
- 65 -

CHAPTER 4

GENETIC ALGORITHMS FOR
MULTI-OBJECTIVE
FLOWSHOP SCHEDULING PROBLEMS

4.1 INTRODUCTION

In Chapter 3, we considered genetic algorithms for single-objective flowshop scheduling

problems. As shown in the previous chapter, GAs have been mainly applied to single-objective

optimization problems. Many real-world problems, however, have multiple objectives. Since

Johnson’s work [56], various scheduling criteria have been considered (see, for example,

reviews by Baker & Scudder [3] and Dudek et al.[10]). Among them are makespan, maximum

tardiness, total tardiness, and total flowtime. Several researchers extended single-objective

flowshop scheduling problems to multi-objective problems. For example, Ho & Chang [26]

proposed a heuristic method for flowshop scheduling with bicriteria, Gangadharan et al.[20]

proposed a simulated annealing heuristic for flowshop scheduling with bicriteria. Daniels &

Chambers [7] considered the trade-off between the makespan and the maximum tardiness.

Rajendran [95] proposed a branch-and-bound algorithm and two heuristic algorithms to

minimize the total flowtime with a constraint condition on the makespan. Morizawa et al.[74]

proposed a random sampling method for obtaining a set of non-dominated solutions of a

flowshop scheduling problem with two objectives: to minimize the makespan and the

maximum tardiness. A three-objective flowshop scheduling problem was considered in

Morizawa et al.[75] where the makespan, the maximum tardiness and the total flowtime were

used as scheduling criteria. Morizawa et al.[76] also proposed an interactive approach for

searching a preferred schedule of multi-objective problems.

Since Schaffer’s work [98], extensions of GAs to multi-objective optimization were

proposed in several manners (e.g., see Fonseca & Fleming [14,15], Gen et al. [21], Horn et

- 66 -

al.[30], Kita et al.[60], Kursawe [63], Murata & Ishibuchi [77,78,81], and Tamaki et al.

[111,112]). We have already compared the multi-objective genetic algorithm described in

Section 2.3 with the VEGA [98] and the NPGA [30].

This chapter addresses the application of GAs to multi-objective flowshop scheduling

problems. We demonstrate the effectiveness of the MOGA on flowshop scheduling problems

with two objectives and problems with three objectives. By two-objective flowshop scheduling

problems, we compare the MOGA with single-objective genetic algorithms where one of two

objectives is used as a fitness function. Next we examine the relation between the number of

elite solutions to be inherited and the performance of the MOGA. Then we compare the MOGA

with the VEGA and a constant weight genetic algorithm (CWGA). In the CWGA, two

objectives are combined into a single scalar fitness function using constant weights. Last we

apply the MOGA to three-objective flowshop scheduling problems. We hybridize the MOGA

with a local search algorithm in the same manner as in Chapter 3. The effectiveness of the

hybrid algorithm is shown by computer simulations.

- 67 -

4.2 GENETIC ALGORITHMS FOR MULTI-OBJECTIVE

 FLOWSHOP SCHEDULING PROBLEMS

 In this section, first we compare the multi-objective genetic algorithm with single-objective

genetic algorithms (SOGA) where one of two objectives is used for the fitness function. Next

we examine the relation between the number of elite solutions to be inherited and the

performance of the MOGA. Then we compare the MOGA with the VEGA and a constant

weight genetic algorithm (CWGA). In the CWGA, two objectives are combined into a single

scalar fitness function using constant weights. Last we apply the MOGA to a three-objective

flowshop scheduling problem. In the SOGA, the VEGA, and the CWGA, we store two sets of

solutions as in the MOGA: the population to be governed by genetic operators and the set of

non-dominated solutions. In order to compare these algorithms, we use the final set of

non-dominated solutions obtained by each genetic algorithm for multi-objective optimization.

4.2.1 Parameter specifications
As we have already explained flowshop scheduling problems in Chapter 3, there are many

criteria for scheduling problems. In the previous chapter, we treated only one criterion out of

four criteria: the makespan in (3.5), the total flowtime in (3.6), the maximum tardiness in (3.7),

and the total tardiness in (3.8) (see Subsection 3.2). In this section, we treat two or three

objectives out of the four objectives.

In this section, we specified parameters in flowshop scheduling problems with multiple

objectives as follows. The processing time of each job at each machine was randomly specified

as an integer in the closed interval [1, 99]. We specified the duedate of each job by the

following procedure:

Step 1: Randomly generate a permutation of n jobs.

Step 2: Calculate the completion time t m xC k(,) of each job, k n= 1 2, , ..., .

Step 3: Add a random integer in the closed interval [-100, 100] to each t m xC k(,) .

That is, the duedate d xk() of the k-th job is specified as follows:

- 68 -

 d x t m x randomk C k k() (,)= + , k n= 1 2, , ..., . (4.1)

where randomk is a random integer in the closed interval [-100, 100].

It is known that there is no correlation between the three objectives: the makespan, the total

flowtime, and the maximum tardiness (or the total tardiness). That is, we considered two

objectives of the makespan and the total tardiness or of the makespan and the maximum

tardiness in two-objective flowshop scheduling problems. And we considered either set of three

objectives in three-objective flowshop scheduling problems.

In this section, we generated 20-job and 10-machine problems. Because the total number of

feasible solutions (i.e., all permutations of 20 jobs) is over 1018 , we can not apply enumeration

methods to the problems. We apply the multi-objective genetic algorithm (MOGA) to

two-objective flowshop scheduling problems and three-objective flowshop scheduling

problems. We employed the two-point order crossover and the shift change mutation as genetic

operators in the GA, and we specified the population size Npop as Npop = 10 .

4.2.2 Two-objective flowshop scheduling problems
In this section, we apply the MOGA to a randomly generated 20-job and 10-machine

flowshop scheduling problem with two objectives: to minimize the makespan and to minimize

the total tardiness. Therefore we employ the following fitness function in the MOGA:

 f w f w f() () ()x x x= − −1 1 4 4 , (4.2)

where f1()x and f4 ()x are the objective functions described in (3.5) and (3.8), respectively,

and w1 and w4 are non-negative weights which satisfy the relations in (2.6) and (2.7).

A. Comparison of the MOGA and the SOGA

Non-dominated solutions obtained by the MOGA are shown by ○ in Fig. 4.1 where the

horizontal and vertical axes are the makespan and the total tardiness, respectively. In Fig. 4.1,

non-dominated solutions obtained by the SOGA where either the makespan or the total

tardiness is used for the fitness function. In Fig. 4.1, non-dominated solutions obtained by the

- 69 -

0

500

1000

1500

2000

2500

1500 1550 1600 1650 1700 1750

Makespan

To
ta

l t
ar

di
ne

ss

: Makespan
: Tardiness
: MOGA

Fig. 4.1 Comparison of the MOGA with two trials of the SOGAs.

SOGA for minimizing the makespan are shown by ■, and those obtained by the SOGA for

minimizing the total tardiness are shown by ▲. In order to compare the non-dominated

solutions obtained by the MOGA with those obtained by the SOGAs, we specified the number

of evaluations of the fitness function as 100,000 in the MOGA and as 50,000 in each trial of the

SOGA. Therefore 100,000 solutions were evaluated by each of the MOGA and the SOGAs.

From Fig. 4.1, we can see that the set of the non-dominated solutions obtained by the MOGA

(○) is superior to those obtained by the SOGAs (■ and ▲). That is, many solutions denoted

by ■ and ▲ are dominated by solutions denoted by ○ . This demonstrates the high

performance of the MOGA.

B. Effectiveness of the elitist strategy in the MOGA

The effectiveness of the elitist strategy described in Subsection 2.3.4 is demonstrated in Fig.

4.2. In Fig. 4.2, “no elite”, “2 elite”, and “3 elite” indicate that no elite solutions, two elite

solutions, and three elite solutions are inherited to the current population from the tentative set

of non-dominated solutions, respectively. In the elitist strategy, we used the following heuristic:

in the “2 elite” algorithm, only the elite solutions with respect to the two objective functions

were preserved. In the “3 elite” algorithm, that is the MOGA, a solution which was randomly

selected from the tentative set of non-dominated solutions was added to the two elite solutions

in the “2 elite” algorithm. From Fig. 4.2, we can see that the MOGA could find better solutions

- 70 -

0

200

400

600

800

1000

1200

1400

1600

1800

1500 1550 1600 1650 1700 1750 1800 1850

Makespan

To
ta

l t
ar

di
ne

ss

: 2 elite
: no elite

: 3 elite (MOGA)

Fig. 4.2 Effect of the number of elite solutions in the MOGA.

than the “2 elite” and “no elite” algorithms. This means that the elitist strategy of the MOGA is

effective.

C. Comparison with the MOGA, the VEGA, and the CWGA

We also applied Schaffer’s VEGA [98] and the constant weight genetic algorithm (CWGA)

to the same flowshop scheduling problem. In the CWGA, we used the weights

w w1 5= =makespan and w w4 2= =tardiness to calculate the fitness function in (4.2). As a

stopping condition, we used the total number of evaluations of strings (i.e., solutions). When

100,000 solutions were evaluated in each algorithm, the algorithm was terminated. It is noted

that a tentative set of non-dominated solutions was also stored and updated in the VEGA and

the CWGA. Simulation results by the MOGA, the VEGA and the CWGA are shown in Fig. 4.3

(a), (b), and (c), respectively. We applied each algorithm five times to the same flowshop

scheduling problem. Each algorithm began to search a set of non-dominated solutions from the

same initial population. From Fig. 4.3, we can see that better solutions were obtained by the

MOGA. That is, many solutions obtained by the VEGA in Fig. 4.3 (b) are dominated those

obtained by the MOGA solutions in Fig. 4.3 (a). The CWGA could find some better solutions

than our MOGA, but the CWGA failed to find a large set of non-dominated solutions.

- 71 -

0

500

1000

1500

2000

2500

3000

3500

4000

1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Makespan

To
ta

l t
ar

di
ne

ss

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

(a) Non-dominated solutions obtained by the MOGA.

0

500

1000

1500

2000

2500

3000

3500

4000

1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Makespan

To
ta

l t
ar

di
ne

ss

(b) Non-dominated solutions obtained by the VEGA.

0

500

1000

1500

2000

2500

3000

3500

4000

1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Makespan

To
ta

l t
ar

di
ne

ss

(c) Non-dominated solutions obtained by the CWGA.

Fig. 4.3 Comparison of the MOGA, the VEGA, and the CWGA.

- 72 -

4.2.3 Three-objective flowshop scheduling problem
We also applied the MOGA to a flowshop scheduling problem with three objectives: to

minimize the makespan, to minimize the total tardiness, and to minimize the total flowtime.

Therefore we employ the following fitness function in the MOGA:

 f w f w f w f() () () ()x x x x= − − −1 1 2 2 4 4 , (4.3)

where f1()x , f2 ()x , and f4 ()x are the objective functions described in (3.5), (3.6), and

(3.8), respectively, and w1, w2 , and w4 are non-negative weights which satisfy the relations

in (2.6) and (2.7). We compare the MOGA with the VEGA and the CWGA in this subsection.

In the CWGA, we used the weights w w1 5= =makespan , w w2 1= =flowtime , and

w w4 2= =tardiness to calculate the fitness function in (4.3). Because it is difficult to show

obtained solutions in the three-dimensional objective space, we show the solutions by

projecting them on two-dimensional objective spaces: (Makespan, Total tardiness), (Makespan,

Total flowtime), and (Total tardiness, Total flowtime). Fig. 4.4 shows the simulation results

obtained by the MOGA, the VEGA, and the CWGA. From Fig. 4.4, we can observe that the

MOGA could find a better set of non-dominated solutions.

- 73 -

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

1500 1600 1700 1800 1900 2000
Makespan

To
ta

l t
ar

di
ne

ss

1500 1600 1700 1800 1900 2000
20000

20500

21000

21500

22000

22500

23000

23500

24000

24500

25000

To
ta

l f
lo

w
tim

e

Makespan Total tardiness

20000

20500

21000

21500

22000

22500

23000

23500

24000

24500

25000

To
ta

l f
lo

w
tim

e

0 800 1600 2400 3200 4000

(a) Non-dominated solutions obtained by the MOGA.

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

1500 1600 1700 1800 1900 2000
Makespan

To
ta

l t
ar

di
ne

ss

1500 1600 1700 1800 1900 2000
20000

20500

21000

21500

22000

22500

23000

23500

24000

24500

25000

To
ta

l f
lo

w
tim

e

Makespan
20000

20500

21000

21500

22000

22500

23000

23500

24000

24500

25000

Total tardiness

To
ta

l f
lo

w
tim

e

0 800 1600 2400 3200 4000

(b) Non-dominated solutions obtained by the VEGA.

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

1500 1600 1700 1800 1900 2000
Makespan

To
ta

l t
ar

di
ne

ss

1500 1600 1700 1800 1900 2000
20000

20500

21000

21500

22000

22500

23000

23500

24000

24500

25000

To
ta

l f
lo

w
tim

e

Makespan
20000

20500

21000

21500

22000

22500

23000

23500

24000

24500

25000

Total tardiness

To
ta

l f
lo

w
tim

e

0 800 1600 2400 3200 4000

(c) Non-dominated solutions obtained by the CWGA.

Fig. 4.4 Comparison of the MOGA, the VEGA, and the CWGA.

- 74 -

4.3 MULTI-OBJECTIVE GENETIC LOCAL SEARCH

 ALGORITHM

In the same manner as in Section 3.6, we hybridize the MOGA with a local search algorithm.

In this section, first we show how to hybridize the MOGA with a local search algorithm. Each

solution generated by the genetic operators for multi-objective optimization (see Section 2.3)

has information of weight values which were used for the selection of its parent solutions. A

local search procedure is applied to the new solution to maximize its fitness value using those

weight values. We also introduce the modified local search algorithm described in Subsection

3.6.1. In the modified local search procedure, only a few solutions in the neighborhood are

examined. Next, we apply the multi-objective genetic local search algorithm (MOGLS) to

flowshop scheduling with multiple objectives. Computer simulations show the effectiveness of

the MOGLS.

4.3.1 Multi-objective genetic local search algorithm
In a multi-objective genetic local search algorithm (MOGLS) in this section, we use the same

idea as in the previous section. That is, we specify the weight values by (2.8) whenever a pair of

parent solutions are selected. These randomly specified weight values are also used in a local

search procedure because the local search is performed to maximize the fitness function in (2.5).

In our hybrid algorithm, the local search is applied to each new solution generated by the

genetic operators (i.e., selection, crossover, and mutation). The fitness function of the new

solution is defined by the weight values that were used for selecting its parent solutions. Thus

the search direction of the local search for each solution is determined by the fitness function

used in the selection of its parent solutions. In this manner, each solution has its own direction

of the local search. Thus both the selection operation and the local search have various search

directions in the n-dimensional objective space of the multi-objective optimization problem.

Another issue to be addressed in the hybrid algorithm is how to divide the available

computation time between searches by the local search and the genetic operators. If we simply

combine the local search to the genetic operators, almost all the available computation time

may be spent by the local search and only a few populations are generated by the genetic

operators. This is because a time-consuming local search procedure is iterated for each solution

generated by the genetic operators until a local optimum solution is found. In order to prevent

- 75 -

the local search from spending almost all the available computation time, we employ the

modified local search procedure described in Subsection 3.6.1. In conventional local search

procedures, the local search is terminated when a better solution is not found in the neighbor of

the current solution. On the other hand, in the modified local search procedure, the local search

is terminated when a better solution is not found in a pre-specified number (say, k) of randomly

selected neighborhood solutions. That is, if there is no better solution among randomly selected

k neighborhood solutions, the local search is terminated. When we assign a very small value to

k (e.g., k = 2), the local search may be terminated soon. Thus the local search does not spend

long computation time and the generation update by the genetic operators can be iterated many

times. On the contrary, when we assign a large value to k (e.g., k = 100), almost all the

computation time may be spent by the local search, and only a few populations can be

generated by the genetic operators. In this manner, we can adjust the computation time spent by

the local search.

By incorporating the modified local search algorithm into the MOGA, we construct the

multi-objective genetic local search algorithm (MOGLS) as follows:

Step 0 (Initialization): Randomly generate an initial population of N pop solutions.

Step 1 (Evaluation): Calculate the values of the n objectives for each solution in the current

population. Then update the tentative set of non-dominated solutions.

Step 2 (Selection): Repeat the following procedures to select a certain number of pairs of parent

solutions.

(i) Randomly specify the weight values w w wn1 2, ,..., in the fitness function (2.5) by

(2.8).

(ii) Select a pair of parent solutions according to the following selection probability

based on the linear scaling [23]:

 P f f
f f

t

t
t

s

() () ()
{ () ()}

min

min
x x

x
x

= −
′ −

′∈
∑

Ψ
Ψ

Ψ

, (4.4)

where f tmin ()Ψ is the minimum fitness value (i.e., the worst fitness value) in the

current population Ψt .

- 76 -

Step 3 (Crossover and mutation): Apply a crossover operation to the selected pairs of parent

solutions. A new solution is generated from each pair of parent solutions. Then apply a

mutation operation to the generated solutions.

Step 4 (Elitist strategy): Randomly remove Nelite strings from the generated N pop strings,

and add Nelite strings that are randomly selected from the tentative set of

non-dominated solutions to the current population.

Step 5 (Local search): Apply the modified local search procedure in Subsection 3.6.1 to each of

the N pop solutions in the current population. The search direction of the local search

for each solution is specified by the weight values in the fitness function by which its

parent solutions were selected. The current population is replaced with the N pop

solutions improved by the local search.

Step 6 (Termination test): If a pre-specified stopping condition is satisfied, stop the algorithm.

Otherwise return to Step 1.

Update of the current population and the tentative set of non-dominated solutions is illustrated

in Fig. 4.5.

Local
search

Elite
solutions

Genetic
operations

Current
population

 Update

Non-dominated
solutions

Next
population

 Update

Non-dominated
solutions

< Genotype >

< Phenotype >

Fig. 4.5 Update of the two sets of solutions stored in the MOGLS.

- 77 -

4.3.2 Two-objective flowshop scheduling problems
In this section, we apply the MOGLS to a randomly generated 20-job and 10-machine

flowshop scheduling problem with two objectives: to minimize the makespan and to minimize

the maximum tardiness. Therefore we employ the following fitness function in the MOGLS:

 f w f w f() () ()x x x= − −1 1 3 3 , (4.5)

where f1()x and f3()x are the objective functions described in (3.5) and (3.7), respectively,

and w1 and w3 are non-negative weights which satisfy the relations in (2.6) and (2.7). We

applied the following four methods to the problem to compare their performance:

(i) The MOGLS with k = 2 and Nelite = 3.

(ii) The VEGA.

(iii) The CWGA with w w1 5= =makespan and w w3 2= =tardiness .

(iv) A random sampling method. A large number of feasible schedules are randomly

generated and each schedule is evaluated.

The first three methods were applied to this test problem with the same parameter

specifications:

 Populations size: Npop = 20 ,

 Crossover probability: 0.9,

 Mutation probability: 0.3,

 Stopping condition: Evaluation of 100,000 solutions.

In the random sampling method, we examined 2,000,000 feasible solutions, which are twenty

times as many as in the other methods. Non-dominated solutions obtained by each method are

shown in Fig. 4.6 and Fig. 4.7. From Fig. 4.6 and 4.7, we can see the following:

(1) Some solutions obtained by the VEGA have very small values of the makespan, and others

have very small values of the maximum tardiness (see, Fig. 4.7). But no solutions obtained

by the VEGA have very small values of both objectives if compared with non-dominated

- 78 -

solutions obtained by the hybrid algorithm and the CWGA (see Fig. 4.6).

(2) The variety of solutions obtained by the CWGA is not large (see Fig. 4.7).

(3) The quality of solutions obtained by the random sampling method is very poor while it

examined much more solutions than the other three algorithms (see Fig. 4.6).

In order to clarify these observations, all the solutions obtained by the four algorithms were

compared with each other and only non-dominated solutions among all the obtained solutions

were selected. Some solutions obtained by one algorithm were dominated by other solutions

obtained by the other algorithms. The number of the non-dominated solutions is shown in Table

Random

Hybrid

0
100
200
300
400
500
600
700
800
900

1000

1500 1550 1600 1650 1700 1750

M
ax

im
um

 T
ar

di
ne

ss

Makespan

Fig. 4.6 Solutions obtained by the MOGLS and the random sampling method.

0
100
200
300
400
500
600
700
800
900

1000

1500 1550 1600 1650 1700 1750

M
ax

im
um

 T
ar

di
ne

ss

Makespan

VEGA
CWGA

Fig. 4.7 Solutions obtained by the VEGA and the CWGA.

- 79 -

Table 4.1 Simulation results of a single trial of each algorithm for the two-objective

flowshop scheduling problem.

Algorithm The number of obtained
solutions (A)

The number of
non-dominated solutions (B)

Ratio:
B/A

MOGLS 16 11 69%
VEGA 13 7 54%
CWGA 9 4 44%
Random 9 0 0%

Table 4.2 Average results over 20 trials of each algorithm for the two-objective

flowshop scheduling problem.

Algorithm The number of obtained
solutions (A)

The number of
non-dominated solutions (B)

Ratio:
B/A

MOGLS 18.60 15.50 82.5%
VEGA 15.35 6.75 44.0%
CWGA 11.65 2.75 23.1%
Random 10.65 0.00 0.0%

4.1. From Table 4.1, we can see the high performance of the MOGLS because many solutions

(i.e., eleven solutions: 69% of the obtained solutions) are not dominated by any other solutions.

Because all the four algorithms are probabilistic search methods, their performance can not

be evaluated by a single trial. Thus we applied each algorithm to the two-objective flowshop

scheduling problem 20 times. In each trial, obtained solutions by the four algorithms were

compared in the same manner as in Table 4.1. The average performance of each algorithm over

the 20 trials is shown in Table 4.2. From Table 4.2, we can also see the high performance of the

MOGLS.

The average CPU time of each algorithm is shown in Table 4.3. From Table 4.3, we can see

that the average CPU time of the three GAs (i.e., the MOGLS, the VEGA, and the CWGA)

were almost the same. This is because these three algorithms used the same stopping condition

(i.e., evaluation of 100,000 solutions).

- 80 -

Table 4.3 Average CPU time of each algorithm for the two-objective
flowshop scheduling problem.

MOGLS VEGA CWGA Random

26.58(sec.) 26.23(sec.) 29.07(sec.) 82.7(sec.)

4.3.3 Three-objective flowshop scheduling problem

In this section, we apply the MOGLS to a randomly generated 20-job and 10-machine

flowshop scheduling problem with three-objectives: to minimize the makespan, to minimize the

total flowtime, and to minimize the maximum tardiness. Therefore we employ the following

fitness function in the MOGLS:

 f w f w f w f() () () ()x x x x= − − −1 1 2 2 3 3 , (4.6)

where f1()x , f2 ()x , and f3()x are the objective functions described in (3.5), (3.6), and

(3.7), respectively, and w1, w2 , and w3 are non-negative weights which satisfy the relations

in (2.6) and (2.7).

In the same manner as in Table 4.2, we applied the four algorithms to the three-objective

flowshop scheduling problem 20 times. Average results of the twenty trials of each algorithm

are shown in Table 4.4. From Table 4.4, we can see the high performance of the MOGLS

because many solutions (i.e., 92.8% of the obtained solutions by the hybrid algorithm) are not

dominated by any other solutions.

Because it is not easy to compare non-dominated solutions by depicting them in the

three-dimensional objective space, Lee et al.[66] defined four characteristic features of obtained

solution sets as follows:

(i) the center of gravity of the final solution set is close to the ideal point,

(ii) the diversity of the non-dominated solutions is maximized,

(iii) the number of the non-dominated solutions is maximized,

(iv) the bounding volume of the set of the non-dominated solutions is maximized.

Esbensen [11] proposed a method to measure the quality of a set of non-dominated solutions.

Let us denote a set of non-dominated solutions by Ω . Then the best solution x* for a given

weight vector w = (, ,)w w w1 2 3 can be chosen from Ω as follows:

- 81 -

Table 4.4 Average results over 20 trials of each algorithm for the three-objective

flowshop scheduling problems.

Algorithm The number of obtained
solutions (A)

The number of
non-dominated solutions (B)

Ratio:
B/A

MOGLS 93.75 86.85 92.8%
VEGA 59.45 27.10 45.7%
CWGA 38.30 8.10 23.5%
Random 29.70 0.00 0.0%

Table 4.5 Average quality of the solution set obtained by each algorithm.

MOGLS VEGA CWGA Random
-9736.41 -9907.90 -9837.65 -10489.22

 f w f w f w f(*) (*) (*) (*)x x x x= − − −1 1 2 2 3 3

 = − − − ∈max{ () () () | }w f w f w f1 1 2 2 3 3x x x x Ω . (4.7)

Esbensen [11] proposed an idea of measuring the quality of a set of solutions by calculating the

expected value of f (*)x over possible weight vectors w = (, ,)w w w1 2 3 . In this section, we

calculate the expected value of f (*)x by randomly generating 10,000 weight vectors (say,

w1 , w2 , ..., w10000) by (2.8). That is, the quality of the set of non-dominated solutions Ω is

calculated in this section as follows:

 q w f w f w fi

i

i i() max{ () () () | }Ω Ω= − − − ∈
=
∑1

10000 1 1
1

10000
2 2 3 3x x x x , (4.8)

where q()Ω is the quality of the solution set Ω and wi i i iw w w i= =(, ,),1 2 3 1,2,...,10000 .

For the set of non-dominated solutions obtained by each trial of each algorithm shown in

Table 4.4, we calculated the quality of the solution sets by (4.8). We iterated this calculation 20

times for each algorithm to evaluate the average quality of the solution set obtained by each

algorithm. Simulation results are summarized in Table 4.5. From Table 4.5, we can see that the

best result (i.e., the maximum average quality) was obtained by the MOGLS.

- 82 -

4.4 SUMMARY

This chapter dealt with the application of GAs to multi-objective flowshop scheduling

problems. In the first section, we applied the MOGA to flowshop scheduling problems with two

objectives and three objectives. By two-objective flowshop scheduling problems, we compared

the MOGA with the SOGA. In the SOGA, one of two objectives was used for the fitness

function. Next, we examined the relation between the number of elite solutions to be inherited

and the performance of the MOGA. Then we compared the MOGA with the VEGA and the

CWGA. In the CWGA, two objectives are combined into a single scalar fitness function using

constant weights. Last in the first section, we applied the MOGA to a three-objective flowshop

scheduling problem.

In the second section, we also hybridized the MOGA with a local search algorithm in the

same manner as in Chapter 3. In this section, we described the multi-objective genetic local

search algorithm (MOGLS). The MOGLS is an extension of the MOGA in [77] to a hybrid

algorithm. In the MOGLS, a local search procedure is applied to each solution generated by the

genetic operators. By computer simulations on flowshop scheduling problems, high

performance of the MOGLS was demonstrated.

The characteristic features of the MOGLS can be summarized as follows:

(1) A weighted sum of multiple objectives is used as a fitness function in a selection of a pair of

parent solutions. The weight values in the fitness function are randomly specified whenever

a pair of parent solutions is selected.

(2) A local search procedure is applied to each new solution generated by the genetic operators

(i.e., crossover, and mutation). The local search for each new solution is performed to

maximize the fitness function which was used for selecting its parent solutions. Thus each

new solution has its own local search direction in the objective space.

(3) In the local search, all the neighborhood solutions of the current solution are not examined

for each move. That is, the number of examined neighborhood solutions of the current

solution is restricted in the local search. This is to prevent the local search from spending

almost all the available computation time.

(4) A tentative set of non-dominated solutions is stored and updated at every generation. The

tentative set is stored separately from a current population. A few solutions randomly

selected from the tentative set are used as a kind of elite solutions.

