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ABSTRACT

In this paper, a multiobjective simulated annealing 

(MOSA) method is introduced and discussed with the 

multiobjective evolutionary algorithms (MOEAs). Though 

the simulated annealing is a very powerful search 

algorithm and has shown good results in various single-

objective optimization fields, it has been seldom used for 

the multiobjective optimization because it conventionally 

uses only one search agent, which is inadequate in finding 

many solutions of the Pareto set. With the idea that the 

simulated annealing has a uniform state probability over 

global optima, a new multiobjective simulated annealing 

method is suggested. The experimental performance of the 

developed algorithm is compared with multiobjective 

evolutionary algorithms and shows that the proposed 

simulated annealing has good uniformity properties. 

1. INTRODUCTION 

This paper will address a simulated annealing method for 

solving multiobjective optimization problems and 

compare it with evolutionary methods. The multiobjective 

optimiza-tion problem has a bit different aspect to the 

scalar-objective one. Instead of finding one global 

optimum, which is a general aim in scalar-objective 

optimization, multiobjec-tive optimization must find a set 

of solutions, which is called Pareto set, or Pareto optimal 

frontier, as all the Pareto solutions are equivalently 

important and all of them are the global optimal solutions 

[1]. Many engineering and economical problems are often 

complex and have this characteristics of the multiple 

objectives, which must be optimized simultaneously. 

Typically multiobjective problems are solved with 

conventional optimization methods by using the penalty 

method or the weighted sum method [1]. However, the 

penalty method and the weighted sum method also have a 

difficulty in selecting proper penalty functions and 

weighting factors respectively. The other problem of using 

the weighted sum method is that it cannot find a solution 

of concave region [2]. To solve this problem, many 

researches for multiobjective optimizations have been 

suggested and new concepts are introduced [1]. One of 

these concepts is the Pareto optimality and it is widely 

used in the many multiobjective optimization algorithms 

including the evolutionary algorithms. 

We suggest four important properties for the 

multiobjective optimization. 

1) Searching precision. The algorithm must find the 

possible Pareto optimal solutions, which are global optima 

in multiobjective optimization. 

2) Searching time. It must take less time to find the 

optimal set. 

3) Uniform probability distribution over the optimal set.

The solutions found must be widely spread, or uniformly 

distributed over the real Pareto optimal set instead of 

converging to one point. 

4) Information about Pareto frontier. The algorithm must 

give the information about the Pareto frontier as much as 

possible. 

The objective of this paper is to construct a simulated 

annealing method to find all the Pareto solutions, to verify 

the property of the suggested algorithm, and to compare 

the performance of it with the evolutionary algorithms. 

Simulated annealing method, which is suggested in this 

paper, uses the concept of Pareto optimality and 

domination, which is widely used in evolutionary 

approaches in multiobjective optimization, to have more 

searching power in many complex problems, which 

satisfies the searching precision property. Though it is 

reported that the main drawback of the simulated 



annealing is the searching-time, it is also reported that

long searching-time is not always true [3]. The third

property, uniform probability distribution property, is also

very important in multiobjective optimization. The

simulated annealing has an interesting advantage at this

point as it is mathematically proved that it can find each 

of the global optima with the uniform probability [4, 5].

Considering that evolutionary algorithms generally use

additional algorithms such as fitness sharing, niche 

induction for spreading the solutions, the suggested

simulated annealing have more simple and compact

structure.

Therefore, the first objective in the multiobjective

optimization is to find the Pareto set, and the next is to

select a proper solution from the found Pareto solution set.

3. MULTIOBJECTIVE SIMULATED ANNEALING 

BY USING THE PARETO-BASED COST 

One of the good properties of simulated annealing in

single objective problem is that its properties are well

proved by mathematical approaches. Geman and Geman

[4] showed its convergence property to global optimum in

finite state optimization using Markov chain analysis.

Also Mitra, Romeo, and Sangiovanni-vincentelli [5]

showed the same result in his paper with different

approaches and also showed finite time analysis. One of

the main results in their works is summarized in the next

theorem [5].

2. MULTIOBJECTIVE OPTIMIZATION

For most multiobjective problems, there exists a set of 

non-dominated solutions that have a trade off relationship

each other, and one of the multiple objectives of each

solution cannot be improved without sacrificing any of

others. This concept is known as the Pareto optimality

[1].

Theorem 1. Uniform searching probability on the optima.

The probability of the searching agent to be located on the

global optima e is uniform over the global optima. That

is,

'

Definition 1. Pareto optimality

Consider, without loss of generality, the minimization of 

the n components , 1, ,
k

f k =

x

n , of a vector function  of 

a vector variable  in a universe

f

A , where 

( ) / (*)
'

0

g i g
e =                     (1) 

*

*

i S

i S

∈

∉

1( ) ( ( ), , ( ))nf f=f x x x .
where is the set of indices of global optimal-cost

configuration, i.e.

*S
Then a decision vector xu ∈ A is said to be Pareto

optimal if and only if there is no x  for which

 dominates

, that is, there is no x

v

1( ) ( , , )v nv v= =v f x

1( ) ( , ,u u u= =u f x )n v ∈ A  such 

that

* { | ( ) ( )S S= ∈ ≤ ∀ ∈x c x c y y }S                (2) 

with is state configuration space, c is cost function

of configuration  and, 

S ( )x

x{1, , }i iv u i n≤ ∀ ∈  and v u {1, , }i i i n< ∃ ∈

*

(*) ( )

S

g g

∈

=
y

y

(3)

The set of all Pareto-optimal decision vectors is called the

Pareto optimal set, efficient set, admissible set or the

Pareto frontier of the problem. The corresponding set of

objective vectors is called the non-dominated set. The

notion of Pareto optimality is only a first step toward the

practical solution of a multiobjective problem, which

usually involves the choice of a single compromise

solution from the non-dominated set according to some

preference information.

with is normalizing factor of generation function

which is usually considered to be one. 

( )g y

The proof of this theorem is shown in the [5]. This results

show that the searching agent will be located to every

global optimum with the uniform probability in the state 

space when the neighbor generating function is not biased. 

This indicates one important property for SA to be used in

the multiobjective optimization - uniform distribution

over all the global optima.

The simultaneous optimization of multiple, possibly

competing, objective functions deviate from scalar-

objective optimization. Instead of finding one perfect

solution, multiobjective optimization problem tend to be

characterized by a family of alternatives that must be

considered equivalent in the absence of information

concerning the relevance of each objective relative to the

others. 3.1 Pareto-based Cost 



We suggest a new multiobjective optimization method

that satisfies the detailed balanced condition of the SA. 

Instead using the cost functions directly, we used the

Pareto-based Cost Simulated Annealing (PCSA). The 

following is the Pareto-based cost (or Pareto cost in brief)

of the state :x
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Figure 1: The concept of the Pareto-based cost 
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Figure 1 shows the concept of Pareto-based cost of two-

objective optimization. The Pareto-based cost of state

is the area S

x

,x in which all states dominate state 

divided by whole state area 

,x

.S

The costs of state y  and z are also determined to be 

,S Sy 0 respectively as there are no state that dominates

the state .z We can also know that Pareto-based cost of 

state is higher than Pareto-based cost ofx .z  As these

two states are in the relation of undominated, it is clear 

that state z  is closer to the Pareto optimal than .x

.

M

3.2 Implementation 

However, there are significant problems in using the

Pareto-based cost algorithm practically. First, this

algorithm is a little ridiculous because calculating one

Pareto-based cost requires cost information of all the

states including optimal states. It means that it is much

worse than the full search algorithm. Second, when the

states have real values, it is impossible to calculate exact 

Pareto-based cost with digital computer, as the Pareto-

based cost requires integration on the state space. 

Therefore, we deal with these two significant problems by

the sampling. After sampling N states, the Pareto-based 

cost is calculated as follows. 
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We suggest two methods for calculating the sampled

Pareto-based cost. 

3.2.1 Neighbor Sampling

Neighbor sampling takes N samples within the small

boundary of current state and reduces the boundary as

time goes on. When a solution approaches the Pareto 

frontier, almost every sample is dominated by the solution.

As only dominating samples have meanings in the Pareto-

based cost algorithm, taking samples in a large area is 

wasteful. When the state transition is considered between

states  and neighbor sampling takes N  samples

within the boundary of hyper-sphere with radius of 

,x

x ,y

−x y  and center on the middle point of  Generally

the position of the next transition state  becomes nearer

to the current state  the radius becomes smaller.

,x y

y

,x

3.2.2 Population Sampling

If one wants to find many Pareto solutions at the same

time, using population information is a reasonable choice.

In this case, additional sampling is dispensable for

calculating the Pareto-based cost as population itself gives

enough information of the samples. Using population is

very simple in the PCSA. PCSA does not need any

information exchange like crossover of the genetic

algorithms. If someone wants to find M  Pareto solutions,

running independent PCSA is enough. Calculating

Pareto-based cost from the population information is also

simple: take 2M  solutions ( M  current solutions and M

next transition solutions which are generated by neighbor

generation) as the samples for Pareto-based cost. Also 



additional sampling will be helpful when the population 

size is too small.

current state

Feasible Region

next state
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Figure 2: The concept of the neighbor sampling (left) and 

population sampling (right)

4. EXPERIMENTAL COMPARISON 

Even though comparing algorithms by simulation is not

always good approach because it has some problems, i.e. 

limitation of the simulation conditions, finite test-bed

functions, dependency of the simulation environment, it

must be helpful to understand the mechanism of the

algorithm and to find proper algorithm for a specific

problem.  In this section, we compare the performance of

the MOEAs and PCSA for the multiobjective

optimization. The difficulties of comparisons lie mainly

on the measures in the multiobjective optimization. In the

experiment, we only test the uniformity performance

between the well-known multiobjective genetic 

algorithms and the proposed simulated annealing method.

Other measuring metrics for the multiobjective

optimization, i.e., accuracy, are researching and remained

as a future work. The comparison paradigms are as

follows.

4.1 Experimental Setup 

4.1.1 Objective of the comparison

First of all, this experiment is focused on the comparison

between the PCSA and the MOEAs. We used three types 

of well-known MOEAs for comparison, which are FFGA 

[6], NSGA [7], and NPGA [8], but we did not consider

the comparison of them because there have been already

many research results about that. We considered them as

variations of MOEAs, not specific algorithms even though

their performances are different. Also we used only the

proposed Pareto based PCSA for the comparison.

4.1.2 Test functions

The experiment is focused on the real-valued parameter

optimization. The test problems are well known 18

optimization functions with and without the constraints [9, 

10]. Almost problems have two parameters and two costs,

which means there are two-dimensional parameter space

and two-dimensional cost space. Also there are problems

of four-dimensional parameter space and three-

dimensional cost space. The range of the parameter varies

much dependent on each problem.

4.1.3 Experiment condition

Basically it is not easy to set the experimental conditions

of many algorithms equal because they have different 

parameters. For example, the initial temperature and

cooling schedule are important for the PCSA, but

selection scheme and mutation rate are important for the

MOEAs. Additionally, in the multiobjective optimization,

MOEAs have one more important parameter - niche size

that mainly determines the uniformity and coverage

characteristics. However, PCSA is not affected by the 

niche size because it does naturally maintain the 

uniformity and wide coverage characteristics. The

parameters of both algorithms were chosen by the

heuristic methods. Strictly speaking, by these reason, this

experimental comparison may not be fare. However, the

conditions are equal to both algorithms because there is 

no additional parameter tuning for the algorithms. Table 1 

shows the parameters of both algorithms.

4.1.4 Uniformity measure 

We propose uniformity metric for the two-dimensional

cost function and suggest an algorithm for the higher

dimensional case. In the two-dimensional problem, it is

possible to use the distance sequence with the sorted 

index that is used in the coverage metric.
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where the I is the sorted index of the found solutions as 

used in the coverage metric. There is no difference

between sorting with respect to the first cost and the

second cost. is the distance of the costs between the 

i-th solution and (i+1)-th solution and 

, 1i i+

is the average 

value of the distance sequence . However, this 

method cannot be used in the higher dimensional costs

because there is no easy sorting method for the problem

with over three-dimensional cost. An easy method to

solve this problem is the make a distance sequence with 

the following method. 1) Find a solution with maximum

norm. 2) Calculate distance sequence of the solutions

from that solution. 3) Sort the distance sequence and find

the variance of them. It is not such a good metric because 

it does not measure uniformity exactly, but it can be a

practically useful metric.

, 1i i+

4.2 Experimental Result 



We tested the 24 functions repeatedly by ten times and got

averaged results. The graph in the Figure 3 shows how 

5. CONCLUSION 

Table 1: Parameters for the experiment

Parameters of PCSA and Evolutionary Algorithms 

PCSA Evolutionary Algorithms

Pop size 100 Pop size 100

Initial

temperature

100.0 Mutation

rate

0.3

Neighbor

generating

Fast SA Crossover

rate

1.0

Cooling

method

Fast SA Selection

method

FFGA/NSGA/

NPGA

Acceptance

method

Metropolis Niche size Problem

dependent

Terminatio

n condition 

10,000

iterations

Termination

condition

10,000 iteration 

We developed a new multiobjective optimization

algorithm by using the simulated annealing method. To

make the single objective algorithm to multiobjective one, 

we developed the Pareto-based cost and the test results

showed that the proposed algorithm has good uniformity

performance.
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