(xi), f2(xi)). The size of the dominated space is
quoted as a percentage of the reference volume between the
origin and a utopia point, defined as the profit sums of all
items in each objective in [20]. The S metric can be used
only for maximization problems.

4 The SEAMO Algorithm

A Simple Evolutionary Algorithm for Multi-objective Opti-
mization (SEAMO) [17] was implemented and used for all
the experiments reported in this paper. SEAMO is an un-
complicated, steady-state algorithm which relies on a few
very basic techniques. In an earlier study [17] some ex-
cellent results were obtained with SEAMO for the multi-
objective 0/1 knapsack problem.

Using SEAMO as the framework for the experiments in
the current study, it is possible to concentrate on the repre-
sentational issues, without the need to fine-tune very many
parameters. For example, there is no auxiliary population
in SEAMO and selection is uniform and not based on the
values of (arbitrary) fitness functions. Crossover is applied
at 100 % and mutation is always exactly one mutation per
individual (these rates of crossover and mutation rate have
produced good and reliable results for the present author,
over a number of different applications, for example see
[15, 16, 18]). Thus the only parameters we need be con-
cerned with are population sizes and stopping criteria. The
Simple Evolutionary Algorithm for Multi-objective Opti-
mization (SEAMO), is outlined in Figure 2.

The algorithm sequentially selects every individual in the
population to serve as the first parent once, pairing it with
a second parent that is selected at random (uniformly). A
single crossover is then applied that produces one offspring,
and this is followed by a single mutation.

The replacement of a parent by its offspring is consid-
ered whenever an offspring is deemed to be superior to that
parent. The offspring is compared, first of all, to the first
parent. If the offspring is considered to be better than the
first parent, it may replace it in the population. If this is
not the case, then the same test is made between the off-
spring and the second parent. For this purpose superiority is
normally judged as a dominance relationship, i.e. if an off-
spring dominates its parent, it may replace it in the popula-
tion. The replacement of population members by dominat-
ing offspring ensures that the solution vectors move closer
to the Pareto front as the search progresses. To addition-

Procedure SEAMO
Begin

Generate N random individuals {N is the population size}
Evaluate the objective vector for each population member and store it
Record the global best-so-far for each objective function in the vector
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to the offspring
Evaluate the objective vector produced by the offspring
If any element of the offspring’s objective vector improves on a

global best-so-far
Then the offspring replaces one of the parents

(or occasionally another individual)
and best-so-far is updated

Else If the offspring dominates one of the parents
Then it replaces it

(unless it is a duplicate, then it is deleted)
Endfor

Until stopping condition satisfied
Print all non-dominated solutions in the final population

End

Figure 2: Algorithm 1 A Simple Evolutionary Algorithm
for Multi-objective Optimization (SEAMO)

ally ensure an improved range of coverage, the dominance
condition is relaxed whenever a new global best value is
discovered for any of the individual components of the so-
lution vector (i.e. for improved maximum profits in individ-
ual knapsacks). Care has to be taken, however, to ensure
that global best values for other components (i.e. maximum
profits in other knapsacks) are not lost when a dominance
condition is relaxed. Ensuring elitism (i.e. that the best so-
lutions are not lost) at this level is straightforward if multi-
objective optimization is restricted to two components in
the solution vector. Whenever an offspring produces an im-
proved global best for either of the components, if the global
best for the second component happens to occur in one of
the parents, the offspring will simply replace the other par-
ent.

Before a final decision is made on replacement, a so-
lution vector for a dominating offspring will be compared
with all the solution vectors in the current population. If
the offspring’s solution vector is duplicated elsewhere in the
population, the offspring dies and does not replace its par-
ent.

5 Experimental Method

For most of the experiments populations of 250 are used,
regardless of the problems size, and the EAs are each run
for 5,000 generations. Long runs are used to ensure conver-
gence, although good results can be obtained by running for

a much shorter time. Each experiment consists of 30 repli-
cate runs, initialized with different random seeds. Results
are averaged to obtain representative C and S metrics, and
tests for statistical significance carried out on the raw C and
S values, where practical. A goodness of fit test (lillietest
from the MATLAB statistical toolbox) is used to ensure that
the raw values are a reasonable fit to a normal distribution,
prior to significance testing.

The 2D plots are obtained by combining all 30 results
files, for each experiment, and extracting the non-dominated
solutions from the combined results.

6 Results

Tables 1 and 2 summarize the dominated space and cover-
age, respectively, produced by the various representations
and operators. In the tables ‘R MAX’ and ‘R AVE’ denote
the algorithms that use the binary representation and a repair
mechanism. ‘MAX’ is the scheme based on the maximum
profit/weight ratio, and ‘AVE’ is the scheme that uses the
average profit/weight ratio. ‘OBFF’ stands for the order-
based representation with the first fit decoder, and ‘OBNF’
stands for the order-based representation with the next fit
decoder. The results of the experiments with the penalty
function are recorded in the rows labelled ‘PEN’. The test
problems knx.y denote knapsack problems with x items and
y objectives (or knapsacks).

Algorithm kn100.2 kn250.2 kn500.2 kn750.2
R MAX 55.28 50.54 49.52 48.64
R AVE 55.14 50.44 49.52 48.82
OBFF 56.03 52.10 51.62 51.14
OBNF 55.88 51.82 51.42 51.15
PEN 54.08 49.14 48.53 47.68

Table 1: Average percentage of dominated space , S

Table 1 indicates that order-based techniques tend to
produce better results that dominate more space than solu-
tions produced using binary string representations. Also the
order-based algorithm with the first fit decoder appears to
perform marginally better than the version that uses the next
fit decoder. Repair mechanisms appear to do better than
penalty functions, but not as well as the order-based algo-
rithms. The repair heuristic based on average profit/weight
ratios gives slightly better results than the one based on
maximum profit/weight ratios.

Separate one-way analysis of variance tests (anova1
from MATLAB) of the S values for individual runs on
kn100.2, kn250.2, kn500.2 and kn750.2, demonstrate the
differences in performances observed in Table 1 to be highly
significant at the 0.0001 level.

Table 2 shows the coverage of various combinations of

Coverage (A º B)
Algorithm Test problems

A B kn100.2 kn250.2 kn500.2 kn750.2

R MAX R AVE 63.6 4.7 2.2 1.5
OBFF 46.1 5.6 15.6 29.2
OBNF 54.8 14.1 28.2 35.9
PEN 65.6 52.8 84.9 79.5

R AVE R MAX 45.6 79.9 81.2 68.8
OBFF 30.6 33.4 40.0 39.4
OBNF 41.9 48.7 46.6 43.2
PEN 49.1 89.6 91.1 95.4

OBFF R MAX 73.2 77.9 49.9 3.5
R AVE 75.1 30.4 5.6 0.3
OBNF 71.9 62.2 65.8 62.6
PEN 76.4 88.1 85.0 49.9

OBNF R MAX 58.1 59.1 10.8 1.2
R AVE 62.9 11.2 1.4 0.1
OBFF 48.9 14.7 13.2 15.5
PEN 60.6 75.8 67.9 18.7

PEN R MAX 50.8 27.6 1.3 1.7
R AVE 55.8 1.1 0.1 0.0
OBFF 39.3 0.8 1.3 7.8
OBNF 45.5 4.6 5.3 17.3

Table 2: Average values for Coverage (A º B)

pairs of solutions sets, averaged over 30 replicate runs. Cov-
erage (A º B) shows the proportion of points produced by
algorithm B that are weakly dominated by points produced
by algorithm A. Each of the 30 results files obtained by run-
ning algorithm A is paired with exactly one of the results
files generated by algorithm B, and the coverage, (A º B)
and (B º A), evaluated for each of the 30 pairs of files. The
table records the averages of these values. (Note: statistical
significance tests have not been attempted for Coverage at
this stage, because of the large quantity of correlated data
pairs involved. This issue is addressed, however, to some
extent at the end of this section, when tests are carried out
to compare just two instead of five approaches.)

From Table 2 the repair mechanism that uses the aver-
age profit/weight ratio produces much better results than the
one that uses the maximum profit/weight ratio, except in the
case of the smallest problems, kn100.2. For the order-based
representations the first fit decoder would appear to work
much better than the next fit decoder. The penalty method
performs worst of all.

In general, the S and C results appear to reinforce each
other. Both metrics indicate that the repair method based on
the average profit/weight ratio is better than the one based
on the maximum profit/weight ratio, and also suggest that
when an order-based representation is used, a decoder us-
ing a first fit heuristic is preferable to a decoder based on a
next fit decoder. S and C metrics show that repair methods
and decoders work better than the penalty function in these
experiments.

When the results are examined more closely, however, it

is not easy to determine whether it is better to use an order-
based approach or a binary string with repair. Order-based
methods produce better values for S , and thus would ap-
pear to have a better spread of points. When coverage C, is
examined though, it would appear that the order-based ap-
proaches are not so good when faced with the larger prob-
lems, such as kn500.2 and kn750.2.

Figure 3 gives a pictorial summary of the results pro-
duced by three of the approaches: the binary string repre-
sentation with penalty function, the binary string represen-
tation with repair based on the average profit/weight ratios,
and the order-based representation with the first fit decoder.
For each algorithm all 30 results files have been combined
and the non-dominated vectors extracted. Figure 3 clearly
indicates that, although the order-based approach produces
a much better spread of results than the other algorithms,
the binary string approach with repair achieves higher qual-
ity solutions (albeit far fewer of them) on the larger problem
instances. One could speculate that a larger population may
allow the order-based technique to better exploit its greater
spread of approximated Pareto points.

To test the hypothesis that larger populations may be
required if order-based approaches are to deal effectively
with larger problems, some extra experiments were per-
formed. Figure 4 summarizes the results for sets of 30 repli-
cate runs using populations of 500 and 1000 for kn500.2
and kn750.2, respectively. Clearly the order-based re-
sults now look much better than the results using the bi-
nary string and repair. The coverage results also favor
the order-based approach over the binary string approach:
for kn500.2 Coverage (OBFF º R AV E) = 40.0 and
Coverage (R AV E º OBFF) = 24.9, for kn750.2
Coverage (OBFF º R AV E) = 87.2 and Coverage
(R AV E º OBFF) = 2.8. Student t-tests (ttest from
MATLAB) on the distribution of the difference, (OBFF º
R AV E)−(R AV E º OBFF), bear this out by showing
that the mean of this distribution differs significantly from
zero at the 0.001 level.

7 Conclusion and Future work

Using a simple Pareto-based evolutionary algorithm, this
paper explores various representations and recombination
operators for the 0/1 multiple knapsack problem. The ap-
proaches tested are adapted from the single objective ver-
sion of the problem, and cover binary strings and order-
based representations as well as various techniques for deal-
ing with capacity constraints.

The findings generally favor order-based approaches, us-
ing cycle crossover, over binary string representations, al-
though binary string techniques with repair do rather better
than those that use a penalty function. The order-based ap-
proaches appear to converge more slowly and generate a

3200 3400 3600 3800 4000 4200 4400
3200

3300

3400

3500

3600

3700

3800

3900

4000

4100
100 items

Profit in knapsack 1

P
ro

fit
 in

 k
na

ps
ac

k
2

Pareto front
Penalty function
Repair
Order−based

7000 7500 8000 8500 9000 9500 10000
7500

8000

8500

9000

9500

10000

10500

Profit in knapsack 1

P
ro

fit
 in

 k
na

ps
ac

k
2

250 items

Pareto front
Penalty function
Repair
Order−based

1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

x 10
4

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

4 500 items

Profit in knapsack 1

P
ro

fit
 in

 k
na

ps
ac

k
2

Pareto front
Penalty function
Repair
Order−based

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95

x 10
4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95
x 10

4 750 items

Profit in knapsack 1

P
ro

fit
 in

 k
na

ps
ac

k
2

Penalty function
Repair
Order−based

Figure 3: Comparing various representations, with populations of 250

1.7 1.75 1.8 1.85 1.9 1.95 2

x 10
4

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

4 500 items

Profit in knapsack 1

P
ro

fit
 in

 k
na

ps
ac

k
2

Repair
Order−based

2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95

x 10
4

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95
x 10

4 750 items

Profit in knapsack 1

P
ro

fit
 in

 k
na

ps
ac

k
2

Repair
Order−based

Figure 4: Comparing different approaches using larger populations

more widely spread set of solutions than binary string rep-
resentations are able to produce, although an adequate size
of population is essential, for those solutions to be of really
high quality. Binary string methods can produce a narrow
set of reasonably high quality solutions fairly quickly, even
when a small population is used. They seem incapable of
producing much in the way of improvement, however, re-
gardless of how large the population, or how long the run
time. There are indications that order-based approaches
may also produce poorly spread results, depending on the
choice of genetic operators. Sample runs suggest that cy-
cle crossover works better than other order-based recombi-
nation operators, at least in conjunction with the SEAMO
algorithm.

Future work will concentrate on testing the various ap-
proaches on a wider range of knapsack problems, with
more objectives and more restricted capacities, for example.
Other plans include the enhancement of the repair heuris-
tics, along the lines suggested by Jaszkiewicz in [6] - after
taking items out of an overfull knapsack he suggested trying
to put some small ones back. It would also be very inter-
esting to see how the various representations and operators
explored here would perform on the MKP if multi-objective
EAs other than SEAMO are tried.

Bibliography

[1] L. Davis, Applying adaptive algorithms to epistatic domains,
Proceedings of the Joint International Conference on Artifi-
cial Intelligence, pp. 162–164, 1985.

[2] L. Davis, Order-based genetic algorithms and the graph col-
oring problem, Handbook of Genetic Algorithms pp. 72–90,
Van Nostrand Reinhold, New York, 1991.

[3] D. E. Goldberg and R. Lingle, Alleles, loci and the TSP,
Proceedings of an International Conference on Genetic Al-
gorithms and Their Applications, Pittsburgh, PA, pp. 154–
159, 1985.

[4] R. Hinterding, Mapping, order-independent genes and the
knapsack problem, Proceedings of the first IEEE Conference
on Evolutionary Computation, Orlando, Florida, 1994 pp.
13–17.

[5] R. Hinterding, Representation, constraint satisfaction and
the knapsack problem, Proceedings of the 1999 Congress
on Evolutionary Computation (CEC99), Vol. 2, pp. 1286 –
92, 1999.

[6] A. Jaskiewicz, On the performance of multiple objective ge-
netic local search on the 0/1 knapsack problem - a compar-
ative experiment, IEEE Transactions on Evolutionary Com-
putation, 6(4), pp. 402–412, 2002.

[7] S. Khuri, T. Bäck and J. Heitkötter, The zero/one multi-
ple knapsack problem and genetic algorithms, Proc. of the

1994 ACM Symposium on Applied Computing, pp. 188–193,
ACM Press, 1994.

[8] J. D. Knowles and D. W. Corne, M-PAES: a memetic algo-
rithm for multiobjective optimization, Congress on Evolu-
tionary Computation (CEC), 12–17

th, Vol. 1, pp. 325–332,
2000.

[9] Z. Michalewicz and J. Arabas, Genetic Algorithms for the
0/1 knapsack problem, Methologies for Intelligent Systems,
(ISMIS’94), Lecture Notes in Computer Science, Vol. 869,
pp. 134–143, 1994.

[10] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolutionary Programs, Third, revised and extended edi-
tion, Springer, 1996.

[11] H. Mühlenbein, M. Gorges-schleuter and O. Krämer, Evo-
lution Algorithms in Combinatorial Optimization, Parallel
Computing, Volume 7, pp. 65–85, 1988.

[12] I. M. Oliver, D. J. Smith and J.R.C. Holland, A study
of permutation crossover operators on the traveling sales-
man problem, Genetic Algorithms and their Applica-
tions:Proceedings of the Second International Conference
on Genetic Algorithms, pp. 224–230, 1987.

[13] G. R. Raidl, an improved genetic algorithm for the multicon-
trained 0-1 knapsack problem, Congress on Evolutionary
Computation (CEC), pp. 207–211, May 1998.

[14] A. L. Olsen, Penalty functions and the knapsack problem,
Proceedings of the first IEEE Conference on Evolutionary
Computation Orlando, Florida, 1994 pp. 554–558.

[15] C.L. Valenzuela and A.J. Jones, Evolutionary divide and
conquer (I): a novel genetic approach to the TSP, Evolution-
ary Computation, 1(4), pp. 313–333, 1994.

[16] C.L. Valenzuela, A study of permutation operators for min-
imum span frequency assignment using an order based rep-
resentation, Journal of Heuristics, 7(1), pp. 5–22, 2001.

[17] C. L. Valenzuela, A simple evolutionary algorithm for multi-
objective optimization (SEAMO), Congress on Evolution-
ary Computation (CEC), Honolulu, Hawaii, 12–17

th, Vol.
1, pp. 717–722, May 2002.

[18] C.L. Valenzuela and P.Y. Wang, VLSI placement and area
optimization using a genetic algorithms to breed normal-
ized postfix expressions, IEEE Transactions on Evolution-
ary Computation, 6(4), pp. 390–401, 2002.

[19] E. Zitzler and L. Thiele, Multiobjective evolutionary algo-
rithms: a comparative case study and the strength pareto ap-
proach, IEEE Transactions on Evolutionary Computation,
3(4), pp. 257–271, 1999.

[20] E. Zitzler M. Laumanns and L. Thiele, SPEA2: Improving
the strength Pareto evolutionary algorithm, TIK-Report 103,
Department of Electrical Engineering, Swiss Federal Insti-
tute of Technology (ETH), Zurich, Switzerland, {zitzler, lau-
manns, thiele}@tik.ee.ethz.ch, 2001.

