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CHAPTER 6 
 

GENETIC ALGORITHMS FOR MULTI- 
OBJECTIVE LINGUISTIC RULE SELECTION 
 

 

 

6.1 INTRODUCTION 

We explained genetic algorithms for designing fuzzy classification systems in the previous 

chapter. We considered the following two objectives in constructing fuzzy classification systems:  
 

(i)  To maximize the number of correctly classified training patterns by selected rules, 

(ii)  To minimize the number of selected rules. 
 
These two objectives were combined into a single scalar fitness function using constant weights 

in the previous chapter. An idea of a multi-objective genetic algorithm was proposed to find a set 

of non-dominated solutions of the rule selection problem with the above two objectives in 

[35,41]. A fuzzy classifier system [42,43] was proposed to handle a rule selection problem with 

only the first objective for multi-dimensional pattern classification problems involving many 

features. 

The main aim of this chapter is to introduce several methods for finding a set of 

non-dominated solutions of the rule selection problem with the above two objectives. We 

reconsider the rule selection problem described in Section 5.3. First we apply three methods 

based on a genetic algorithm with a single objective for finding a set of non-dominated solutions 

of the rule selection problem. We also apply a method based on a multi-objective genetic 

algorithm (MOGA) [41]. Next we introduce a hybrid algorithm by combining a learning 

procedure [87,88] of linguistic classification rules with the MOGA. The performance of the 

several methods for finding a set of non-dominated solutions are examined by applying them to 

iris data [13]. Then we modify our genetic-algorithm-based multi-objective fuzzy rule selection 

method for handling high-dimensional pattern classification problems with many continuous 

attributes.
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6.2 SINGLE-OBJECTIVE GENETIC ALGORITHMS FOR 

 MULTI-OBJECTIVE LINGUISTIC RULE SELECTION 

In this section, we apply three methods based on a genetic algorithm with a single objective 

described in Section 5.3. First we employ a constant weight genetic algorithm (CWGA) for 

linguistic rule selection. We assign various weights in order to find a set of non-dominated 

solutions. Next we employ genetic algorithms with a single objective in which only one of the 

two objectives is considered as an objective and the other objective is considered as a constraint 

condition. 

 

6.2.1 Variable weights 
We have already introduced a genetic algorithm with a single objective for linguistic rule 

selection with two objectives in Section 5.3. In the genetic algorithm, we specified a scalar 

fitness function using constant weights as follows: 

 
  f S w NCP S w S( ) ( )= ⋅ − ⋅NCP S ,      (6.1) 

 
where wNCP  and wS  are non-negative constant weights assigned to the two objectives 

NCP S( )  and | |S , respectively. 

In the genetic algorithm described in Section 5.3, the weights wNCP  and wS  were constant. 

Thus the search direction of the CWGA was fixed as shown in Fig. 6.1. This means that the 

choice of the weight values in (6.1) has a significant effect on the final solution (i.e., selected 

linguistic classification rules) obtained by the CWGA. Because the importance of each objective 

in the rule selection problem depends on the preference of human users, it is not easy to assign 

constant values to the weights wNCP  and wS  in advance. 

One of the basic approach to multi-objective optimization problems is to find not a single 

solution but a set of non-dominated solutions. The final solution should be determined by 

decision makers (i.e., human users in the rule selection problem) from a set of non-dominated 

solutions depending on their preference. Thus we introduce several methods for searching for a 

set of non-dominated solutions of the two-objective linguistic rule selection problem. 

One simple method for searching for a set of non-dominated solutions is to employ variable 

weights. That is, the execution of the CWGA is repeated using various values of the weights 
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Fig. 6.1  Search direction of the CWGA. 

 
wNCP  and wS . The CWGA in Subsection 5.3.3 was applied to the iris data [13] with the 

following parameter specification:  

 
 Population size: N pop = 20, 

 Crossover probability: 1.00, 

 Mutation probabilities: Pm 0.1( )1 1→ − = , Pm 0.001( )− → =1 1 , 

 Stopping condition: tmax = 1000 (i.e., 1,000 generations). 

 

The following ten pairs of the weight values were employed: 

 

 ( , )w wNCP S = (0.1, 1), (0.5, 1), (1, 1), (5, 1), (10, 1), (50, 1), (100, 1), (500, 1), 

      (1000, 1), (5000, 1). 

 

The CWGA described in the Section 5.3 was applied to the iris data using each pair of the weight 

values. From these ten trials, ten solutions in Table 6.1 were obtained. From Table 6.1, we can 

see that the following solution are non-dominated: 
 
  { ( ( ), | |) } { ( , ), ( , ), ( , ) }          NCP S S = 142 3 146 4 147 5 . 

 

The final solution should be selected from these three non-dominated solutions by human users 

depending on their preference. 
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Table 6.1  Obtained solutions by the CWGA with various weight values. 
 

wNCP  wS  NCP(S) | |S  
0.1 
0.5 
1 
5 
10 
50 
100 
500 
1000 
5000 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

142 
146 
147 
147 
147 
147 
147 
146 
146 
146 

3 
4 
5 
5 
7 
5 
6 
4 
4 
4 

 

 

6.2.2 Constraint condition on the number of rules 
We can also search for a set of non-dominated solutions of the rule selection problem by 

introducing a constraint condition on the number of rules (i.e., a constraint condition on | |S ). As 

we explained in Subsection 5.3.1, we can formulate the rule selection problem with a single 

objective as follows: 

 

  Maximize NCP S( ) ,       (6.2) 

  subject to | |S N≤ rule ,       (6.3) 

     S S⊆ ALL ,       (6.4) 

 

where Nrule  is a constant of the constraint condition on the number of rules. We formulate the 

following fitness function by introducing large penalty when the constraint condition (6.3) is not 

satisfied: 

 

  f S w NCP S w S N( ) ( ) max{ , | | }= ⋅ − ⋅ −NCP S rule 0 ,    (6.5) 

 

where the weights wNCP  and wS  are specified as w wNCP S<<  in order to attach large 

penalty to the fitness function when the constraint condition (6.3) is not satisfied. Using different 

values in the right-hand side of the constraint condition (6.3), we can search for a set of 

non-dominated solution of the two-objective rule selection problem in (5.10)-(5.11). 
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Table 6.2  Obtained solutions by the genetic algorithm with a constraint condition on the 

number of selected linguistic classification rules. 
 

Constraint NCP S( )  | |S  
| |S ≤ 3 
| |S ≤ 4  
| |S ≤ 5  
| |S ≤ 6  
| |S ≤ 7  
| |S ≤ 8  
| |S ≤ 9  
| |S ≤ 10  
| |S ≤ 11 
| |S ≤ 12  

142 
146 
147 
147 
147 
147 
147 
147 
147 
147 

3 
4 
5 
5 
5 
5 
5 
5 
5 
5 

 
 

A genetic algorithm which is basically the same as shown in Subsection 5.3 except for the 

definition of the fitness function was applied to the iris data using each of the following ten 

values of N rule : 

 
  Nrule     7  ,  ,  ,  ,  = 3 4 5 6 8 9 10 11 12, , , , , . 

 
We assign a value to N rule  from three because a classification system should have at least three 

rules in order to classify all the patterns from three classes in the iris data. By the ten trials of the 

genetic algorithm with wNCP = 1 and wS = 100 , ten solutions were obtained. If the fitness 

value of the obtained solution is the same or less than that of the solution obtained by a genetic 

algorithm with more strict constraint condition (i.e., less number of rules), then the solution with 

better fitness value is regarded as the solution. Table 6.2 shows the obtained solutions. We can 

see that the following solutions are non-dominated in Table 6.2. 
 
  { ( ( ), | | ) } { ( , ), ( , ), ( , ) }          NCP S S = 142 3 146 4 147 5 . 

 
 
6.2.3  Constraint condition on the number of correctly classified 

  patterns 
In the last subsection, we introduced a constraint condition on the number of selected 

linguistic classification rules. In a similar manner, we can introduce a constraint condition on the 
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number of correctly classified training patterns. As we explained in Subsection 5.3.1, our rule 

selection problem with a single objective can be written as 

 

  Minimize | |S ,        (6.6) 

  subject to NCP S N( ) ≥ pattern ,      (6.7) 

     S S⊆ ALL ,       (6.8) 

 

where Npattern  is a constant of the constraint condition on the number of correctly classified 

training patterns. We formulate the following fitness function by introducing large penalty when 

the constraint condition (6.7) is not satisfied: 

 
  f S w N NCP S w S( ) max{ , ( )} | |= − ⋅ − − ⋅  NCP pattern S  0 ,        (6.9) 

 
where the weights wNCP  and wS  are specified as w wNCP S>>  in order to attach large 

penalty to the fitness function when the constraint condition (6.7) is not satisfied. A set of 

non-dominated solutions of the rule selection problem in (5.10)-(5.11) can be obtained using this 

fitness function with various values of N pattern . 

A genetic algorithm which is basically the same as in Subsection 5.3 was applied to the iris 

data using each of the following ten values of N pattern : 

 
  N pattern          = 141 142 143 144 145 146 147 148 149 150, , , , , , , , , . 

 

By the ten trials of the genetic algorithm with wNCP = 100  and wS = 1, ten solutions were 

obtained. As in the similar manner in the previous subsection, the better solution obtained by a 

genetic algorithm with more strict constraint condition (i.e., more number of patterns) is selected 

as a solution. Table 6.3 shows obtained solutions. We can see that the following solutions are 

non-dominated in Table 6.3. 

 
  { ( ( ), | |) } { ( , ), ( , ), ( , ) }          NCP S S = 142 3 146 4 147 6 . 
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Table 6.3  Obtained solutions by the single-objective genetic algorithm with a constraint 

condition on the number of correctly classified training patterns. 

 
Constraint NCP S( )  | |S  

NCP S( ) ≥ 141 
NCP S( ) ≥ 142  
NCP S( ) ≥ 143  
NCP S( ) ≥ 144  
NCP S( ) ≥ 145  
NCP S( ) ≥ 146  
NCP S( ) ≥ 147  
NCP S( ) ≥ 148  
NCP S( ) ≥ 149  
NCP S( ) ≥ 150  

142 
142 
146 
146 
146 
146 
147 
147 
147 
147 

3 
3 
4 
4 
4 
4 
6 
6 
6 
6 
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6.3 MULTI-OBJECTIVE GENETIC ALGORITHM FOR 

 MULTI-OBJECTIVE RULE SELECTION 

In the previous section, we described three methods for searching for a set of non-dominated 

solutions of the two-objective linguistic rule selection problem by the genetic algorithms with a 

single objective. The genetic algorithms with a single objective were repeated with different 

parameter specifications. In this section, we introduce a multi-objective genetic algorithm 

(MOGA) for searching for a set of non-dominated solutions more directly. Basically, a 

multi-objective genetic algorithm is the same algorithm as the MOGA described in Chapter 4. In 

the MOGA in Chapter 4, permutation strings were used because the flowshop scheduling 

problems were considered. In this chapter, a string which consists of “1”, “0”, and “-1” is treated 

as an individual. Therefore we should employ the genetic operators for the binary coding in order 

to construct the MOGA for the two-objective linguistic rule selection problem in this chapter. 

A rule set S is treated as a string S s s sr= 1 2 ...  in the MOGA as in the genetic algorithm 

described in the previous section (for details, see Subsection 5.3.2). Crossover and mutation 

operators in the MOGA are also the same as those in the genetic algorithm in the previous 

section. Our MOGA differs from the genetic algorithm in the previous section in its selection 

procedure and elitist strategy. In our MOGA, the selection probability P Ss( )  is determined as 

follows: 

 

  P S f S f
f S f

t

t
S t

s

 

( ) ( ) ( )
{ ( ) ( )}

min

min
= −

′ −
′∈
∑

Ψ
Ψ

Ψ

,           (6.10) 

where 

  f f S St tmin ( ) min{ ( ) }Ψ Ψ= ′ ′ ∈ | .           (6.11) 

 

In (6.10)-(6.11), the fitness function f S( )  of each rule set S is specified as follows: 

 

  f S w NCP S w S( ) ( )= ⋅ − ⋅NCP S ,           (6.12) 

 

where wNCP  and wS  are non-negative weights assigned to the two objectives NCP S( )  and 

| |S , respectively. These two weights are randomly specified weights. That is, when a pair of parent 
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Fig. 6.2  Search direction of the multi-objective genetic algorithm. 

 

 

strings are selected, the values of the weights wNCP  and wS  are assigned as 

 

  wNCP : a random real number in [0, 1],          (6.13) 

  wS : w wS NCP= −1 .            (6.14) 

 

Random weight values are given by (6.13)-(6.14) for each selection of a pair of parent strings. 

Thus we can see that the selection procedure in each generation of our MOGA drives the search 

of the algorithm in various directions in Fig. 6.2. 

In the execution of the MOGA, a tentative set of non-dominated solutions is externally 

preserved in the same manner as in Chapter 4. This means that there are two sets of strings in 

each generation: one is a current population and the other is a tentative set of non-dominated 

solutions. A certain number of strings (say, Nelite  strings) are randomly selected from the 

tentative set of non-dominated solutions, and the selected strings are added to the current 

population as elite solutions in our MOGA. 

We construct the following multi-objective genetic algorithm where t is the number of 

generations and tmax  is the maximum number of generations that is prespecified to terminate 

the algorithm: 

 

Step 0 (Initialization): Let t:= 0 . Generate an initial population containing N pop  strings in the 
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same manner as in the genetic algorithm in the previous section.  

Step 1 (Rule elimination): Classify all the given training patterns by linguistic classification rules 

included in each string S. Exclude non-active rules from S. This rule elimination procedure 

is applied to all the strings in the current population. 

Step 2 (Evaluation): Calculate the values of the two objectives NCP S( )  and | |S  for the strings 

in the current population. Update the tentative set of non-dominated solutions. 

Step 3 (Selection): Let Ψt  be the population in the t-th generation. Calculate the fitness value of 

each string using random weights in (6.13)-(6.14). Select a pair of strings from the current 

population according to the selection probability P Ss( )  in (6.10). This procedure is 

repeated for selecting N pop / 2  pairs of parent strings from the current population Ψt . 

Step 4 (Crossover): To each of the selected pairs, apply the uniform crossover operator in order 

to generate two strings in the same manner as in the genetic algorithm in the previous 

section. 

Step 5 (Mutation): To each bit value of the generated strings by the crossover operator, apply the 

mutation operator. 

Step 6 (Elitist strategy): Randomly remove Nelite  strings from the generated N pop  strings, 

and add Nelite  strings that are randomly selected from the tentative set of non-dominated 

solutions to the current population. 

Step 7 (Termination test): Let t t:= + 1. If t t= max , stop the algorithm. Otherwise, return to 

Step 1. 

 

We applied the MOGA to the iris data. In order to compare the MOGA with the genetic 

algorithms in the previous section under the same computation load, the execution of the 

multi-objective algorithm was repeated ten times. That is, the same number of solutions were 

examined in order to form a set of non-dominated solutions by the MOGA. The number of elite 

solutions Nelite  was specified as Nelite = 3. By the ten trials of the MOGA the following 

non-dominated solutions were obtained: 

 

    { ( ( ), | |) }   NCP S S ={ (0,0), (50,1), (100,2), (142,3), (146,4), (147,5), (148,6) }.   (6.15) 
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Here we summarize the non-dominated solutions obtained by each method in the last section 

(see Table 6.1 ～ Table 6.3): 

 

(1) By the method based on variable weights in Subsection 6.2.1: 

{ ( ( ), | |) }   NCP S S ={ (142,3), (146,4), (147,5) }.          (6.16) 

(2) By the method based on the constraint condition | |S N≤ rule  in Subsection 6.2.2: 

{ ( ( ), | |) }   NCP S S ={ (142,3), (146,4), (147,5) }.          (6.17) 

(3) By the method based on the constraint condition NCP S N( ) ≥ pattern  in Subsection 6.2.3: 

{ ( ( ), | |) }   NCP S S ={ (142,3), (146,4), (147,6) }.          (6.18) 

 

From the comparison of the result in (6.15) by the MOGA with these results in (6.16)-(6.18) by 

the genetic algorithms with a single objective, we can see that a bit better set of non-dominated 

solutions was obtained by the MOGA. For example, a rule set that can correctly classified 148 

patterns was not found by any method based on the genetic algorithms with a single objective in 

the previous section (see (6.16)-(6.18)). 
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6.4 MULTI-OBJECTIVE GENETIC ALGORITHM WITH 

 LEARNING PROCEDURE 

The learning procedure of the grade of certainty CFj  [87,88] is combined with our MOGA in 

the same manner as in Subsections 5.3.3 and 5.4.4. Since the learning procedure is applicable to 

any rule set in S, we apply it to all the rule sets (i.e., all the strings) generated by the crossover 

and mutation operators in the genetic algorithm. That is, the following procedure is inserted 

between Step 6 and Step 7 of the MOGA described in Subsection 6.3: 

 

[Learning procedure of the grade of certainty] 

Step 6.5 (Learning): Apply the learning procedure to each rule set S generated by the 

crossover and mutation operators. The learning procedure for each rule set S is iterated 

Nlearning  times for all the training patterns.  

 

The hybrid algorithm was applied to the iris data using the same parameter specifications as in 

the MOGA in the previous section. The learning rates η1  in (5.31) and η2  in (5.32) were 

specified as η1 0 001= .  and η2 = 0.1 . We examined four specifications of N learning , i.e., 

N learning = 0 , 1, 2, 10. Table 6.4 shows non-dominated solutions by ten trials of the hybrid 

algorithm with each specification of N learning . For example, we can see from Table 6.4 that the 

following non-dominated solutions were obtained by specifying N learning  as N learning = 10 : 

 

    { ( ( ), | |) }   NCP S S ={ (0, 0), (50, 1), (100, 2), (145, 3), (147, 4), (148, 5) }.       (6.19) 

 

From Table 6.4, we can see that the classification performance of the selected linguistic 

classification rules was improved by combining the learning procedure into the multi-objective 

genetic algorithm. For example, three linguistic classification rules selected by the 

multi-objective algorithm with no learning (i.e., N learning = 0 ) correctly classified 142 patterns 

while 145 patterns were correctly classified by three rules selected by the hybrid algorithm with 

N learning = 2  and N learning = 10 . In Fig. 6.3, we show rule sets with three linguistic 

classification rules obtained by the non-hybrid algorithm. The five rule sets in Fig. 6.3, which 
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Table 6.4   Obtained solutions by the hybrid algorithm with various specifications of the 

number of iterations of the learning method (i.e., N learning ). The non-hybrid 

multi-objective genetic algorithm corresponds to the case of N learning = 0 . “*” denotes 

that a non-dominated solution with the corresponding number of selected rules was not 

obtained. 

 

The number of 
selected  

The number of correctly classified training patterns: NCP S( )  

rules: | |S  N learning = 0  N learning = 1 N learning = 2  N learning = 10  

0 0 0 0 0 
1 50 50 50 50 
2 100 100 100 100 
3 142 143 145 145 
4 146 147 147 147 
5 147 * 148 148 
6 148 148 149 * 
7 * 149 * * 

 

 

had the same classification performance (i.e., which can correctly classify 142 patterns), were 

obtained by all the ten trials of the non-hybrid algorithm. On the other hand, three rule sets with 

three linguistic classification rules that could correctly classify 145 patterns were obtained by all 

the ten trials of the hybrid algorithm with N learning = 10 . The three rule sets are shown in Fig. 

6.4. The first rule set in each figure consists of the same three linguistic classification rules 

except for their grades of certainty (i.e., CF in each figure). 
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No. x x1 2 Class CF   # of

11 1.00

patterns

2 2 43

3 3 0.57 49

x4x3

0.95

50

     

No. x x1 2 Class CF   # of

11 1.00

patterns

2 2 47

3 3 0.70 45

x4x3

0.79

50

 
 

No. x x1 2 Class CF   # of

11 1.00

patterns

2 2 47

3 3 0.59 45

x4x3

0.83

50

     

No. x x1 2 Class CF   # of

11 1.00

patterns

2 2 44

3 3 0.59 48

x4x3

0.79

50

 
 

No. x x1 2 Class CF   # of

11 1.00
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2 2 47
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x4x3

0.79

50

 
 
 

 Fig. 6.3  Rule sets obtained by the non-hybrid algorithm. 
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 Fig. 6.4  Rule sets obtained by the hybrid algorithm with N learning = 10 . 
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6.5 MULTI-OBJECTIVE GENETIC ALGORITHM FOR 

 HIGH-DIMIENSIONAL CLASSIFICATION PROBLEMS 

It has often been claimed that the grid-type fuzzy partition can not handle high-dimensional 

problems with many input variables due to the curse of dimensionality (see, for example, Carse 

et al.[5]). That is, when we use the grid-type fuzzy partition, the number of fuzzy rules 

exponentially increases as the number of input variables increases. 

In Chapter 5 and Chapter 6, we employed one of six linguistic values in Fig. 5.2 as the 

antecedent fuzzy set Aji  in linguistic classification rules. The antecedent part with “don’t care” 

is removable from the linguistic classification rule. For example, the following two linguistic 

classification rules are the same:  

 
(i)  If x1  is don’t care and x2  is small  then Class C j  with CF CFj= , 

(ii)  If x2  is small  then Class C j  with CF CFj= . 

 
These linguistic classification rules correspond to the fuzzy partitions in Fig. 5.3. 

Because we have the six linguistic values for each axis of the n-dimensional pattern space (see, 

Fig. 5.2), the total number of linguistic classification rules is 6n . The relation between the 

number of attributes (i.e., n) and the number of linguistic classification rules (i.e., 6n ) are shown 

in Table 6.5. From this table, we can see that the number of linguistic classification rules is too 

large to be included in a single fuzzy rule-based classification system, which was described in 

Chapter 5 and the previous section, when the number of attributes is large (e.g., n ≥ 4 ). The 

genetic-algorithm-based rule selection methods can not handle such a large number of linguistic 

classification rules.  

 
 

Table 6.5  The number of linguistic classification rules. 

 
Number of attributes Number of linguistic 

classification rules 
2 36 
4 1,296 
6 46,6556 
8 1,679,616 
10 60,466,176 
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As shown in Table 6.5, the total number of linguistic classification rules is too large to be 

handled by the genetic-algorithm-based rule selection methods. Thus we generate only a part of 

the 6n  linguistic classification rules as candidate rules. Let us define the length of a linguistic 

classification rule by the number of its antecedent fuzzy sets except for “don’t care.” For 

example, the length of the following linguistic classification rule is three. 

If x1  is small & x2  is don’t care & x3 is don’t care  
& x4  is large & x5  is small & x6  is don’t care 

then Class C j  with CF CFj= . 

This linguistic classification rule can be rewritten as follows by removing the attributes with 

“don’t care”: 
If x1  is small & x4  is large & x5  is small 

then Class C j  with CF CFj= . 
 
Thus we can see that the length of the linguistic classification rule is the same as the number of 

conditions in its antecedent part. In this section, we reduce the number of candidate linguistic 

classification rules in the genetic-algorithm-based multi-objective rule selection method which 

was described in the previous section by the constraint on their length. Let us consider a 

10-dimensional pattern classification problem. As shown in Table 6.5, the total number of 

linguistic classification rules in this problem is 6 6 0 1010 7≅ ×. . In Table 6.6, we show the 

number of linguistic classification rules according to their length in the case of a 10-dimensional 

pattern classification problem. From this table, we can see that the number of candidate linguistic 

classification rules is not large if we only generate linguistic classification rules whose length is 

less than or equal to two. 
 

Table 6.6  The number of linguistic classification rules. 
 

Length of linguistic classification rules Number of linguistic classification rules 
0 1 
1 50 
2 1,125 
3 15,000 
4 131,250 
5 787,500 
6 3,281,250 
7 9,375,000 
8 17,578,125 
9 19,531,250 
10 9,76,5625 

Total number of rules 60,466,176 



- 131 - 

One alternative approach to such a high-dimensional pattern classification problem is a fuzzy 

classifier system [42,43] where each fuzzy if-then rule was coded as a string. Because each 

population consisted of a relatively small number of fuzzy if-then rules (e.g., 60 rules were used 

in [42,43]), the fuzzy classifier system can be applied to high-dimensional pattern classification 

problems. The effectiveness of the fuzzy classifier system was also demonstrated in Yuan & 

Zhuang [120] for high-dimensional pattern classification problems with many discrete attributes. 

While the fuzzy classifier system can find fuzzy if-then rules with high classification 

performance for high-dimensional pattern classification problems, the number of fuzzy if-then 

rules can not be efficiently decreased because a fitness value is not assigned to a rule set but to 

each fuzzy if-then rule. 

In this section, we use the grid-type fuzzy partition for pattern classification problems with 

many continuous attributes because such a fuzzy partition has an inherent advantage of fuzzy 

rule-based systems: the comprehensibility of fuzzy if-then rules. Horte [31] pointed out that a 

simple classification rule which utilized only one attribute out of multiple attributes performed 

well on a lot of data sets. Therefore we can restrict the number of antecedent fuzzy sets in each 

linguistic classification rule. Our approach in this section tackles the curse of dimensionality by 

(i) utilizing “don’t care” as an antecedent fuzzy set, (ii) efficiently generating a tractable number 

of candidate linguistic classification rules, (iii) selecting only a small number of linguistic 

classification rules from the candidate rules, and (iv) constructing a compact fuzzy rule-based 

classification system by the selected linguistic classification rules. As shown in Table 6.6, the 

effect of “don’t care” on the reduction of the number of linguistic classification rules is much 

more significant in the case of high-dimensional pattern classification problems with many 

continuous attributes. 

 

6.5.1 Restriction on candidate linguistic classification rules 
In this section, we apply the genetic-algorithm-based rule selection method, which was 

described in Chapter 5 and the previous section, to wine data in [16] in order to examine its 

ability to find compact rule sets with high classification performance for high-dimensional 

pattern classification problems with many continuous attributes. The wine data consist of 178 

samples with 13 continuous attributes from three classes. We used the wine data because (i) this 

data set is available from UC Irvine Database [16], (ii) this data set has many continuous 

attributes, and (iii) our rule selection method can be compared with other genetics-based machine 
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learning methods. 

As we have already mentioned, compact rule sets consists of general linguistic classification 

rules with “don’t care” attributes. Therefore it seems to be a promising strategy to generate only 

general linguistic classification rules with many “don’t care” attributes as candidate rules. For 

preventing the exponential increase of the number of candidate linguistic classification rules, we 

only generate linguistic classification rules with short length as candidate rules. We generated 

linguistic classification rules by restricting the length of candidate rules less than or equal to two. 

In this case, 2016 linguistic classification rules were generated where 182 dummy rules were 

included. That is, 1834 linguistic classification rules were generated with their consequent 

classes and grades of certainty. Thus each of the generated candidate rules has two conditions in 

its antecedent part at most. Using those candidate rules, we applied the MOGA to the wine 

classification problem with 13 continuous attributes. We employed the following parameter 

specifications: 

 
  Population size: N pop = 50, 

  Crossover probability: 1.00, 

  Mutation probabilities: Pm 0.1( )1 1→ − = , Pm 0.001( )− → =1 1 , 

  Number of elite solutions: Nelite = 3, 

  Stopping condition: tmax = 10000 (i.e., 10,000 generations). 

 
Corcoran & Sen [6] reported the following results of their genetics-based machine learning 

system with 60 non-fuzzy rules in each rule set, 1500 rule sets in each population, and 300 

generations (i.e., 1500 300× =  450,000 rule sets of 60 non-fuzzy if-then rules were examined 

in each trial):  

 
  Best classification rate: 100%, 

  Average classification rate: 99.5%, 

  Worst classification rate: 98.3%. 

 
These results were classification rates obtained by ten independent trials where all the 178 

samples were used as training data. 

We summarize the non-dominated solutions (i.e., non-dominated rule sets) obtained by the 

MOGA in Table 6.7. These non-dominated rule sets were obtained after examining 500,000  
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Table 6.7  Non-dominated solutions obtained by the MOGA  

for the wine classification problem. 

 

NCP S( )  | |S  
0 0 

62 1 
118 2 
165 3 
171 4 
175 5 
177 6 
178 7 

 

 

rule sets (i.e., 10,000 populations with 50 rule sets) by the MOGA. From the comparison 

between Table 6.7 and the above-mentioned results by Corcoran & Sen [6], we can see that more 

compact rule sets were obtained by the MOGA. As shown in Table 6.7, eight non-dominated rule 

sets were obtained by the MOGA. For example, one non-dominated rule set consists of the 

following seven linguistic classification rules that can correctly classify 178 patterns (i.e., all the 

given patterns): 

 

 If x1 is medium large and x4  is medium small  then Class 1 with CF = 0.89, 

 If x7  is medium and x11 is medium  then Class 1 with CF = 0.56, 

 If x10  is small  then Class 2 with CF = 0.94, 

 If x10  is medium small and x13 is small  then Class 2 with CF = 0.81, 

 If x11 is medium and x13 is medium small  then Class 2 with CF = 0.66, 

 If x4  is medium and x11 is small  then Class 3 with CF = 0.93, 

 If x7  is small and x11 is medium small  then Class 3 with CF = 0.92. 

 

This rule set can be easily understood by human users because (i) the number of linguistic 

classification rules is very small, (ii) each linguistic classification rule has only a few conditions 

(i.e., only a few attributes) in its antecedent part, and (iii) each condition is represented by a 

linguistic value. 
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6.5.2 Generation of candidate fuzzy if-then rules 
A. Candidate fuzzy if-then rules generated by fuzzy classifier systems 

Fuzzy if-then rules generated by the fuzzy classifier system in [42,43] can be used as candidate 

rules for the rule selection. While the generation procedure of candidate rules in the previous 

subsection can not generate a long linguistic classification rule with many conditions in the 

antecedent part, the fuzzy classifier system can generate long rules as well as short rules from 

training patterns. Because the fuzzy classifier system finds a relatively small number of fuzzy 

if-then rules with high classification performance for high-dimensional pattern classification 

problems, the MOGA can be applied to the fuzzy if-then rules generated by the fuzzy classifier 

system. That is, the combination of the fuzzy classifier system and the MOGA makes a hybrid 

algorithm that can maximize the classification performance and minimize the number of fuzzy 

if-then rules for high-dimensional pattern classification problems. 

 

B. Candidate fuzzy if-then rules from Neural Networks 

Fuzzy if-then rules extracted from neural networks [96] can be also used as candidate rules for 

the rule selection. Ishibuchi & Nii [44] proposed an extraction method of linguistic classification 

rules from trained neural networks. Because fuzzy if-then rules with linguistic values can be 

extracted from standard feedforward neural networks, the rule extraction method is used for the 

linguistic analysis of the trained neural networks. Such linguistic analysis becomes much easier if 

a small number of linguistic classification rules are selected by our MOGA. 
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6.6 SUMMARY 

In this chapter, we considered genetic-algorithm-based method to find a set of non-dominated 

solutions of the two-objective rule selection problem described in Section 5.3. First we applied 

three methods based on a genetic algorithm with a single objective for finding the non-dominated 

solutions of the rule selection problem. We also applied a method based on a multi-objective 

genetic algorithm [81]. Next we introduced a hybrid algorithm by combining a learning method 

[87,88] of linguistic classification rules with the multi-objective genetic algorithm. The 

performance of the several methods for finding a set of non-dominated solutions were examined 

by applying them to the iris data. Then we modified our genetic-algorithm-based multi-objective 

fuzzy rule selection method for handling high-dimensional pattern classification problems with 

many continuous attributes. We applied the modified method to the wine classification problem 

with 13 continuous attributes. 

The advantages of our genetic-algorithm-based method to the design of fuzzy rule-based 

classification systems can be summarized as follows:  

 

(i)  Human users can choose the final rule set from several alternative rule sets by considering 

the tradeoff between the performance and the compactness of the fuzzy classification 

system. 

(ii)  These two criteria are simultaneously handled in the MOGA. 

(iii) A small number of linguistic classification rules with high classification performance can be 

selected for multi-dimensional pattern classification problems with many continuous 

attributes. For example, our MOGA selected eight linguistic classification rules that can 

correctly classify all the 178 patterns in the wine classification problem with 13 attributes. 

(iv) Selected linguistic classification rules can be linguistically interpreted by human users. This 

means that linguistic knowledge is extracted from numerical data by our 

genetic-algorithm-based method. 

(v)  Our MOGA is a general algorithm that can be applied to rule selection problems in various 

areas. For example, it can be applied to the rule selection of non-fuzzy classification rules. It 

can be also extended from pattern classification problems to others areas such as function 

approximation problems. 

 


