
- 1 - 

 

CHAPTER 1 
 

INTRODUCTION 
 

 

 

There are myriad search and optimization techniques for optimization problems in the 

world. Researchers in economics, political science, psychology, linguistics, immunology, 

biology, and computer science need an efficient tool to tackle their optimization problems. It 

is difficult, however, to model realistic systems because the behavior of the systems is 

complex. In general, an optimization problem to be addressed has several objectives to be 

optimized. Thus, the complexity of the problem increases as the number of objectives 

increases because the objectives considered are often contradictory to one another. Such 

complex optimization problems have a lot of feasible solutions. However, only a few 

solutions among them are desirable. 

In order to use an optimization technique for such complex optimization problems without 

difficulties, the technique should be robust. Goldberg defined robustness in his book [23] as 

“the balance between efficiency and efficacy necessary for survival in many different 

environment.” Then we can define two purposes in constructing an optimization technique as 

its efficacy and efficiency. Efficacy means whether the optimization technique can reach the 

optimum or not. The common purpose in constructing optimization techniques is this efficacy, 

that is, their convergence to the optimum of the problem. The other purpose, efficiency, means 

whether the technique can find a better solution under the constraints the problem has. The 

technique may not find the optimal solution of the problem due to the constraints, but it is 

important that better solutions are searched by the algorithm within the constraints. From this 

point of view, all search techniques are not robust because some search technique tends to 

find only the local optimum due to its local scope, depends on existence of derivatives, or 

requires enormous computation time. Therefore Goldberg concluded that “the most important 

goal of optimization is improvement. ... Attainment of the optimum is much less important for 

complex systems.” As for complex systems, Zadeh also said in [121], “most realistic 

problems tend to be complex, and many complex problems are either algorithmically 
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unsolvable or, if solvable in principle, are computationally infeasible.” Thus, robust 

algorithms which can find better solutions under a lot of constraints are required for 

optimizing complex systems. 

The central theme of research on genetic algorithms (GAs) [9,23,27] has been robustness. 

Genetic algorithms, first specified by John Holland in the early 1970’s [27], are becoming an 

important tool for combinatorial optimization, function optimization, and machine learning. 

GAs are a kind of (i) stochastic search, (ii) multi-point search, (iii) direct search, and (iv) 

parallel search. These characteristic features of GAs contribute robustness of the algorithms. 

While it is easy to apply GAs to optimization problems, several researchers [22,49,78,82] 

pointed out that the performance of GAs on some combinatorial optimization problems was a 

bit inferior to that of neighborhood search algorithms (e.g., local search, simulated annealing 

[90], and tabu search [108,119]). Therefore hybridization of GAs with other heuristic methods 

is required for improving the performance of GAs. 

Genetic algorithms have been mainly applied to single-objective optimization problems. In 

order to handle multi-objective optimization problems, the objective functions should be 

combined into a scalar fitness function. But the characteristic features of GAs can be utilized 

for the search in the feasible region of multi-objective optimization problems. Since 

Schaffer’s work [98], extensions of GAs to multi-objective optimization problems were 

proposed in several manners (e.g., see Fonseca & Fleming [14,15], Horn et al.[30], Kita et 

al.[60], Kursawe [63], Murata & Ishibuchi [77], and Tamaki et al. [111,112]). In their papers, 

the ability of GAs to address multi-objective optimization problems is well described. 

In this dissertation, genetic algorithms for optimization problems are considered. First we 

apply GAs to optimization problems where only a single objective is considered. In order to 

improve the performance of the GAs, hybrid algorithms of GAs with other search algorithms 

are attempted. Then we extend GAs to multi-objective optimization problems. In the same 

manner as the hybridization of GAs for single-objective problems, we hybridize 

multi-objective genetic algorithms with some heuristics in order to improve their performance. 

We apply GAs to flowshop scheduling and fuzzy rule selection. The former is a kind of 

permutation problem. For many problems like scheduling problems and traveling salesman 

problems, a permutation of a set of numbers is encoded as a string which is governed by 

genetic operators. The latter is a kind of knapsack problem where elements are selected in 

order to heighten the total value of elements in a knapsack. For this kind of problem, a binary 
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string is often used as an individual which codes a solution of the problem. Both problems are 

combinatorial optimization problems, but the coding method of the solution is usually 

different from each other. In this dissertation, we apply genetic algorithms to each of these 

two problems with a single objective and with multiple objectives. 

The remainder of this thesis are organized as follows. 

In Chapter 2, we first explain the basic scheme of GAs. A simple genetic algorithm with a 

single objective is described. Next, genetic operators for multi-objective optimization are 

introduced in order to design a multi-objective genetic algorithm. Using a simple test problem, 

we compare our multi-objective genetic algorithm (MOGA) with several genetic algorithms 

for multi-objective optimization. In general, when an algorithm is applied to multi-objective 

optimization problems, it is important whether the algorithm works well for problems with 

non-convex feasible regions in objective spaces or not. By using another test problem with a 

non-convex feasible region, we demonstrate that the MOGA consisting of the modified 

genetic operators can find non-dominated solutions of such problem. 

In Chapter 3, we apply GAs to single-objective flowshop scheduling problems. We first 

examine several crossover operators and mutation operators to construct genetic algorithms 

for flowshop scheduling. By computer simulations, we point out that the combination of high 

performance crossover and mutation operators does not always lead to a high performance 

genetic algorithm. Next, we compare the genetic algorithm constructed for flowshop 

scheduling with other search algorithms such as local search, simulated annealing [90], and 

tabu search [108,119]. It is shown that the genetic algorithm is a bit inferior to the other search 

algorithms. Then, we examine two hybrid genetic algorithms for improving the performance 

of the genetic algorithm. One is a genetic local search algorithm and the other is a genetic 

simulated annealing algorithm. We also introduce some modifications of search mechanisms 

in these hybrid genetic algorithms. While careful parameter specifications are required for 

constructing GAs with high performance, it is shown that we can construct the genetic local 

search algorithm without careful parameter specifications. 

Chapter 4 deals with the application of GAs to multi-objective flowshop scheduling 

problems. We demonstrate the effectiveness of the MOGA on a flowshop scheduling problem 

with two objectives and a problem with three objectives. We also hybridized our MOGA with 

a local search algorithm in the same manner as in Chapter 3. The effectiveness of the hybrid 

algorithm is shown by some computer simulations. 
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In Chapter 5, we consider GAs for designing fuzzy classification systems with two 

objectives: one is to maximize the number of correctly classified training patterns by selected 

rules and the other is to minimize the number of the selected rules. By combining these two 

objectives into a single scalar fitness function using constant weights, a single-objective 

genetic algorithm can be applied to the problem. We combine a kind of learning procedure 

with the genetic algorithm for rule selection in order to improve performance of the 

constructed classification system. Computer simulations show the effectiveness of the GAs 

for rule selection. Next we describe another kind of genetic-algorithm-based approach to the 

construction of fuzzy classification systems where both the number of fuzzy rules and the 

membership function of each antecedent fuzzy set are determined simultaneously. We also 

hybridize the genetic algorithm with a learning procedure to improve performance of the 

constructed classification system. 

In Chapter 6, the MOGA is applied to multi-objective fuzzy rule selection problems. We 

compare the MOGA with some single-objective genetic algorithms which are implemented to 

find non-dominated solutions of this problem. We combine a learning procedure with the 

MOGA to get a better set of non-dominated solutions. Then we modify the 

genetic-algorithm-based multi-objective fuzzy rule selection method for handling 

high-dimensional pattern classification problems with many continuous attributes. Simulation 

results show the applicability of our modified method to high-dimensional pattern 

classification problems. 

Last, we summarize the results of this dissertation in Chapter 7. 


