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CHAPTER 4 
 

GENETIC ALGORITHMS FOR 
MULTI-OBJECTIVE 
FLOWSHOP SCHEDULING PROBLEMS 
 

 

 

4.1 INTRODUCTION 

In Chapter 3, we considered genetic algorithms for single-objective flowshop scheduling 

problems. As shown in the previous chapter, GAs have been mainly applied to single-objective 

optimization problems. Many real-world problems, however, have multiple objectives. Since 

Johnson’s work [56], various scheduling criteria have been considered (see, for example, 

reviews by Baker & Scudder [3] and Dudek et al.[10]). Among them are makespan, maximum 

tardiness, total tardiness, and total flowtime. Several researchers extended single-objective 

flowshop scheduling problems to multi-objective problems. For example, Ho & Chang [26] 

proposed a heuristic method for flowshop scheduling with bicriteria, Gangadharan et al.[20] 

proposed a simulated annealing heuristic for flowshop scheduling with bicriteria. Daniels & 

Chambers [7] considered the trade-off between the makespan and the maximum tardiness. 

Rajendran [95] proposed a branch-and-bound algorithm and two heuristic algorithms to 

minimize the total flowtime with a constraint condition on the makespan. Morizawa et al.[74] 

proposed a random sampling method for obtaining a set of non-dominated solutions of a 

flowshop scheduling problem with two objectives: to minimize the makespan and the 

maximum tardiness. A three-objective flowshop scheduling problem was considered in 

Morizawa et al.[75] where the makespan, the maximum tardiness and the total flowtime were 

used as scheduling criteria. Morizawa et al.[76] also proposed an interactive approach for 

searching a preferred schedule of multi-objective problems. 

Since Schaffer’s work [98], extensions of GAs to multi-objective optimization were 

proposed in several manners (e.g., see Fonseca & Fleming [14,15], Gen et al. [21], Horn et 
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al.[30], Kita et al.[60], Kursawe [63], Murata & Ishibuchi [77,78,81], and Tamaki et al. 

[111,112]). We have already compared the multi-objective genetic algorithm described in 

Section 2.3 with the VEGA [98] and the NPGA [30]. 

This chapter addresses the application of GAs to multi-objective flowshop scheduling 

problems. We demonstrate the effectiveness of the MOGA on flowshop scheduling problems 

with two objectives and problems with three objectives. By two-objective flowshop scheduling 

problems, we compare the MOGA with single-objective genetic algorithms where one of two 

objectives is used as a fitness function. Next we examine the relation between the number of 

elite solutions to be inherited and the performance of the MOGA. Then we compare the MOGA 

with the VEGA and a constant weight genetic algorithm (CWGA). In the CWGA, two 

objectives are combined into a single scalar fitness function using constant weights. Last we 

apply the MOGA to three-objective flowshop scheduling problems. We hybridize the MOGA 

with a local search algorithm in the same manner as in Chapter 3. The effectiveness of the 

hybrid algorithm is shown by computer simulations. 
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4.2 GENETIC ALGORITHMS FOR MULTI-OBJECTIVE 

 FLOWSHOP SCHEDULING PROBLEMS  

  
 In this section, first we compare the multi-objective genetic algorithm with single-objective 

genetic algorithms (SOGA) where one of two objectives is used for the fitness function. Next 

we examine the relation between the number of elite solutions to be inherited and the 

performance of the MOGA. Then we compare the MOGA with the VEGA and a constant 

weight genetic algorithm (CWGA). In the CWGA, two objectives are combined into a single 

scalar fitness function using constant weights. Last we apply the MOGA to a three-objective 

flowshop scheduling problem. In the SOGA, the VEGA, and the CWGA, we store two sets of 

solutions as in the MOGA: the population to be governed by genetic operators and the set of 

non-dominated solutions. In order to compare these algorithms, we use the final set of 

non-dominated solutions obtained by each genetic algorithm for multi-objective optimization. 

 

4.2.1 Parameter specifications 
As we have already explained flowshop scheduling problems in Chapter 3, there are many 

criteria for scheduling problems. In the previous chapter, we treated only one criterion out of 

four criteria: the makespan in (3.5), the total flowtime in (3.6), the maximum tardiness in (3.7), 

and the total tardiness in (3.8) (see Subsection 3.2). In this section, we treat two or three 

objectives out of the four objectives. 

In this section, we specified parameters in flowshop scheduling problems with multiple 

objectives as follows. The processing time of each job at each machine was randomly specified 

as an integer in the closed interval [1, 99]. We specified the duedate of each job by the 

following procedure: 

 

Step 1:  Randomly generate a permutation of n jobs. 

Step 2:  Calculate the completion time t m xC k( , )  of each job, k n= 1 2, , ..., . 

Step 3:  Add a random integer in the closed interval [-100, 100] to each t m xC k( , ) . 

That is, the duedate d xk( )  of the k-th job is specified as follows: 
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   d x t m x randomk C k k( ) ( , )= + , k n= 1 2, , ..., .   (4.1) 

 

where randomk  is a random integer in the closed interval [-100, 100]. 

 

It is known that there is no correlation between the three objectives: the makespan, the total 

flowtime, and the maximum tardiness (or the total tardiness). That is, we considered two 

objectives of the makespan and the total tardiness or of the makespan and the maximum 

tardiness in two-objective flowshop scheduling problems. And we considered either set of three 

objectives in three-objective flowshop scheduling problems. 

In this section, we generated 20-job and 10-machine problems. Because the total number of 

feasible solutions (i.e., all permutations of 20 jobs) is over 1018 , we can not apply enumeration 

methods to the problems. We apply the multi-objective genetic algorithm (MOGA) to 

two-objective flowshop scheduling problems and three-objective flowshop scheduling 

problems. We employed the two-point order crossover and the shift change mutation as genetic 

operators in the GA, and we specified the population size Npop  as Npop = 10 . 

 

4.2.2 Two-objective flowshop scheduling problems 
In this section, we apply the MOGA to a randomly generated 20-job and 10-machine 

flowshop scheduling problem with two objectives: to minimize the makespan and to minimize 

the total tardiness. Therefore we employ the following fitness function in the MOGA: 

 

  f w f w f( ) ( ) ( )x x x= − −1 1 4 4 ,      (4.2) 

 

where f1( )x  and f4 ( )x  are the objective functions described in (3.5) and (3.8), respectively, 

and w1 and w4  are non-negative weights which satisfy the relations in (2.6) and (2.7). 

 

A. Comparison of the MOGA and the SOGA 

Non-dominated solutions obtained by the MOGA are shown by ○ in Fig. 4.1 where the 

horizontal and vertical axes are the makespan and the total tardiness, respectively. In Fig. 4.1, 

non-dominated solutions obtained by the SOGA where either the makespan or the total 

tardiness is used for the fitness function. In Fig. 4.1, non-dominated solutions obtained by the 
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Fig. 4.1  Comparison of the MOGA with two trials of the SOGAs. 

 

 

SOGA for minimizing the makespan are shown by ■, and those obtained by the SOGA for 

minimizing the total tardiness are shown by ▲. In order to compare the non-dominated 

solutions obtained by the MOGA with those obtained by the SOGAs, we specified the number 

of evaluations of the fitness function as 100,000 in the MOGA and as 50,000 in each trial of the 

SOGA. Therefore 100,000 solutions were evaluated by each of the MOGA and the SOGAs. 

From Fig. 4.1, we can see that the set of the non-dominated solutions obtained by the MOGA 

(○) is superior to those obtained by the SOGAs (■ and ▲). That is, many solutions denoted 

by ■  and ▲  are dominated by solutions denoted by ○ . This demonstrates the high 

performance of the MOGA. 

 

B. Effectiveness of the elitist strategy in the MOGA 

The effectiveness of the elitist strategy described in Subsection 2.3.4 is demonstrated in Fig. 

4.2. In Fig. 4.2, “no elite”, “2 elite”, and “3 elite” indicate that no elite solutions, two elite 

solutions, and three elite solutions are inherited to the current population from the tentative set 

of non-dominated solutions, respectively. In the elitist strategy, we used the following heuristic: 

in the “2 elite” algorithm, only the elite solutions with respect to the two objective functions 

were preserved. In the “3 elite” algorithm, that is the MOGA, a solution which was randomly 

selected from the tentative set of non-dominated solutions was added to the two elite solutions 

in the “2 elite” algorithm. From Fig. 4.2, we can see that the MOGA could find better solutions 
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Fig. 4.2  Effect of the number of elite solutions in the MOGA. 

 

 

than the “2 elite” and “no elite” algorithms. This means that the elitist strategy of the MOGA is 

effective.  

 

C. Comparison with the MOGA, the VEGA, and the CWGA 

We also applied Schaffer’s VEGA [98] and the constant weight genetic algorithm (CWGA) 

to the same flowshop scheduling problem. In the CWGA, we used the weights 

w w1 5= =makespan  and w w4 2= =tardiness  to calculate the fitness function in (4.2). As a 

stopping condition, we used the total number of evaluations of strings (i.e., solutions). When 

100,000 solutions were evaluated in each algorithm, the algorithm was terminated. It is noted 

that a tentative set of non-dominated solutions was also stored and updated in the VEGA and 

the CWGA. Simulation results by the MOGA, the VEGA and the CWGA are shown in Fig. 4.3 

(a), (b), and (c), respectively. We applied each algorithm five times to the same flowshop 

scheduling problem. Each algorithm began to search a set of non-dominated solutions from the 

same initial population. From Fig. 4.3, we can see that better solutions were obtained by the 

MOGA. That is, many solutions obtained by the VEGA in Fig. 4.3 (b) are dominated those 

obtained by the MOGA solutions in Fig. 4.3 (a). The CWGA could find some better solutions 

than our MOGA, but the CWGA failed to find a large set of non-dominated solutions. 
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(a) Non-dominated solutions obtained by the MOGA. 
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(b) Non-dominated solutions obtained by the VEGA. 
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(c) Non-dominated solutions obtained by the CWGA. 

 

Fig. 4.3  Comparison of the MOGA, the VEGA, and the CWGA. 
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4.2.3 Three-objective flowshop scheduling problem 
We also applied the MOGA to a flowshop scheduling problem with three objectives: to 

minimize the makespan, to minimize the total tardiness, and to minimize the total flowtime. 

Therefore we employ the following fitness function in the MOGA: 

 

  f w f w f w f( ) ( ) ( ) ( )x x x x= − − −1 1 2 2 4 4 ,     (4.3) 

 

where f1( )x , f2 ( )x , and f4 ( )x  are the objective functions described in (3.5), (3.6), and 

(3.8), respectively, and w1, w2 , and w4  are non-negative weights which satisfy the relations 

in (2.6) and (2.7). We compare the MOGA with the VEGA and the CWGA in this subsection. 

In the CWGA, we used the weights w w1 5= =makespan , w w2 1= =flowtime , and 

w w4 2= =tardiness  to calculate the fitness function in (4.3). Because it is difficult to show 

obtained solutions in the three-dimensional objective space, we show the solutions by 

projecting them on two-dimensional objective spaces: (Makespan, Total tardiness), (Makespan, 

Total flowtime), and (Total tardiness, Total flowtime). Fig. 4.4 shows the simulation results 

obtained by the MOGA, the VEGA, and the CWGA. From Fig. 4.4, we can observe that the 

MOGA could find a better set of non-dominated solutions. 
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(a) Non-dominated solutions obtained by the MOGA. 
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(b) Non-dominated solutions obtained by the VEGA. 
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(c) Non-dominated solutions obtained by the CWGA. 

Fig. 4.4  Comparison of the MOGA, the VEGA, and the CWGA. 
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4.3 MULTI-OBJECTIVE GENETIC LOCAL SEARCH 

 ALGORITHM 

In the same manner as in Section 3.6, we hybridize the MOGA with a local search algorithm. 

In this section, first we show how to hybridize the MOGA with a local search algorithm. Each 

solution generated by the genetic operators for multi-objective optimization (see Section 2.3) 

has information of weight values which were used for the selection of its parent solutions. A 

local search procedure is applied to the new solution to maximize its fitness value using those 

weight values. We also introduce the modified local search algorithm described in Subsection 

3.6.1. In the modified local search procedure, only a few solutions in the neighborhood are 

examined. Next, we apply the multi-objective genetic local search algorithm (MOGLS) to 

flowshop scheduling with multiple objectives. Computer simulations show the effectiveness of 

the MOGLS. 

 

4.3.1 Multi-objective genetic local search algorithm 
In a multi-objective genetic local search algorithm (MOGLS) in this section, we use the same 

idea as in the previous section. That is, we specify the weight values by (2.8) whenever a pair of 

parent solutions are selected. These randomly specified weight values are also used in a local 

search procedure because the local search is performed to maximize the fitness function in (2.5). 

In our hybrid algorithm, the local search is applied to each new solution generated by the 

genetic operators (i.e., selection, crossover, and mutation). The fitness function of the new 

solution is defined by the weight values that were used for selecting its parent solutions. Thus 

the search direction of the local search for each solution is determined by the fitness function 

used in the selection of its parent solutions. In this manner, each solution has its own direction 

of the local search. Thus both the selection operation and the local search have various search 

directions in the n-dimensional objective space of the multi-objective optimization problem. 

Another issue to be addressed in the hybrid algorithm is how to divide the available 

computation time between searches by the local search and the genetic operators. If we simply 

combine the local search to the genetic operators, almost all the available computation time 

may be spent by the local search and only a few populations are generated by the genetic 

operators. This is because a time-consuming local search procedure is iterated for each solution 

generated by the genetic operators until a local optimum solution is found. In order to prevent 
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the local search from spending almost all the available computation time, we employ the 

modified local search procedure described in Subsection 3.6.1. In conventional local search 

procedures, the local search is terminated when a better solution is not found in the neighbor of 

the current solution. On the other hand, in the modified local search procedure, the local search 

is terminated when a better solution is not found in a pre-specified number (say, k) of randomly 

selected neighborhood solutions. That is, if there is no better solution among randomly selected 

k neighborhood solutions, the local search is terminated. When we assign a very small value to 

k (e.g., k = 2 ), the local search may be terminated soon. Thus the local search does not spend 

long computation time and the generation update by the genetic operators can be iterated many 

times. On the contrary, when we assign a large value to k (e.g., k = 100), almost all the 

computation time may be spent by the local search, and only a few populations can be 

generated by the genetic operators. In this manner, we can adjust the computation time spent by 

the local search. 

By incorporating the modified local search algorithm into the MOGA, we construct the 

multi-objective genetic local search algorithm (MOGLS) as follows: 

 

Step 0 (Initialization): Randomly generate an initial population of N pop  solutions.  

Step 1 (Evaluation): Calculate the values of the n objectives for each solution in the current 

population. Then update the tentative set of non-dominated solutions.  

Step 2 (Selection): Repeat the following procedures to select a certain number of pairs of parent 

solutions. 

(i) Randomly specify the weight values w w wn1 2, ,...,  in the fitness function (2.5) by 

(2.8). 

(ii) Select a pair of parent solutions according to the following selection probability 

based on the linear scaling [23]:  

 

  P f f
f f

t

t
t

s

 

( ) ( ) ( )
{ ( ) ( )}

min

min
x x

x
x

= −
′ −

′∈
∑

Ψ
Ψ

Ψ

,      (4.4) 

 

where f tmin ( )Ψ  is the minimum fitness value (i.e., the worst fitness value) in the 

current population Ψt . 
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Step 3 (Crossover and mutation): Apply a crossover operation to the selected pairs of parent 

solutions. A new solution is generated from each pair of parent solutions. Then apply a 

mutation operation to the generated solutions.  

Step 4 (Elitist strategy): Randomly remove Nelite  strings from the generated N pop  strings, 

and add Nelite  strings that are randomly selected from the tentative set of 

non-dominated solutions to the current population. 

Step 5 (Local search): Apply the modified local search procedure in Subsection 3.6.1 to each of 

the N pop  solutions in the current population. The search direction of the local search 

for each solution is specified by the weight values in the fitness function by which its 

parent solutions were selected. The current population is replaced with the N pop  

solutions improved by the local search.  

Step 6 (Termination test): If a pre-specified stopping condition is satisfied, stop the algorithm. 

Otherwise return to Step 1.  

 
Update of the current population and the tentative set of non-dominated solutions is illustrated 

in Fig. 4.5. 
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Fig. 4.5  Update of the two sets of solutions stored in the MOGLS. 
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4.3.2 Two-objective flowshop scheduling problems 
In this section, we apply the MOGLS to a randomly generated 20-job and 10-machine 

flowshop scheduling problem with two objectives: to minimize the makespan and to minimize 

the maximum tardiness. Therefore we employ the following fitness function in the MOGLS: 

 

  f w f w f( ) ( ) ( )x x x= − −1 1 3 3 ,      (4.5) 

 

where f1( )x  and f3( )x  are the objective functions described in (3.5) and (3.7), respectively, 

and w1 and w3  are non-negative weights which satisfy the relations in (2.6) and (2.7). We 

applied the following four methods to the problem to compare their performance:  

 
(i)  The MOGLS with k = 2  and Nelite = 3. 

(ii)  The VEGA. 

(iii) The CWGA with w w1 5= =makespan  and w w3 2= =tardiness . 

(iv) A random sampling method. A large number of feasible schedules are randomly 

generated and each schedule is evaluated. 

 
The first three methods were applied to this test problem with the same parameter 

specifications: 

 
 Populations size: Npop = 20 , 

 Crossover probability: 0.9, 

 Mutation probability: 0.3, 

 Stopping condition: Evaluation of 100,000 solutions. 

 
In the random sampling method, we examined 2,000,000 feasible solutions, which are twenty 

times as many as in the other methods. Non-dominated solutions obtained by each method are 

shown in Fig. 4.6 and Fig. 4.7. From Fig. 4.6 and 4.7, we can see the following: 

 

(1) Some solutions obtained by the VEGA have very small values of the makespan, and others 

have very small values of the maximum tardiness (see, Fig. 4.7). But no solutions obtained 

by the VEGA have very small values of both objectives if compared with non-dominated 
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solutions obtained by the hybrid algorithm and the CWGA (see Fig. 4.6). 

(2) The variety of solutions obtained by the CWGA is not large (see Fig. 4.7). 

(3) The quality of solutions obtained by the random sampling method is very poor while it 

examined much more solutions than the other three algorithms (see Fig. 4.6). 

 

In order to clarify these observations, all the solutions obtained by the four algorithms were 

compared with each other and only non-dominated solutions among all the obtained solutions 

were selected. Some solutions obtained by one algorithm were dominated by other solutions 

obtained by the other algorithms. The number of the non-dominated solutions is shown in Table 
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Fig. 4.6  Solutions obtained by the MOGLS and the random sampling method. 
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Fig. 4.7  Solutions obtained by the VEGA and the CWGA. 
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Table 4.1  Simulation results of a single trial of each algorithm for the two-objective 

flowshop scheduling problem. 
 

Algorithm The number of obtained 
solutions (A) 

The number of 
non-dominated solutions (B) 

Ratio: 
B/A 

MOGLS 16 11 69% 
VEGA 13 7 54% 
CWGA 9 4 44% 
Random 9 0 0% 

 

 

Table 4.2  Average results over 20 trials of each algorithm for the two-objective 

flowshop scheduling problem. 
 

Algorithm The number of obtained 
solutions (A) 

The number of 
non-dominated solutions (B) 

Ratio: 
B/A 

MOGLS 18.60 15.50 82.5% 
VEGA 15.35 6.75 44.0% 
CWGA 11.65 2.75 23.1% 
Random 10.65 0.00 0.0% 

 

 

4.1. From Table 4.1, we can see the high performance of the MOGLS because many solutions 

(i.e., eleven solutions: 69% of the obtained solutions) are not dominated by any other solutions. 

Because all the four algorithms are probabilistic search methods, their performance can not 

be evaluated by a single trial. Thus we applied each algorithm to the two-objective flowshop 

scheduling problem 20 times. In each trial, obtained solutions by the four algorithms were 

compared in the same manner as in Table 4.1. The average performance of each algorithm over 

the 20 trials is shown in Table 4.2. From Table 4.2, we can also see the high performance of the 

MOGLS. 

The average CPU time of each algorithm is shown in Table 4.3. From Table 4.3, we can see 

that the average CPU time of the three GAs (i.e., the MOGLS, the VEGA, and the CWGA) 

were almost the same. This is because these three algorithms used the same stopping condition 

(i.e., evaluation of 100,000 solutions). 
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Table 4.3  Average CPU time of each algorithm for the two-objective 
flowshop scheduling problem. 

 
MOGLS VEGA CWGA Random 

26.58(sec.) 26.23(sec.) 29.07(sec.) 82.7(sec.) 
 
 
 
4.3.3 Three-objective flowshop scheduling problem 

In this section, we apply the MOGLS to a randomly generated 20-job and 10-machine 

flowshop scheduling problem with three-objectives: to minimize the makespan, to minimize the 

total flowtime, and to minimize the maximum tardiness. Therefore we employ the following 

fitness function in the MOGLS: 
 
  f w f w f w f( ) ( ) ( ) ( )x x x x= − − −1 1 2 2 3 3 ,     (4.6) 

 
where f1( )x , f2 ( )x , and f3( )x  are the objective functions described in (3.5), (3.6), and 

(3.7), respectively, and w1, w2 , and w3  are non-negative weights which satisfy the relations 

in (2.6) and (2.7). 

In the same manner as in Table 4.2, we applied the four algorithms to the three-objective 

flowshop scheduling problem 20 times. Average results of the twenty trials of each algorithm 

are shown in Table 4.4. From Table 4.4, we can see the high performance of the MOGLS 

because many solutions (i.e., 92.8% of the obtained solutions by the hybrid algorithm) are not 

dominated by any other solutions. 

Because it is not easy to compare non-dominated solutions by depicting them in the 

three-dimensional objective space, Lee et al.[66] defined four characteristic features of obtained 

solution sets as follows: 
 
(i)  the center of gravity of the final solution set is close to the ideal point, 

(ii)  the diversity of the non-dominated solutions is maximized, 

(iii) the number of the non-dominated solutions is maximized, 

(iv) the bounding volume of the set of the non-dominated solutions is maximized. 
 

Esbensen [11] proposed a method to measure the quality of a set of non-dominated solutions. 

Let us denote a set of non-dominated solutions by Ω . Then the best solution x*  for a given 

weight vector w = ( , , )w w w1 2 3   can be chosen from Ω  as follows:  
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Table 4.4  Average results over 20 trials of each algorithm for the three-objective 

flowshop scheduling problems. 
 

Algorithm The number of obtained 
solutions (A) 

The number of 
non-dominated solutions (B) 

Ratio: 
B/A 

MOGLS 93.75 86.85 92.8% 
VEGA 59.45 27.10 45.7% 
CWGA 38.30 8.10 23.5% 
Random 29.70 0.00 0.0% 

 
 

Table 4.5  Average quality of the solution set obtained by each algorithm. 
 

MOGLS VEGA CWGA Random 
-9736.41 -9907.90 -9837.65 -10489.22 

 

 

  f w f w f w f( *) ( *) ( *) ( *)x x x x= − − −1 1 2 2 3 3  

       = − − − ∈max{ ( ) ( ) ( ) | }w f w f w f1 1 2 2 3 3x x x x  Ω .   (4.7) 

 
Esbensen [11] proposed an idea of measuring the quality of a set of solutions by calculating the 

expected value of f ( *)x  over possible weight vectors w = ( , , )w w w1 2 3  . In this section, we 

calculate the expected value of f ( *)x  by randomly generating 10,000 weight vectors (say, 

w1 , w2 , ..., w10000 ) by (2.8). That is, the quality of the set of non-dominated solutions Ω  is 

calculated in this section as follows: 

 

  q w f w f w fi

i

i i( ) max{ ( ) ( ) ( ) | }Ω Ω= − − − ∈
=
∑1

10000 1 1
1

10000
2 2 3 3x x x x  ,  (4.8) 

 
where q( )Ω  is the quality of the solution set Ω  and wi i i iw w w i= =( , , ),1 2 3   1,2,...,10000 . 

For the set of non-dominated solutions obtained by each trial of each algorithm shown in 

Table 4.4, we calculated the quality of the solution sets by (4.8). We iterated this calculation 20 

times for each algorithm to evaluate the average quality of the solution set obtained by each 

algorithm. Simulation results are summarized in Table 4.5. From Table 4.5, we can see that the 

best result (i.e., the maximum average quality) was obtained by the MOGLS.
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4.4 SUMMARY 

This chapter dealt with the application of GAs to multi-objective flowshop scheduling 

problems. In the first section, we applied the MOGA to flowshop scheduling problems with two 

objectives and three objectives. By two-objective flowshop scheduling problems, we compared 

the MOGA with the SOGA. In the SOGA, one of two objectives was used for the fitness 

function. Next, we examined the relation between the number of elite solutions to be inherited 

and the performance of the MOGA. Then we compared the MOGA with the VEGA and the 

CWGA. In the CWGA, two objectives are combined into a single scalar fitness function using 

constant weights. Last in the first section, we applied the MOGA to a three-objective flowshop 

scheduling problem. 

In the second section, we also hybridized the MOGA with a local search algorithm in the 

same manner as in Chapter 3. In this section, we described the multi-objective genetic local 

search algorithm (MOGLS). The MOGLS is an extension of the MOGA in [77] to a hybrid 

algorithm. In the MOGLS, a local search procedure is applied to each solution generated by the 

genetic operators. By computer simulations on flowshop scheduling problems, high 

performance of the MOGLS was demonstrated. 

The characteristic features of the MOGLS can be summarized as follows: 

(1) A weighted sum of multiple objectives is used as a fitness function in a selection of a pair of 

parent solutions. The weight values in the fitness function are randomly specified whenever 

a pair of parent solutions is selected. 

(2) A local search procedure is applied to each new solution generated by the genetic operators 

(i.e., crossover, and mutation). The local search for each new solution is performed to 

maximize the fitness function which was used for selecting its parent solutions. Thus each 

new solution has its own local search direction in the objective space. 

(3) In the local search, all the neighborhood solutions of the current solution are not examined 

for each move. That is, the number of examined neighborhood solutions of the current 

solution is restricted in the local search. This is to prevent the local search from spending 

almost all the available computation time. 

(4) A tentative set of non-dominated solutions is stored and updated at every generation. The 

tentative set is stored separately from a current population. A few solutions randomly 

selected from the tentative set are used as a kind of elite solutions. 


