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CHAPTER 5 
 

GENETIC ALGORITHMS FOR DESIGNING 
FUZZY CLASSIFICATION SYSTEMS 
 

 

 

5.1 INTRODUCTION 

Fuzzy systems based on fuzzy if-then rules have been applied to various control problems [64, 

102]. Fuzzy if-then rules in those fuzzy systems were usually derived from human experts. 

Recently several approaches have been proposed for automatically generating fuzzy if-then 

rules from numerical data without domain experts (see, for example, Jang [52], Sugeno & 

Yasukawa [103], Takagi & Sugeno [110], and Wang & Mendel [117]). Self-learning methods 

have been also proposed for adjusting membership functions of fuzzy sets in fuzzy rules. For 

example, Ichihashi & Watanabe [32] and Nomura et al.[85] proposed gradient descent methods 

for the learning of fuzzy rules. Horikawa et al.[29], Jang [51], Lin & Lee [67], and Takagi & 

Hayashi [109] proposed neural-network-based methods for the generation of fuzzy rules and 

their tuning.  

Genetic algorithms [23,27] have been widely used for generating fuzzy if-then rules and 

tuning the membership functions of antecedent and consequent fuzzy sets. For example, 

Feldman [12], Kropp & Baitinger [61] and Thrift [113] employed genetic algorithms for 

generating fuzzy if-then rules. Membership functions were adjusted by genetic algorithms in 

Herrera et al.[25], Janikow [53,54], Karr [57], Karr & Gentry [58], and Surmann et al.[105]. 

Both the generation of fuzzy if-then rules and the tuning of membership functions were 

performed by genetic algorithms in Homaifar & McCormick [28], Kinzel et al.[59], Park et 

al.[92], and Satyadas & Krishnakumar [97]. The number of fuzzy if-then rules was also 

determined by genetic algorithms in Carse et al.[5], Fukuda et al.[18], Ishigami et al.[50], Lee 

& Takagi [65], Liska & Melsheimer [68], and Nomura et al.[86]. That is, both the number of 

fuzzy sets and the membership function of each fuzzy set were determined. Hierarchical 

structures of fuzzy if-then rules were determined by genetic algorithms in Matsushita et al.[71] 
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and Shimojima et al.[99]. In those genetic-algorithm-based methods, a rule set (i.e., a rule table) 

of fuzzy if-then rules was coded as an individual. 

The above-mentioned methods were mainly applied to fuzzy control problems such as cart 

centering problems [12,25,28,57,59,61,65,113], a pH control problem [58], a spacecraft attitude 

control problem [97], a truck backing problem [28], and a dc series motor control problem [92]. 

Some approaches were applied to function approximation problems [50,68,86, 93,99,105,116]. 

Genetics-based machine learning approaches are usually categorized into two approaches: 

Michigan approach and Pittsburg approach. In Michigan approach, each rule is handled as an 

individual called classifier. Thus this approach is referred to as classifier systems in Booker [4]. 

On the other hand, Pittsburgh approach [104] handles a rule set as an individual in genetic 

algorithms. All the above-mentioned genetic-algorithm-based methods for generating fuzzy 

if-then rules and tuning membership functions are categorized as Pittsburgh approach where a 

set of fuzzy if-then rules (i.e., a fuzzy rule base) was handled as an individual in genetic 

algorithms. Our approach in this chapter is also a kind of Pittsburgh approach. On the other 

hand, a single fuzzy if-then rule was coded as an individual in fuzzy classifier systems of 

Furuhashi et al.[19], Nakaoka et al.[83], Parodi & Bonelli [93], and Valenzuela-Rendon [116]. 

Thus rule generation methods in [19,83,93,116] were referred to as fuzzy classifier systems. 

While various methods have been proposed for generating fuzzy rules and adjusting 

membership functions, only a few approaches have dealt with classification problems. For 

pattern classification problems, Abe et al.[1,2] proposed a rule generation method and a rule 

tuning method where each fuzzy if-then rule was represented by a hyper-box in a 

multi-dimensional pattern space. Such a hyper-box was also used as a fuzzy if-then rule in fuzzy 

min-max neural networks [100]. Neural networks were also used as adaptive fuzzy 

classification systems in [24,72,73,91,94,114]. Ishibuchi et al.[45,46] proposed a generation 

method of fuzzy rules from numerical data for classification problems. Genetic-algorithm-based 

methods for selecting fuzzy rules were proposed in Ishibuchi et al.[47,48] where a small 

number of fuzzy rules were selected from a large number of candidate rules by genetic 

algorithms. 

In this chapter, we introduce a genetic-algorithm-based method to the construction of a fuzzy 

classification system with linguistic rules. A small number of linguistic rules are selected by a 

genetic algorithm to construct a compact fuzzy classification system. The main advantage of the 

approach explained in this chapter over our former work [47,48] is the clarity of the selected 
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rules. That is, human decision makers can easily understand each of the selected rules because 

they are linguistic rules. We employ prespecified membership functions for antecedent fuzzy 

sets. The effectiveness of the method is illustrated by computer simulations on a numerical 

example and the well-known iris data (see, Fisher [13]). A hybrid method that incorporates a 

learning procedure [87,88] into the genetic algorithm is also constructed in order to improve the 

performance of fuzzy classification systems. The grade of certainty of each linguistic rule is 

adjusted by the learning procedure during the execution of the genetic algorithm. It is 

demonstrated by computer simulations on the iris data that the hybrid algorithm can find a small 

number of linguistic rules with high classification power. 

We also introduce another genetic-algorithm-based method for adjusting the membership 

functions of antecedent fuzzy sets in fuzzy classification rules. Both the number of fuzzy rules 

and the membership function of each antecedent fuzzy set are determined simultaneously. By 

this method, an appropriate fuzzy partition of a pattern space is automatically generated from 

numerical data. The consequent class of the fuzzy rule corresponding to each fuzzy subspace is 

determined according to the given training patterns in that fuzzy subspace [45]. We introduce a 

new coding method of fuzzy partition of a pattern space. The coding method is a modified and 

extended version of Nomura’s coding method [86] that was proposed for function 

approximation problems. While Nomura et al.[86] applied their method to approximation 

problems of single-input functions (i.e., single-dimensional problems), we apply the method 

introduced in this chapter to classification problems with multiple attributes (i.e., 

multi-dimensional problems). We also combine the error-correction learning procedure [87,88] 

with the genetic algorithm. High performance of our method is illustrated by computer 

simulations on the iris classification problem [13]. 

In this chapter, first we describe a rule generation procedure and a fuzzy reasoning method 

for pattern classification problems. Next we introduce a genetic-algorithm-based method to the 

construction of a fuzzy classification system with linguistic rules. Then we combine an 

error-correction learning procedure with the genetic algorithm. We also show another 

genetic-algorithm-based method for adjusting the membership functions of antecedent fuzzy 

sets in fuzzy classification rules. We also construct a hybrid method that incorporates the 

learning procedure into the genetic algorithm. 
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5.2 FUZZY CLASSIFICATION SYSTEMS 

In this section, we describe a generation method of fuzzy classification rules from numerical 

data and a fuzzy reasoning method of new patterns. 

 

5.2.1 Generation of fuzzy classification rules 
Let us consider a classification problem in an n-dimensional pattern space [ , ]0 1 n . It is 

assumed that m patterns x p p p pnx x x= ( , , ... , )1 2 , p m= 1 2, ,..., , are given as training data 

from c classes (Class 1, Class 2, ..., Class c). 

The following fuzzy rules are employed for the classification problem in [ , ]0 1 n . 

 

 Rule R j : If x p1  is Aj1 and ... and xpn  is Ajn  then Class C j  with CFj , 

j r= 1 2, , ,K ,   (5.1) 

 

where R j  is the label of the rule, Aji  is an antecedent fuzzy set on the i-th axis (i.e., the i-th 

attribute), C j  is the consequent class, CFj  is the grade of certainty of this rule, and r is the 

total number of fuzzy rules. The consequent class C j  and the grade of certainty CFj  of each 

fuzzy rule can be determined from the given patterns x p p p pnx x x= ( , ,..., )1 2 , p m= 1 2, ,... , , 

as in [45]. We should specify the membership functions of the antecedent fuzzy sets before 

applying the rule generation procedure. 

In the rule selection method [47,48], the linguistic interpretation of selected fuzzy if-then 

rules was not always easy because various fuzzy sets shown in Fig. 5.1 were used as antecedent 

fuzzy sets. In order to select fuzzy if-then rules that can be always interpreted linguistically, we 

restrict the antecedent fuzzy sets of candidate fuzzy if-then rules to the six linguistic values (i.e., 

S: small, MS: medium small, M: medium, ML: medium large, L: large, and DC: don’t care) 
in Fig. 5.2 (see, Ishibuchi et al.[39,40]). That is, the antecedent fuzzy set Aji  in (5.1) is one of 

the six linguistic values. Fuzzy if-then rules with linguistic values in their antecedent parts were 

referred to as “linguistic classification rules.” 

When we use the six linguistic values in Fig. 5.2 for each axis of the n-dimensional pattern 

space,  r n= 6    linguistic  classification  rules  can  be  generated  from  the   training   patterns 
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Fig. 5.1  Various antecedent fuzzy sets. 
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Fig. 5.2  Antecedent fuzzy sets of linguistic classification rules (DC: don’t care, S: small, MS: 

medium small, M: medium, ML: medium large, and L: Large). 

 
x p p pnx x p m= =( ,..., ), , ,...,1 1 2  because each antecedent fuzzy set Aji  in (5.1) may assume 

one of the six linguistic values. For example, 6 362 =  linguistic classification rules can be 

generated for the two-dimensional pattern space [ , ]0 1 2 . In this case, 36 fuzzy subspaces are 
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Fig. 5.3  Fuzzy partitions of two-dimensional pattern space by the six linguistic values. 

 
 
generated in the pattern space [ , ]0 1 2  as shown in Fig. 5.3, and a linguistic classification rule is 

assigned to each fuzzy subspace. From Fig. 5.3, we can see that several linguistic rules are 

overlapping with each other in the pattern space. This means that some of the 36 linguistic rules 

in Fig. 5.3 may be redundant for the classification task. Using these membership functions of 

antecedent fuzzy sets, we define the consequent class and the grade of certainty of the fuzzy 

rules. 

Let us define the grade of compatibility of xp  to the fuzzy rule Rj  in (5.1) as 

 

  µ µ µj p j p jn pnx x( ) ( ) ... ( )x = ⋅ ⋅1 1   ,     (5.2) 
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where µ ji ( )⋅  is the membership function of the antecedent fuzzy set Aji  which corresponds 

to one of six linguistic values in Fig. 5.2. When the antecedent fuzzy sets Aji ’s are given, the 

consequent class C j  and the grade of certainty CFj  can be determined as follows: 

 
Step 1:  The total grade of compatibility to the fuzzy rule R j  is calculated for each class as 

 

  

β µ

µ µ
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  Class 

  Class 
  

h j p
h
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   (5.3) 

 
where βClass h  is the total grade of compatibility of the given training patterns in 

Class h to the fuzzy rule R j  in (5.1). 

Step 2: The consequent class C j  of the fuzzy rule R j  is determined as the class with the 

maximum total grade of compatibility. That is, C j  is determined as Class $h  by 

 
  β β β βClass Class 1 Class 2 Class    $ max{ , , ..., }h c= .    (5.4) 

 
If Class $h  is not determined uniquely (i.e., if two or more classes have the same 

maximum value in (5.4)), we assign φ  to C j  where φ  means an empty class. In 

this chapter, fuzzy rules with φ  in the consequent part are referred to as “dummy 

rules” because those rules have no effect on the classification phase of new patterns. 

Step 3: The grades of certainty of all dummy rules are specified as CFj = 0 . For non-dummy 

rules, the grade of certainty CFj  is determined by βClass h ’s as 

 

  CFj
h

h
h

c=
−

∑

β β

β

Class 

Class 
=

$

1

,       (5.5) 

where 

  β β= −
≠
∑( ) / ( )
$

Class h
h h

c 1 .      (5.6) 

 
Thus the grade of certainty is a real number in the closed interval [0, 1]. 
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Fig. 5.4  Antecedent fuzzy sets and given patterns. 

 
 

The grade of certainty CFj  is maximum (i.e., CFj = 1 ) when βClass $h > 0  and 

βClass h = 0   for h h≠ $ . That is, if all the patterns compatible with the fuzzy rule R j  belong 

to the same class, the grade of certainty CFj  of this rule is equal to 1 (the maximum grade of 

certainty). For example, the consequent class C j  is determined as Class 1 with CFj = 1 in 

Fig. 5.4 (a) since all the patterns in the fuzzy subspace A Aj j1 2×  come from Class 1. On the 

contrary, when the total grades of compatibility for the c classes are similar to one another as 

shown in Fig. 5.4 (b), the grade of certainty is nearly equal to 0 (the minimum grade of 

certainty). 

 

5.2.2 Fuzzy reasoning for classifying new patterns 
By applying the above rule generation method to all the fuzzy rules in (5.1), we have the r 

fuzzy rules including dummy rules. Let us denote the set of fuzzy rules by S. A new pattern 

xp p pnx x= ( ,..., )1  is classified by the fuzzy rules in S as follows [45]: 

 

Step 1: Calculate αClass h  for h c= 1 2, ,... ,  as 

 

  α µClass   Class   and Rule  }h j p j j jCF C h R S= ⋅ = ∈max{ ( ) |x ,  (5.7) 
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where µ j p( )x  is the grade of compatibility of x p  to the fuzzy rule R j , which is 

defined by (5.2). In (5.7), αClass h  is the maximum product of the compatibility and 

the grade of certainty of the fuzzy rules with Class h in the consequent part. 

Step 2: Find the maximum value of αClass h ’s as  

 

  α α αClass Class 1 Class   $ max{ , ..., }h c= .     (5.8) 

 

If two or more classes take the same maximum value in (5.8), then the classification of 

x p  is rejected (i.e., x p  is left as an unclassifiable pattern), else assign x p  to Class 

$h  determined by (5.8). 

 

In this procedure, a new pattern x p p pnx x= ( ,..., )1  is classified by the fuzzy rule that has 

the maximum product of the compatibility µ j p( )x  and the grade of certainty CFj . 
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5.3 GENETIC ALGORITHMS FOR LINGUISTIC RULE 

 SELECTION 

In this section, we describe GAs for linguistic rule selection. First we explain a rule selection 

problem. Next we combine an error-correction learning procedure [87,88] with the genetic 

algorithm. The performance of the genetic-algorithm-based method is examined by applying it 

to two-dimensional and four-dimensional classification problems. 

 
5.3.1 Rule selection problem 

Let us denote the set of the generated r fuzzy classification rules by SALL: 

 
  S R j rjALL Rule = ={ | , ,..., }1 2 .      (5.9) 

 
All the fuzzy classification rules in SALL are used in the rule selection problem as candidate 

rules. 

Our rule selection problem is to select a small number of fuzzy rules from the rule set SALL 

to construct a compact classification system S with high classification performance. Therefore 

our problem can be written as follows: 

 
  Maximize NCP S( )  and minimize | |S ,          (5.10) 

  subject to S S⊆ ALL ,            (5.11) 

 
where NCP S( )  is the number of correctly classified training patterns by the fuzzy rules in the 

rule set S, and | |S  is the number of the fuzzy rules in S. Because S is a subset of the rule set 

SALL, all the generated r fuzzy rules are not used for the fuzzy reasoning procedure for 

classifying new patterns in Subsection 5.2.2. 

In order to directly apply a genetic algorithm for single-objective optimization in Section 2.2, 

we introduce constant weights to combine the two objectives in (5.10) as follows:  

 
  Maximize w NCP S w SNCP S⋅ − ⋅( ) | | ,          (5.12) 

  subject to S S⊆ ALL ,            (5.13) 

 
where wNCP  and wS  are non-negative constant weights assigned to the two objectives 
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NCP S( ) and | |S , respectively. In general, classification power of a classification system is 

more important than its compactness. Therefore the weights in (5.12) is usually specified as 

0 < <w wS NCP . 

The other way to apply a genetic algorithm for single-objective optimization is to transform 

one of two objectives to a constraint condition. For example, if we want to maximize the 

number of correctly classified training patterns (i.e., to maximize NCP S( ) ) using five 

linguistic classification rules at best, the rule selection problem can be written as follows: 

 

  Maximize NCP S( ) ,            (5.14) 

  subject to | |S ≤ 5 ,            (5.15) 

     S S⊆ ALL .            (5.16) 

 

Let N rule  be the right-hand side constant of the constraint condition (5.15), the rule selection 

problem with a single objective can be rewritten as follows: 

 

  Maximize NCP S( ) ,            (5.17) 

  subject to | |S N≤ rule ,            (5.18) 

     S S⊆ ALL .            (5.19) 

 

We can also introduce a constraint condition on the number of correctly classified training 

patterns. Let us assume that the number of correctly classified training patterns should be larger 

than or equal to N pattern . In this case, our rule selection problem can be written as  

 

  Minimize | |S ,             (5.20) 

  subject to NCP S N( ) ≥ pattern ,           (5.21) 

     S S⊆ ALL .            (5.22) 

 

In this chapter, we consider only the rule selection problem in (5.12)-(5.13) using a genetic 

algorithm for single-objective optimization. 
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5.3.2 Application of genetic algorithms 
A genetic algorithm for single objective optimization is applied to the rule selection problem 

(5.10)-(5.11) for selecting a small number of linguistic classification rules from a large number 

of candidate rules in SALL. A scalar fitness value of S as in (5.12) is defined from the two 

objectives in (5.10) using constant weights as follows: 

 

  f S w NCP S w S( ) ( )= ⋅ − ⋅NCP S ,           (5.23) 

 

where wNCP  and wS  are non-negative constant weights assigned to the two objectives 

NCP S( ) and | |S , respectively. 

Each individual (i.e., each rule set S) is represented by a string as S s s sr= 1 2...  where r is 

the number of the linguistic rules in SALL  and s j = −1 1 0,  or  denotes the following: 

(i)  s j = 1 means that the j-th rule R j  is included in the rule set S, 

(ii)  s j = −1 means that the j-th rule R j  is not included in the rule set S, 

(iii) s j = 0  means that the j-th rule R j  is a dummy rule. 

Since dummy rules have no effect on the classification of new patterns, they should be excluded  

from a rule set S. Therefore the special coding ( s j = 0 ) is assigned to dummy rules in order to 

prevent S from including them. A string S s s sr= 1 2...  is decoded as 

 

  S R s j rj j= = ={ | ; , ,..., }Rule    1 1 2 .           (5.24) 

 

A set of strings (i.e., a set of rule sets) is treated as a population (i.e., as a generation) in the 

genetic algorithm. While each bit position in a string has one of three values s j = −1 1 0,  or , we 

can apply genetic operators for binary strings because we can ignore the value “0” in each 

string. 

In order to maximize the fitness function defined by (5.23), we construct the following genetic 

algorithm where t is the number of generations and tmax  is the maximum number of 

generations that is prespecified to terminate the algorithm. 
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Step 0 (Initialization): Let t:= 0 . Generate an initial population containing N pop  strings 

where N pop  is the number of strings in each population. Each string S is generated by 

assigning 0 to dummy rules and randomly assigning 1 or − 1 to each of the other rules 

with the probability of 0.5. 

Step 1 (Rule elimination and evaluation): Classify all the given training patterns by linguistic 

classification rules included in each string S. Exclude non-active rules from S. That is, if 

a linguistic classification rule in S is not used for classifying any pattern, that rule is 

excluded from S. This rule elimination procedure is applied to all strings in the current 

population. Thus, every string consists of only active rules after this rule elimination 

procedure. After this rule elimination procedure, each classification system S is evaluated 

by (5.23). 

Step 2 (Selection): Let Ψt  be the population in the t-th generation. Select N pop /2 pairs of 

strings from the current population Ψt . The selection probability P Ss( )  of a string S in 

a population Ψt  is specified as 

  P S f S f
f S f

t

t
S t

s

 

( ) ( ) ( )
{ ( ) ( )}

min

min
= −

′ −
′∈
∑

Ψ
Ψ

Ψ

,           (5.25) 

where 

  f f S St tmin ( ) min{ ( ) }Ψ Ψ= ′ ′ ∈ | .           (5.26) 

Step 3 (Crossover): For each of the selected pairs, randomly choose bit positions. Each bit 

position is chosen with the probability of 0.5. Interchange the bit values at the chosen 

positions in the selected pair. 

Step 4 (Mutation): To each bit of the generated strings by the crossover operator, apply the 

following mutation operator: 

 
s s Pj j= → = − → −1 1 1 1   with the probability ( )m , 

s s Pj j= − → = − →1 1 1 1   with the probability ( )m . 

 
Step 5 (Elitist strategy): Randomly remove one string from the N pop  strings newly generated 

by the above operations, and add the string with the maximum fitness value in the 

previous population to the current one. 
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Fig. 5.5  Crossover operator for rule selection problems. 
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Fig. 5.6  A mutation operator for rule selection problems. 

 
 
Step 6 (Termination test): Let t t:= + 1. If t t= max , stop the algorithm. Otherwise, return to 

Step 1.  

 
The rule elimination procedure in Step 1 is added to the genetic algorithm in our former work 

[47,48]. The crossover operator in Step 3 was called the uniform crossover in Syswerda [107]. 

We show this crossover operator in Fig. 5.5. In Step 4, different mutation probabilities 

Pm( )1 1→ −  and Pm( )− →1 1  are assigned to the mutations from 1 to − 1 and from − 1 to 1, 

respectively. A larger probability is usually assigned to Pm( )1 1→ −  than to Pm( )− →1 1  in 

order to reduce the number of linguistic classification rules in each individual. The mutation 

operator is illustrated in Fig. 5.6. 

The genetic algorithm was applied to a two-class classification problem in a two-dimensional 

pattern space [ , ]0 1 2  shown in Fig. 5.7 with the following parameter specifications: 

Weights in the fitness function: wNCP = 10 , wS = 1, 

Population size: N pop = 50, 

Crossover probability: 1.00, 

Mutation probabilities: Pm 0.1( )1 1→ − = , Pm 0.001( )− → =1 1 , 

Stopping condition: tmax = 200 (i.e., 200 generations). 

First we generated 6 362 =  linguistic classification rules corresponding to the fuzzy 

partitions in Fig. 5.3. Then the genetic algorithm was applied to the rule selection problem for 

selecting a small number of significant rules from the generated 36 rules. By the genetic 

algorithm, the following three linguistic classification rules were selected for the classification 

problem in Fig. 5.7: 
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This figure is inserted by cut-and-paste. 

 

 

 

Fig. 5.7  An example pattern classification problem in a two-dimensional pattern space [ , ]0 1 2 . 

 
 
 If x1 is don’t care and x2  is don’t care  then Class 1 with CF = 0.19, 

 If x1 is don’t care and x2  is large  then Class 2 with CF = 0.84, 

 If x1 is medium and x2  is don’t care  then Class 2 with CF = 0.75. 

 
The classification boundary obtained by the selected three linguistic classification rules is 

shown in Fig. 5.8. From Fig. 5.8, we can see that all the given patterns are correctly classified 

by the selected rules. 

Since the grade of certainty of the first linguistic classification rule is very small (i.e., 0.19), 

this rule is employed in the classification of a new pattern only when the other rules do not have 

large grades of compatibility to the new pattern. Therefore we have the following classification 

rule from the above three rules by ignoring “don’t care” attributes. 
 
 If x1 is medium or x2  is large  then Class 2, else Class 1. 
 
From the configuration of the given patterns in Fig. 5.7, we can see that this classification rule 

agrees with our intuitive recognition of the given patterns. 

We also applied the genetic algorithm to the well-known iris data (see, for example, Fisher 

[13]) for selecting linguistic classification rules. The iris data consist of the following 

four-dimensional patterns from three classes: 
 
 Class 1 (Iris setosa): xp p p p px x x x p= =( , , , ), , , ... ,1 2 3 4 1 2 50 , 

 Class 2 (Iris versicolor): xp p p p px x x x p= =( , , , ), , , ... ,1 2 3 4 51 52 100 , 

 Class 3 (Iris virginica): xp p p p px x x x p= =( , , , ), , , ... ,1 2 3 4 101102 150 , 
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Fig. 5.8  Classification boundary by the selected three rules. 
 
 
where x p1 is the sepal length, x p2  is the sepal width, x p3  is the petal length, and x p4  is 

the petal width. In computer simulations of this section, all the attribute values were normalized 

into real numbers in the unit interval [ , ]0 1  as  

 
 x x x x xpi pi pi pi pi: ( min{ }) / (max{ } min{ })= − − , p i= =1 2 150 1 2 3 4, ,..., ; , , , ,     (5.27) 

where 

 min{ } min{ | , , ..., }x x ppi pi= =  1 2 150 , i = 1 2 3 4, , , ,          (5.28) 

 max{ } max{ | , , ..., }x x ppi pi= =  1 2 150 , i = 1 2 3 4, , , .          (5.29) 

 
Therefore the iris data were transformed into a three-class classification problem in the 

four-dimensional unit cube [ , ]0 1 4 . 

Since the iris data have four attributes, 6 12964 =  linguistic classification rules were 

generated as candidate rules. Thus our rule selection problem is to find a compact rule set from 

the 1296 rules. The total number of possible rule sets is 2 136 101296 390≅ ×. . 

By the genetic algorithm with the same parameter specifications as in the above computer 

simulation, five linguistic rules in Fig. 5.9 were selected. The last column (# of patterns) in Fig. 

5.9 shows the number of training patterns that were correctly classified by each rule. Therefore 

we can see that 147 patterns (98% of the given 150 patterns) are correctly classified by the 

selected five rules. By ignoring “don’t care” attributes denoted by rectangles in Fig. 5.9, we 

have the following linguistic classification rules from the selected rules: 
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No. x x1 2 Class CF   # of

11 1.00

patterns

2 2 48

3 3 0.78 28

x4x3

0.95

50

4 3 1.00 14

5 3 1.00 7
 

 
Fig. 5.9  Selected linguistic classification rules for the iris data. 

 

 

 If x3 is small  then Class 1 with CF=1.00,  

 If x3 is medium and x4  is medium  then Class 2 with CF=0.95, 

 If x2  is medium small and x4  is medium large  then Class 3 with CF=0.78, 

 If x1  is medium and x2  is medium and x4  is large  then Class 3 with CF=1.00, 

 If x1  is large and x2  is medium  then Class 3 with CF=1.00. 

 
 
5.3.3 Extension to hybrid genetic algorithm 

In the rule selection problem, we generated candidate linguistic rules by the rule generation 

procedure in Subsection 5.2.1 where the grade of certainty of each rule was determined with no 

tuning procedure. In this subsection, first we briefly describe how the grade of certainty of each 

rule can be adjusted to improve the performance of a fuzzy-rule-based classification system. 

Then we introduce a hybrid algorithm that incorporates a learning procedure of the grade of 

certainty [87,88] into our genetic algorithm. It is shown by computer simulations on the iris data 

that a small number of linguistic rules with high classification power are selected by the hybrid 

genetic algorithm. 

 
A. Adjustment of the grade of certainty 

From the fuzzy reasoning procedure for classifying a pattern xp p pnx x= ( , )1  ... ,   in 

Subsection 5.2.2, we can see that xp  is classified by a linguistic classification rule R j$  that 
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satisfies the following relation: 

 
  µ µ$ $( ) max{ ( ) | }j p j j p j jCF CF R Sx x⋅ = ⋅ ∈  Rule   .         (5.30) 

 
If the consequent class C j$  of this rule is the same as the actual class of xp , x p  is correctly 

classified, otherwise x p  is misclassified. 

When x p  is correctly classified by the linguistic classification rule Rj$ , the grade of 

certainty CFj$  of this rule is increased as the reward of the correct classification [87,88]: 

 
  CF CF CFj j j$ $ $( )new old old= + ⋅ −η1 1 ,          (5.31) 

 
where η1  is a positive learning constant for increasing the grade of certainty. On the contrary, 

when x p  is misclassified by the linguistic classification rule R j$ , the grade of certainty CFj$  

of this rule is decreased as the punishment of the misclassification [87,88]: 

 
  CF CF CFj j j$ $ $

new old old= − ⋅η2 ,           (5.32) 

 
where η 2  is a positive learning constant for decreasing the grade of certainty. 

In this procedure, the grade of certainty of each linguistic rule is always in the unit interval 

[ , ]0 1  if the positive learning constants η1  and η2  are less than unity (i.e., 0 11< <η  and 

0 12< <η ). Since there are usually much more correctly classified patterns than misclassified 

patterns, a larger value is assigned to η2  than η1 . Therefore the learning constants should 

satisfy the inequality 0 11 2< < <η η . In computer simulations of this section, we specified η1  

and η2  as η1 0 001= .  and η2 01= . . 

 

B. Hybrid genetic algorithm 

The learning procedure of the grade of certainty CFj  is combined with the genetic 

algorithm. Since the learning procedure is applicable to any rule set S, we apply it to all the rule 

sets (i.e., all the strings) generated by the crossover and mutation operators in the genetic 

algorithm. That is, the following procedure is inserted between Step 5 and Step 6 of the genetic 

algorithm described in Subsection 5.3.3: 
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[Learning procedure of the grade of certainty] 

Step 5.5 (Learning): Apply the learning procedure to each rule set S generated by the 

crossover and mutation operators. The learning procedure for each rule set S is 

iterated Nlearning  times for all the training patterns where Nlearning  is the number 

of iteration of this learning procedure. 

 
C. Simulation results 

Using the same parameter specifications as in Subsection 5.3.3, we applied the hybrid genetic 

algorithm to the iris data. We specified Nlearning  as N learning = 20 . This means that the 

learning procedure was iterated 20 times for each of the generated strings in the hybrid genetic 

algorithm. 

After 200 generations, we obtained seven linguistic rules that can correctly classify all the 

150 patterns (classification rate: 100%). The selected rules are shown in Fig. 5.10. In order to 

examine the average performance of the hybrid genetic algorithm, the same computer 

simulation with a different initial population was iterated ten times. We specified Nlearning  as 

N learning = 0 5 10 20, , , . When N learning = 0 , the hybrid genetic algorithm is the same as the 

genetic algorithm with no learning procedure. Table 5.1 shows average results over ten trials. 

From the comparison of these results, linguistic rules selected by the hybrid algorithm have 

higher classification power than those by the non-hybrid genetic algorithm. 

 

No. x x1 2 Class CF   # of

11 1.00

patterns

5 3 1.00 26

x4x3

50

6 3 0.09 17

2 2 200.30

7 3 1.00 7

3 2 0.15

4 2 260.88

4

 
 

Fig. 5.10  Selected linguistic classification rules for the iris data. 
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Table 5.1  Average results of the hybrid genetic algorithm over ten trials. 

 
N learning  0 5 10 20 

| |S  7.0 9.3 9.4 12.0 
NCP S( )  146.9 149.0 148.9 149.6 

Classification rate 97.9% 99.3% 99.3% 99.7% 
 


